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A commutator approach to the limiting
absorption principle

By D. B. Pearson

Department of Applied Mathematics, University of Hull, Cottingham Road,
Hull, England.

(13. V. 1988, revised 6. VIII. 1988)

Abstract. A limiting absorption principle for the free resolvent in non-relativistic quantum
mechanics is derived, using commutator identities and the iteration of operator inequalities. The class
of admissible perturbations is essentially the best possible, and asymptotically optimal bounds are also
obtained for a class of related operators which localise to compact regions of position space.

1. Introduction

The so-called limiting absorption principle (L.A.P.) of mathematical physics
has its origin [1], [2], in the possibility of selecting the physically relevant solution
of a P.D.E. (Helmholtz equation, wave equation, etc.) through an appropriate
limit of solutions at complex energy or wave number. In its. most abstract and
mathematical form (see for example [3], Chapter 14) one has to deal with the
limit, as z approaches the real axis, of the resolvent R(z) of some elliptic
differential operator; although this limit does not usually exist in terms of
operator norm convergence in the underlying Hilbert space, one can often regard
R(z) as a mapping from some suitable Banach space to its dual, in which case
such a limit may be shown to exist under very general conditions. Alternatively,
one can consider Hilbert space limits of 7T;R(z)T, for some suitable choice of
operators 1, 7.

In this paper, we present a new approach to the L.A.P. for the free
Hamiltonian H,=P?/2m in non-relativistic quantum mechanics, based on com-
mutator methods and motivated by an important paper of Mourre [4]. In suitable
units (Ai=2m =1), Hy= —A is the negative Laplacian operator, and we shall
denote the resolvent in that case by Gy(z) = (H,— z)~'. The question arises: for
which class of multiplication operators A(r) is it true that norm limits exist as
e—>0+, z=A+ie— A>0, for the operators

(A): hGy(A +ie)h, and
(B): h[Gy(A +ie) — Gy(A —ig)}h.

Although there is an extensive literature on the L.A.P. as applied to the
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Schrédinger operator (see for example the pioneering work of Agmon [5], [6]; for
additional references see [4], [7]) there seems hitherto to be no self-contained
“elementary” treatment of problems (A) and (B) which applies to the widest
class of h-functions. Roughly, A(r) has to decay at infinity more rapidly that |r| ™'
(see for example [8]; other results are to be found in [7], [9]). Locally, A(r) may
have mild singularities; the two cases (A) and (B) are different in this respect.

The principal advantages of the approach presented here are as follows

(a) Bounds placed on the multiplicative functions h(r) are optimal, in a
sense to be described later.

(b) The method is operator theoretic, and therefore independent of a
detailed knowledge of resolvent kernels, Fourier transforms, etc. The analysis is
based on a single operator inequality (10). An analogous treatment of the L.A.P.
in applications to scattering by singular, short-range and long-range potentials,

-will be published elsewhere. For other applications in this area see [10], Chapter
12.

For other developments of Mourre’s work see [11], [12], [13], [14], [15].

(c) We shall derive (Lemma 2) estimates in operator norm, appropriate to
cases (A) and (B) above, where h(r) is multiplication by the characteristic
function of a region of size R in position space. These estimates are optimal in the
limit R—«, and imply the L.A.P. of Hormander [3] for the resolvent as a
mapping from one Banach space to another, (Hormander’s analysis is, however,
more general in that it applies to a wider class of elliptic operator).

Finally, let us cite a few of the many applications of the L.A.P. in quantum
theory.

(i) With A(r)=|V(r)|"?, a uniform norm estimate ||hGy(A+ig)h|| <1 im-
plies the existence of wave and scattering operators for H,, H,+ V. See for
example, [7] Chapter 13, where there are further references, as well as extensions
and applications to many-body problems.

(i) A uniform norm estimate in case (B) above implies that h is H,-smooth,
with important consequences for scattering and spectral theory. Wave operators
exist whenever V = h,h,, where h, is H,-smooth and h, is H-smooth. For the
theory of smooth perturbations, see [16], [17].

(ii1) The norm limit in (B) above may be formally denoted by 2wihé(H, —
A)h. This limit is intimately related to the derivative, with respect to A, of the
spectral family of H,. There is a corresponding expression with H instead of H;
see for example [7], with applications to spectral analysis.

2. Principal results

Throughout this paper, H, will denote the unique self-adjoint extension, in
the Hilbert space L*(R?®), of the negative Laplacian operator H,= —A, defined
with domain D(H,)= C;(R*). We can write H,=P?, where P, =—i(3/dx))
(j=1, 2, 3) are the three components of the momentum operator. Each compo-

nent of the momentum operator is self-adjoint in L*(R?), with D(H{?) = D(P).
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Elements f of L*(R?) will be represented in position space by wave functions f(r),

where r = (x,, x,, x3), and the jth component X; of the position operator is the

operator of multiplication by x;. In the momentum space representation of

L*(R?), fis represented by f(k), the three-dimensional Fourier transform of f In

momentum space, P, is implemented by multiplication by k;, and H, corresponds

to multiplication by kz. The position operator X; in momentum space is given by
.= i(3/3k;).

We shall use the same symbol h to denote both a positive real valued
function A(r) defined on R*\{0}, and the operator of multiplication by A(r), in
position space. In particular, if Gy(z)=(H,—z)""', Imz#0, is the resolvent
operator for H,, we shall be interested in the operator

My(z) = hGy(2)h, (1)
defined in L*(R?) by
(Mo(2)f )(xr) = h(r)(Go(2)g)(x),

where g(r) = h(r)f(r).

It is well known [10] that any vector in D(H}*) belongs also to D(1/x|); i.e.
to the domain of the operator of multiplication by 1/|r|. Indeed, if we take
account of the fact that the operator H,— 1/4|r|* is positive we have, with
f=(Hy+1)"y,

2
= (('[10 + 1)1/211,

1P = |5 o+ 71
X (Hy+ 1)"u) — <ﬁiu ﬁu) 0

for any u € D(H{*), from which it follows that

1
”m (ITI() + 1)41/2 =2

(The norm is actually equal to 2, since H,— c/|r|* is not even bounded below if
c>3).

If, in (1), we make the assumption that A(r) is bounded in any closed subset
of R\{0}, and is bounded by const/|r| in the limit as [r] — 0, it follows that

IMo(2)|| = ||h(Hy + 1) ?{(Hy + 1)(Hy — z) ' }(Hy + 1) h||
< ||h(Ho+ )™ [[(Ho + 1)(Hy — 2) 7'l

so that My(z) is bounded for fixed z such that Im z # 0. On the other hand, if A(r)
is more singular than const/|r| at the origin (that is, if lim,_,, |r| A(r) = «), then
My(z) will be unbounded for all z. If My(z) is bounded, we shall take My(z) to
mean the closure of the operator defined by the r.h.s. of (1). In that case, My(z)
is defined, by closure, as a bounded linear operator on the whole of L*(R>).

In order to consider the behaviour of My(z) as z approaches the real axis
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from above or from below, we set z = A + ie for some fixed A >0, and estimate
My(A +ig), My(A—ig) in the limits €¢—0+. We shall do this by first of all
obtaining a norm bound, as a function of & for (d/de)My(A+ie) and
(d/de)My(A —i€), and then converting this, by integration with respect to g, to
corresponding bounds for M,. Under the above assumption that 4 is bounded
away from r=0, and that hA(r) =0(1/|r|) as |r]— 0, these two derivatives exist as
limits in operator norm, and we have

4 My(A + ig) = ih[Gy(A + ie)]*h

de

p (3)

— M()()» - 18) = _lh[G()(A — 18)]2’1

de
We shall also consider the asymptotic behaviour as £ — 0+ of the operator

M, (2, €) = h|Gy(A + ig) — Gy(A — ig)]h (4)
Noting that

M, (A, €) =2ich[(Hy— A)* + £°] 'h = 2iehGy(A + ie)Gy(A — ig)h, (5)

we may use equation (5) to define M,(A, €) as a bounded operator for a larger
class of multiplicative operators 4 than that for which M, is defined. The r.h.s. of
equation (5) may be written

2iehGy(A + i€) {hGy(A + ig)}*,

and is bounded if and only if hGy(A + ie) is bounded. Suppose then, that A is
bounded away from r =0, and that 4 satisfies in addition, for any finite R,

fm(R lh(r)? d*r < (6)

Wave functions in the range of Gy(A + i€) are locally bounded, and hence in the
domain of A. Under the given hypothesis, hGy(A + i) is defined as a linear
operator on the entire Hilbert space, and hence bounded, by the Closed-Graph
theorem. If & is bounded away from r=0, (6) is a necessary and sufficient
condition for M,(A, €), defined by the r.h.s. of (5), to be bounded, and this is
clearly weaker than the condition A(r) < const/|r| for My(A + i€) to be bounded.

The following Theorem summarises the main results of this paper, in the case
of multiplicative functions A(r) bounded by functions of |r|.

Theorem 1. Let h(r) be a non-negative multiplicative function. Suppose that,

for some R >0 (and hence for all R sufficiently large), h(r) satisfies a bound of the
form

F(r
h(r) 57%;, Ir| =R,
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where F(r) is non-increasing for r = R and

J’“’ F(r)

R r

dr < o,

Then

G if hr) <"

2 for |x| <R, where

R
f rF3(r) dr <,

0

then lim,_o, h[Go(A + i€) — Gy(A — i€))h exists as a limit in operator norm;
t
(i) if k() ==>
r

operator norm. We shall defer the proof of Theorem 1 until Section 5.

for || =R, then lim,_ o, hGy(A + i€)h exists as a limit in

Remarks. 1. The square integrability condition governing the large-r

behaviour of F(r) is optimal, in the sense that if A(r) = F(r)/r'?, where
[ 2 g,
R r

then both My(A, €) and M (A, €) are unbounded in the limit as €¢—0+. The
condition allows a decay at infinity like (log 7)™ ” provided 8 > 3.

The requirement that F(r) decrease for r > R may be relaxed somewhat, but
the Theorem no longer holds if this requirement is dropped altogether.

2. The distinction between cases (i) and (ii) of the Theorem is a real one;
under that hypotheses (i), hGy(A + i€)h need not be bounded for £ > 0.

3. The Theorem may be extended to cover limits such as lim,_,,, /;Gy(A +
i€)h,, involving a pair of multiplicative functions k,, h,; see also Lemma 4 below.

4. The methods developed in this paper may also be applied to estimate
norms where the limit € — 0+ does not exist. As an example of such a result, we
have

1

1/2
r’|l

1
Jin Go(A + ig) =0(—loge), as eg—0+.

3. Operator bounds and the L.A.P.

The following Lemma shows how to estimate other norms, in terms of a
norm bound for the operator hGy(A + i€)h.

Lemma 1. Let h be a real non-negative multiplication operator such that
D(H{*) c D(h) and define the function m(g) for € >0 by

1hGo(A + ie)h|| = m(e) (M
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Then
|Go(A + ig)h|| = (m(e)/ )", (8)
A afl : 1/2
Gy (A + ieph = (EELE) 8y
Moreover, if T,, T, are any two bounded operators satisfying
range (T}) c D(rh)} ©)
range (T,) < D(rh) }’

where D(T) denotes the domain of a linear operator T, we have the estimate, valid
for Im z #0,

I {h[Gy(2)I*h} T> — (22) "' T, {hG(2)h) T
=2 z)) IR TY I{Hs*(Hy — 2) 'h} T
+(|[(rR) Tl I{Ho*(Hy — 2)™ 'R} TT |} (10)
Proof. On taking adjoints, note that
[|hGy(A — ig)h|| = m(&).

From the resolvent identity
1
G()(A, - iE)G()(A + i&‘) == % {G()(A' + iE) = G()(A. i ig)},

we have
|Go(A + i)h||* = |[{Go(A + ie)h } *Gy(A + ig)h||
= ||hGy(A — ie)Gy(A + ie)h||

m(e)

551; {IhGy(A + ie)h|| + ||hGy(A — ie)h||} = :

Hence (8) follows immediately. We obtain the same estimate for |Gy (A — ig)h]|.
To prove (8'), note that

”H(I)IZGO(A +ig)h “2 = ||hHyGo(A — ie)Gy(A + ig)h]|,

and use the resolvent identity
1
HyGy(A —ie)Gy(A + ig) = e {(A+ie)Gy(A + ie) — (A —ie)Gy(A — ig)}

Now let T, T, be two bounded linear operators satisfying (9). Consider first the
case h = 1.

We rely on the identity, valid for any f, g € D(r) (domain of operator of
multiplication by [r|), 2iz (f, (H,— z)"°g)

=2 {{P(Ho— 2)7'f, Xig) — (X;f, B(Ho— 2)7'g)} +i(f, (Ho—2)"'g) (11)
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Equation (11) follows from evaluation of the commutator [X;, P,(H,— z)~']. This
commutator can most readily be evaluated in the momentum space repre-
sentation, with X; =i(3/dk;), by considering the derivative with respect to k; of
the function k,(k* — z)™".

With & =1, the hypotheses (9) imply R(T}) < D(r), R(T5) < D(r), so that
(11) holds with f, g replaced by T7f, T,g respectively. Dividing throughout by
2iz, we then have

[, TGy(2)"Tog) — (22)7(f, T Gy(2)Trg)|

1
Sm  AP(Hy = 2)7' T, X;Tg )| + (X, TTf, B(H,— z)" ' Tg )|} (12)
J
By Schwarz’s inequality,
2
[ (B H, -2 Ti, X T2)
J

= (2 1pH,- 27T 7) (31X Bl
) /
= IH3(Hy — 2)" T3 I | Il TglP

1
Thus the first contribution to the r.h.s of (12) is bounded by m \|HY*(H, —
z

)7'TY el B IFI - llgll- The second contribution to the r.h.s. may similarly be
estimated. Since each bound is proportional to ||f]| - ||g||, we can convert the
inequality (12) into a bound for the operator norm in equation (10), which is now
verified in the case i = 1.

The proof of (10) in the general case for £ is not quite so clear cut, because
the stated hypotheses do not imply range (77) < D(h), range (T;) < D(h). How-
ever, equation (9) does imply range (E,-zT7)< D(h) and range (E,-rxD) <
D(h), where E . is the projection operator associated with the region |r| > R.
(I.e. E,~g is the operator of multiplication by the characteristic function of
the region |r|>R; note that ||hE,.zTT||=||r|'Ew=rrhT7|| = (1/R) ||rhTT],
and similarly for 7,). We can therefore apply equation (11), with f, g replaced
by hE . ~rT1f, hE-~rT>8, respectively.

Proceeding as before, we arrive at the inequality

[{fs TE\q>rh[Gy(2)PPhE >k T28) — (22) 7' (f, TLE \q>rhGy(2)RE ;- T8 )|
1
S ——
2|z|
+ | Ew=r(rR) TIf || 1| Ho*(Ho — 2) "' hE - r Tog | (13)
Under the stated hypotheses, (H{*(H,—z) 'h)* =h(H,+ 1) Y [H{*(H,+
1)"2(Hy — z)™"] is defined on the entire Hilbert space, and hence is bounded, by

the Closed-Graph theorem. It follows that H{*(H,— Z)™'h is bounded, and
similarly with z instead of Z. The operators hGy(z)h, h[Gy(z)]*h, are also

{IlHo*(Ho = 2)"'hEye>rT1f || || B> r(rit) Tog |
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bounded. In the limit as R— 0, E . converges strongly to the identity operator.
Taking the limit R— 0, we can remove the projection operator from both sides of
the inequality (13). Proceeding as before, (10) now follows in the general case.

The use of (10) in asymptotic analysis of the resolvent operator near the real
axis lies in the fact that estimates for [G,(z)]* may be reduced to estimates for
Gy(z). The following Lemma gives two applications of this idea.

Lemma 2. Let E,_r denote the projection operator, in position space,
associated with the region |x| <R; thus E, g is the operator of multiplication by
the characteristic function of a ball of radius R, centered at the origin.

Then the limits

lim - GO(/'L+18)— and lim E,gGy(A+i€)E <
£—0+

e—0+ T

exist as limits in operator norm, for every A>0. We have, moreover, the following
uniformly valid estimates, for A, €, R, R’ all positive,
() 1Go(A + ie)E <l = C1(A)(R/€)"?, (14)
(ii) |Ew<rGo(A +i€)En<r |l = Co(A)(RR')'"? (14°)
where the constants C (A1), C,(A) depend on A but are independent of ¢, R, R'.

Proof. The existence of the second norm limit in the statement of the
Lemma follows from that of the first norm limit on noting that the operator
rE g and its adjoint are bounded. To prove existence of the first limit, start
from (10) with 2 =1/r and T, = T, = I = identity operator in L*(R>). Since rh =1
in this case, (9) is trivially satisfied. We then have, from (10),

” [Go(A + 16)]2{ S5 M:_ Py { Go(A +ig) - l +2 “H(‘)’ZG(,(A + ig) H}
Using (8)" with m(s) = ||(1/r)Gy(A + ig)1/r||, this gives
Fia+iopd] =5z (meer+ 2 H29)7) (15)

From equation (3), starting from the bound m(g)<const/e as €¢—0, we can
integrate the inequality (15) with respect to ¢ to obtain the improved estimate

m(g) = const + fl 5 |17L| ( (e") + 2(|il|_rg(£_))”2) de’ (16)

showing that m(e) is at worst logarithmically divergent in this limit. Repeating
this argument with m(&’) =<const |log £'| on the r.h.s. of (16), we find that in fact
m(¢) is bounded.

Hence

[ G+ iop] =<2

= 172 >
r )
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and this norm is integrable with respect to € down to €¢=0. So (1/r)Gy(A +
ie)(1/r), and hence also E zGo(A +i€)E <g, converges to a limit in operator
norm.

To derive (14), we take a linear combination of equation (11) with
z=A+ig, A— i€ respectively to obtain

d
=, (Em<rf, [Go(A + i€) = Go(A = i€) | Er<sg)

= (Ep<rf, i{[Go(4 + ie)]* + [Gy(A — ie)} E\q<rg)
= 2 {(E|r|<Rf: BW(A, e)X;E ;<rg) — <XiE|r|<Rf’ BW(4, €)E . xg)}

+i(Ej<rf, WA, €)F<r8), (17)
where the operator W (A, ¢) is given by

W(A, ) = A—ig)' + (Hy— A +ig)~!

2(A + ie) (Ho 2(A — i€)

1
(Az 2 {A(Hy — AM)[(Hy— A)* + €7 + €[(Hy— A)* + €*]7').
For fixed A >0, we can write

W(A, €)=G(Hy, €)= | G(x, €)dE,, where {E,}
0

is the spectral family of the operator H,, and

1
G(x, €) =m {A(x —A)+ 82}[(x = 1)2 o 82]"'1.
Since
const [x — A|
|G(x, €)| <const + =+ e

it follows that [{|G(x, €)| de is bounded uniformly in x. By considering values of
x satisfying respectively the inequalities |[x —A| =1 and |x — A| > 1, we find also
that [{x"?|G(x, €)| de is bounded uniformly in x. The integrals [T |G(x, £)| de
and [T x'?|G(x, €)| de are also bounded uniformly in x.

Thus

SSUPJ |G(x, €') | de’,
X 0

{I de'G(x, £’)} dE,
0 £

so that this norm, and similarly the norm of [T de'H{*W(A, €'), is bounded
uniformly in & Since PW(4, €)= (PH;'"*)H*W (A, €), we have a similar bound
for [7de'PW(A, €').

Using the fact that ||X,E,<g||=R, we can integrate equation (17) with
respect to € from ¢ to «, to obtain

| E\ri<r[Go(A + ig) — Go(A — i€)]E | <rl| = const R (18)
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The estimate (14) now follows on using the resolvent identity, as in the proof
of (8). Actually, (18) follows from (14)’, and the corresponding result with A — ig,
on setting R = R’. We shall argue in the reverse order, that is derive (14)’ from
(14).

Suppose first that we have £=1/R. Then | E <xGy(A+i€)E gl =
|Go(A + i€)E || = const (R'/€)'? < const (RR')"?, where we have used (14)
with R’ for R. Hence (14)' holds provided € =1/R, and similarly provided
£ = 1/R’. We need therefore only to consider the case in which both € <1/R and
£ <1/R'. We shall suppose € <1/R =1/R'; a similar proof holds with ¢ <1/R’
=1/R.

We know that ||(1/r)Gy(A + i€)1/r|| is bounded in the limit as € — 0+, and it
is also straightforward to verify that this norm is a bounded function of ¢ for
€ = const > 0. Hence |[(1/r)Gy(A + i€)1/r|| = const for all € >0. Using the results
|1PE q<rll = R, |IFE\<r|| = R'. we may deduce the estimate

||E|r|<RG()()L 4 iE)E|.-|<R' ” = const (RR ').

This is a better estimate than (14)" whenever RR’ < 1. We shall therefore consider
the case RR' = 1. We shall prove that

1/R
J de
1]

Assuming (19), we have

d
- E<rGo(A + i€)E < || = const (RR")". (19)

l ;
”E1|-1<.R[Go(A + E) - G()()" 5 ls)]E|r|<R’

/R d
J‘ dg% E|r|<RG()(A- + iE)Elr1<R'

= const (RR')">.

We may then deduce (14)' from the fact that this inequality has been shown to
hold for £ =1/R. It remains, then, only to prove (19). To do so, use (10) with
h=1, T\,=E, <z, T,=E,.g, to obtain

d i
Eg E|r|<RG()(A + lg)Em<R'

= const ”E|r|<RG()(A' 3 l":E)E‘Il'l<R'”

+ const R ||H{?Gy(A + i€)E\y<r|| + const R' ||Hy*Gy(A — i€)E ,<r|l (20)

Using (14), the first term on the r.h.s. is bounded by const (R/¢)"?; for this term
we have [(/® de ||-|| = const = const (RR')"? since we have RR' = 1.

For the second term on the r.h.s. of (20), use (14) with R’ for R, together
with (18), and proceed as in the proof of (8') to obtain

R’ R' 1/2
|H5?Go(A + i) E yy<r'||* < const ((—) + (—) )

£ 3

This gives the bound const {R(R'/€)"*+ R(R'/£)"*} for the second term, and
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again we find

I/'R
de ||-|| = const (RR")'",
0
The same estimate applies on integrating the third term on the r.h.s. of (20); here
we have R and R’ exchanged, and we can write

/R 1/R’
de ||| sf de ||-|| < const (RR').

0 0

Thus (19) is verified, and with it we have completed the proof of the Lemma.

Both of the bounds (14), (14)' are optimal in the limits R, R'— o, in the
sense that the power R"* cannot be replaced by any other function of R which is
o(R"?) as R— . In the limits R, R’, — 0, both estimates can be improved. We
have already seen that that r.h.s. of (14)' can then be replaced by (RR'). On the
other hand, for h e L*(R?), G,(A+ig)h is an integral operator having kernel
(2m) *2K(r — r')h(r'), where K(-) is the inverse Fourier transform of the function
(k* — A —ig)™". Since

d’k const o
f |k2—l—is|25 . n the limit e— 0,

the kernel is Hilbert Schmidt and we have
. const I
Gt + ie)hll =< ([ 1P ) e1)
This corresponds to the improved bound C(A)(R>/€)"* on the r.h.s. of (14), in

the limit as R— 0, and for 0 <e<1.
Finally, in this section, let us note the estimate

|- Gulh + )< = COR™™ @

The inequality (22) may be proved from (14) in the same way as for (14)’; here
we need also the bound

const

= 172
£

“% Go(A + i€)

which follows from (7) and (8) and our bound for ||(1/r)Gy(A + ig)(1/r)]|.

4. An L.A.P. for short-range perturbations

As an application of Lemma 1, we shall prove the L.A.P. for a class of
multiplicative functions 4 decaying more rapidly that |r|”"? at infinity. This
corresponds, for example, to the existence of wave operators for scattering by
potentials having a power decay better than |r|™'. In Lemma 4, we shall obtain a
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general criterion which includes these short-range perturbations as a special case.
What is needed is a precise norm estimate for the square of the resolvent.
The technique used will be the iteration of operator inequalities.

Lemma 3. Suppose that the multiplicative function h satisfies the conditions
D(H{?) < D(h) and D(H,) < D(rh*). Then

1[G + ie)Phil =

e A+i
A+ ic] 1A Go( ie)hl|

+ ﬁ |hGo(A + ie)h||"? ||[rh*Gy(A + ig)||'? (23)
Proof. Let T = h[Gy(A + i€)]*h. Then
T*TT* = h[Go(A — i€)[Ph - h[Go(A + i€)Ph - A[Go(A — ig)Ph.
Applying (10), with T, = T, = T*, we have
IT*TT*) = 5 e (UTIE IHGGa + )
+ |rh*[Go(A + i) PR [|HY*(Hy— A — i)™ 'h|| || T||
+ |Irh*[Go(A — ie)hI| || HE*(Hy — A + i) ~'R|| || T||}.
Writing 7
Irh*[Go(A + ie)Ph|| < |Irh*>Gy(A + ie)|| |Go(A + i€)h ]|,

with the corresponding result for —¢ instead of & and using (8), (8)' to estimate
|Gy(A £ ie)h|| and ||H*Gy(A £ i€)h||, we obtain

\TTT*| S_lii—.ﬂ (ITIR [1hGo(h + ieh|
+2 A +ie] 2 || T|| |AGo(A + ie)h|| [Irh*Go(h + ig)|] €} (24)
Since T*T is a positive operator, we have
I(T* TR = | T*T|P = | T

Also |[(T*T)Y?||=||T*TT*T||<||T*TT*| ||T]]. Combining these two results
gives

ITIP=IT*TT*|

From the explicit bound (24), this leads to an inequality of the form
ITI*<A|T| + B,

with prescribed positive values for A and B. Such an inequality implies

A+ (A*+4B)'"
2

T < =A+ B2
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which gives (23) on substituting for A and B. The inequality (23) may be
“iterated” to give a precise estimate for the normm(e)=|hGy(A +ig)h]||.
Suppose, then, that we can obtain a bound

m(e) =m,(¢).

On integration of (23) with respect to &€ we then have m(¢) =m, (&), where

Mui(e)=a+b [ de’(m, (e

+((")"'m, (&) Irh*Go(A + ig") 1)} (25)

We can thus generate a sequence of upper bounds to m(¢). If, for n sufficiently
large, the integral on the r.h.s. of (25) converges even in the limit ¢—0, it
follows that ||h[Gy(A + i€)]*h|| is integrable with respect to ¢ from 0 to 1. In that
case we may deduce the existence of the norm limit of hGy(A + ig)h as e — 0. As
an illustration of these ideas, suppose for example that

h(l‘) = |r|—(1/2+6)

for some & with 0<é < 1.
On the r.h.s. of (25), we have then,

Irh*Go(A + ig)|| = || E qye-12r' 72%(r ' Go(A + i€)) + E g e-1or 2°Gy(A + i€)||
= e®7 2 ||Ir'Go(A + ig)|| + €° ||Gy(A + ig)||

< const 27!

, in view of (8) with A = %

Assume inductively that m(e) =m, (&) = const/&" for some y, >0; h is less
singular that 1/|r| at the origin, so that it is straightforward to establish this
inequality with y, = 1.

On the r.h.s. of (25) the integrand is of order (&')~U**27%3  On
integration, we obtain

m(e) <m,.,() =const/e"™*, where V,.,=(v.)/2— /2 (26)

if y,> 9. If y,<9, then ||h[Gy(A + i€)]?h|| is integrable; if y, =6 we obtain a
logarithmic bound for m,,, and again |A[G,(A+i€)]?h| is integrable on
estimating the r.h.s. of (25) with n + 1 for n.

In any case, (26) shows that y, decreases with »n until ultimately we arrive at
an estimate of the form m(&) =const/e” for some y <. It then follows that
hGy(A + i€)h has a norm limit as ¢— 0+, and similarly as e— 0—.

This result is a special case of Theorem 1 in which 4 has a power decay at
infinity. The following Lemma gives a criterion for norm convergence which sets
this result in a more general context.

Lemma 4. Suppose h satisfies the domain conditions

D(H(l)lz) cD(h) and D(H,)c D(rhz),
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and that
1
f de(e)™ "2 ||rh*Gy(A + ig)||'? < .
0

Then lim,_., hGy(A + ie)h exists as a limit in operator norm. If h,, h, are two
multiplicative functions, each satisfying the above domain conditions, and such
that

1
[ de(e)™ "2 ||rhiGy(A + ig)||'"? <= (i=1,2),
0

then lim,_,,, h,Gy(A + i€)h, exists in operator norm.

Proof. Consider first the case of a single multiplicative function k, satisfying
the conditions of the Lemma. Then h(H,+ 1)~"* is bounded so that

1RGo(A + ig)h|| = ||h(Hy+ 1) |(Ho + 1)"?Go(A + ie)hl|

<const/e as &£—0+.

Iterate the inequality (25) with m (&) = const/&.

Since m, (€)= const >0 for all n, we have |m,)* — m)?,| < const |m,, — m,_4|.

By Schwarz’s inequality we find, for constants b, c,

!mn+1(8) - mn(g)l =b f de' Imn(g') - m,,_](f:")l

ve( [ det ime) = ma (@)

uniformly for ¢ in any fixed interval [a, 1] with & > 0. This leads by induction to
an estimate of the form

C"(l _ 8)(n—1)/2
Vin-1)!
and standard iterative techniques for Volterra integral equations allow us to

deduce the uniform convergence, as n— =, of m,(¢) to a limiting function rm(¢)
in [a, 1] for any o> 0. '

|mn+1(8) - mn(8)| =

Thus m(e)=lim,_,.,.m,(g) where, on taking the limit n— o in (25),
m = lim,_,. m, satisfies the integral equation

m(e)=a+b fl de'{m(e") + (") 'm(e") ||rh*Go(A + ie")|)"*}

The function 7 is therefore the solution of the differential equation

dm(e) ., _
0 b(

subject to the initial condition m(1)=a. This is actually a linear differential

HEUE)
)

172
) GG+ e,



Vol. 62, 1989 A commutator approach to the limiting absorption principle 35

equation for m'?, of which the solution is
exp (b(&' — €)/2) ||rh*Gy(A + ie")||"?
2(£r)1/2 *
Provided [(de(e)™"? ||rh*Gy(A + i€)||""* <=, m(¢) is bounded in the limit £ — 0.
It follows in that case that ||h[Gy(A + i€)]*h|| is integrable from 0 to 1, so that

hGy(A+ie)h has a norm limit as £€—0+. In the case of mwo multiplicative
functions h,, h,, proceed as in the proof of Lemma 3, with, now

T= hl[G()(A. + iE)]th.

Instead of (24), we now have

1
’7—11/2(8) — alfze(l—s)blz ¥ bJ
£

1
T*TT*|| < ——— {||IT||? lh,Gy(A + ie)h
{ | 214 + e {IIT)|* ||h Go( ig)h,

+ A+ el |T|| [|1h1Go(A + ie)h, || [|rh3Go(A + i€)||/ &
+ A+ el T [1h.Go(A + ig)hs|| IrhiGy(A + i€)||/ €}
Moreover, since we can take & = h; (i = 1, 2) in the first part of the Corollary, we

know that ||h;Gy(A + i€)h;|| is bounded in the limit e — 0+. Proceeding again as in
the proof of Lemma 3, (23) becomes

|1 [Go(A + i€)]Phs|| = const ||h, Go(A + i€)h,||
+ const £ "{||rh3Gy(A + i€) || + ||rh3Gy(A + i€)|| ).

This leads to a linear differential equation for m'?(¢), and the proof of the
second part of the Lemma follows as before. The following Corollary shows that
the conditions of Lemma 4 are satisfied by a large class of functions A(r).

Corollary. For some R >0, let h(x) be a non-negative multiplicative function
such that
const
x|

F(r
h(r)= rf,z) for |r| =R,

h(r) = for |r|<R, and

where F(r) is non increasing and

J”':F(r)

—=dr <=,
R r

Then h satisfies the conditions of Lemma 4; in particular, lim,_, hGy(A + i€)h
exists as a limit in operator norm.

Proof. The domain conditions on A are easily verified, and it remains only to
verify the integrability, near € =0, of £ 2 ||rh®*Gy(A + i€)||"?, under the stated
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conditions. To do so, we divide position space into three disjoint regions. We
take ¢ sufficiently small that £ = 1/R>

(a) Region |r| <R. In this region, h(r) =const/|r|, so that ||E ,<grh*Go(A +
i€)|| < const ||(1/r)Gy(A + i€)|| < const £~ 12

(b) Region R <|r| =&~ "2 In this region, since F(r) is decreasing, we have
F(r)<F(R). So h(r) =< const r "2, and rh* is bounded. Hence, with 0 < 6 <3,

||ER<,,|SEAuzrh2G0(/1 + i€)|| = const || Eg<jr=e-12Go(A + ig)||

1 .
= const |[r'"?Eg < y=e-12 i Go(A + ig)

L

= const ||r1’2+‘5ER<|r|sy”2|| "l i2+e

Go(A + i€)

17246 8—1/4—6/2

Since r in this region, and using (8) with & =1/r"?*°, we have the

estimate
|| Eg<iej=e-12rh*Go(A + i€)|| = const £ ~>/47%2
(c) Region |r|> ¢!
F(£7'). Hence
|| Ejpy>e-12rh?>Go(A + i€))|
= || Epj>e-12F*(r)Go(A + ie) || = F*(e7'7) ||Go(A + ie) |
= E_IFZ(E_UZ).
Combining the bounds for the three regions (a), (b), (c) above, we have
|Irh?Go(A + ig)|| = const {e~ %4722 4 ¢~ 1F?(g~17?)}
It follows easily that
72 ||rh*Go(A + i€)|| "> < const {e™787%4 + ¢~ 'F(e~'?)}.

This gives

. Since F(r) is decreasing, we have, here, F(r)=<

/R? I/R?
f de(e) V2 ||rh*Gy(A + i€)||"* < const + constJ’ de(e)"'F(e™"?).
0 0
The integral on the r.h.s., on making the change of variable £ =1/r% is just
2 [rr~'F(r) dr, and is convergent under the hypotheses of the Corollary. Hence
also [§de(e)™"? ||rh*Gy(A + i€)||'* <, and the result is proved.

5. Proof of Theorem 1

(i) Let h(r) satisfy h(r) =< F(r)/r'?, where F(r) is non-increasing for r = R,
and

R ocFZ
f rF(r) dr <, f ) dr <,

0 rR T
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We first estimate || E |~ zxhGy(A + i€)|| for large R. It will be convenient to suppose
R =2" for some positive integer N, which is taken to be large enough so that
F(r) is non-increasing for r =2V"1,

Let &, denote the region 2" < |r| <2""! in position psace, and let E, be the
corresponding projection operator; E, is the operator of multiplication by the
characteristic function of the set &,,.

For arbitrary f € L*(R?), we have

| E>rhGo(A + ie)f ||* = ZN IE.hGo(A + ig)f ||

Hence

fe =]

IE\=rhGo(A +ie)|1*= 2 ||E.hGo(A + ie)|?, (27)

n=N
provided the sum on the r.h.s. converges.
For re &,, we have

F(r) _F(2")

== ’
r 172 2n/2

h(r) =
so that

F*(2"
VEAGoh+ ie) P < S22 |, Gl + )P

However, from Lemma 2 with the projection E <+ in (14), we obtain, on
taking the adjoint operator with —¢ for ¢,

|E,Go(A + ig)||* = CH(A)2" /e,
so that

|E hGy(A + i€)||* = 2C*(A)F*(2™)/ e
Substituting this bound into (27) now leads to

€ || Ej=rhGo(A + ig) || =2C3(2) >, F*(2") (28)
n=N

In that case, for n =N, we know that F(r) is decreasing over the interval
2"~ ' <r=2" defined by &,_,. Hence, for r € é,_,, we have

2 2/yn
Fi(r)_ P2
r 2"
It follows that

[ FOyaf PO,y

n—1 n—1
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From (28) we have, then, with R =2",

o F2
& || Ep=rhGo(A + ie)||*=4C3(A) Z (r) dr
n=N"YE, _,
o F2
=4C3(d) (r) dr (29)
Rz T

We also have, from (21) on taking adjoints, with E, _zh for h,

£ ||E|r|5RhG(](l + 18)”2 = const J

Ir|=R

R
h*(r) d*r < const j rF*(r) dr.

0

Combining this result with (29), shows that in fact
£ ||hGy(A + ig)||*> = const, (30)
for fixed A >0, in the limit e— 0. A further consequence of (29) is the result that

lim € ||E>rhGo(A + ig)||* =0, (30)’
R—o

uniformly in € for 0 <e <1.
Given any 6 >0, (30) and (30)" imply that we can find R sufficiently large
that

£ |hGo(A + if)“z || Eq=rhGo(A + ":3)||2 < @2, (31)

for all € in the interval 0 < £ < 1. Having fixed R such that (31) is satisfied, let E”
be the projection operator in position space for the region € defined by

€™ ={reR*|r| =R, h(r)>n/r}.

I.e. E is the operator of multiplication by the characteristic function of the set
€. Noting that A(r) is square integrable over the region |r| =R, we have, from
(21) with E"™h for h,

£ ||E("’hG(,(/1+i£)||2Sconstf h () d’r—0 as n—> oo,

&(n)

by the Lebesgue Dominated-Convergence Theorem. Using (30) we can therefore
find n sufficiently large that

&2 ||hGo(A + ie)||* - |E™hGy(A + ie)||* < 6°/2 (31)'
Let E be the projection operator in position space for the region € defined to be
€=¢"U {reR’|r| >R},

and E* =1— E be the projection operator for the complement &° of this region.
For re &°, we have h(r)<n/r. By the first part of Lemma 2 this implies the
convergence of E*hGy(A ti¢)E*h in operator norm in the limit as £— 0+.
Hence also the norm convergence of E*M,(A, €)E*, where M,(A, €) is given by
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(4). This allows us to assert that

lim E“{M\(A, &)~ M,(A, &,)}E*=0. (32)

&1, e0—>0+
Summing inequalities (31), (31)' gives
2 |hGo(A + i€)||* | ERGy(A + ig)||* < 6%/64 (33)
Let us now write
My(4, &) = M((4, &)
= EJ_{M](A, 81) — M](A«, 82)}EJ“
+ E{M(A, &) — M\(A, &)} E+ + {M\(4, &) — M\(A, &)} E (34)
From equation (5) we obtain
IEM(4, e)E™|| =2¢ || ERGy(A + ig)|| - |hGy(A + ig) ||
< 6/4, by (33), and similarly ||M,(A, )E|| < 0/4.
Applying these bounds, with € = g, &, respectively on the r.h.s. of (34), and
using (32), gives

lim sup ||M;(4, €,) — M(4, &,)|| =4-0/4=06.

£y, €720+
But 8 >0 was arbitrary,and it follows that M,(A, &) — M (4, &,) converges to
zero in operator norm. By completeness of the Banach space of bounded linear
operators on #, M,(A, €) converges in operator norm, and the proof of the
Theorem follows, under hypothesis (i).

~(ii) Suppose that (ii) of the Theorem holds, and as before set R =2V for

some integer N such that F(r) is non-increasing for r =2V,

Let T be a bounded linear operator on a Hilbert Space #, and let {F;} be a
family of (orthogonal) projection operators satisfying FF, =0, for i#j, and
Y.; ;= 1. For arbitrary f € #, we have

IT*f11> = 2 IET*f 1%,
]

so that ||T|>=||T*|°<X,;||IET*||*=X,|ITE|?>, on taking adjoints of those
operators within the norm. On repeating the argument, ||TE|*< X, |[ETE|% so
that, finally,

IT|?= 2 |ETE|” (35)
LJ
Let us apply inequality (35) to the operator
T = T(El, 82) = h«[Go()» + icg]) = G()(A. H isz)]h, (36)

and take the family {F} of projections to consist of the single projection E .z,
together with the sequence {E,}, n=N, N+ 1, N+2,... defined previously.



40 D. B. Pearson H. P A.

Thus
”T(Ely '52)”2S “E|r|<RT(EI’ 82)E|r|<R”2

+ 2 IEm<aT (1, &2)Ea|I

+ 2 VBT (61, e)Emerll+ > IEaT(er, € Enll (37)
nn'=N
To estimate the final sum on the r.h.s. of (37), note that, by the hypotheses of the
Theorem,

F(r) _F(2")
h(r) = 1,2_ 72 for re &,

and a similar bound holds for r € €,.. With T given by (36), lemma 2 then gives
F 2(2")F ’(2")
o
= 16(C5(1))*F*(2")F*(2"), (38)
where we have used (14)’ with R =2"*!, R’ =2"""! and ¢ = ¢,, &, respectively.

Proceeding as for equation (29), the terms of the final sum in (37) are bounded
uniformly in €,, &, and for this sum we have a bound

Fzr(r) dr) < 0o,

Since, by hypothesis, h(r) = const/r for |r| <R, we may use (22) to estimate
the third sum on the r.h.s of (37). For fixed R, we obtain for this sum a bound of
the form

IE.T(e1, &2)E, |I> =4(C5(A))*{2"7'2" "}

2. 16(C2(/1))2( f

R/2

= FX(r
const f ( )dr,
rR2 T

and a similar result holds for the second sum on the r.h.s. of (37). The first term
on the r.h.s. is bounded uniformly in ¢, &, as &, &,— 0+, according to the first
conclusion of Lemma 2. Note, also, that each individual term of the sums on the
r.h.s. of (37) converges to zero as g,, &,—0+. This is because (1/r)Gy(A +
i€)(1/r) converges in norm to a limit as e— 0, and moreover A(r) =< const/r in
each of the regions |r|] <R, 2" <|r|<2""' (the constant in the bound depending,
however, on the value of n). An application of the Lebesgue Dominated-
Convergence theorem as applied to series now allows us to conclude, from (37),
that T'(g,, &) converges in norm to zero as &,, &;,— 0+. Given the explicit form
(36) of T, we have proved the norm convergence of hG,(A + ze)h and with it the
remainder of Theorem 1.

REFERENCES

[1] I. STAKGOLD, Boundary value problems of mathematical physics, Vol. II, pp. 261, 296,
MacMillan, New York, (1968).



Vol. 62, 1989 A commutator approach to the limiting absorption principle 41

[2] V. 1. SMIRNOV, A course of higher mathematics, Vol. IV, p. 683, Pergamon, Oxford, (1964).

[3] L. HORMANDER, The analysis of linear partial differential operators, Vol. 1I, Springer-Verlag,
Berlin, (1983).

[4] E. MOURRE, Comm. Math. Phys. 78, 391-408 (1981).

[5] S- AGMON, Spectral properties of Schrodinger operators, Actes Congr. Int. Math. Nice 2,
679-683 (1970).

[6] S. AGMON, Ann. Scuola Norm. Sup Pisa (4) 2, 151-218 (1975).

[7] M. REeD and B. SIMON, Methods of modern mathematical physics, Vol. III, Scattering theory,
Academic Press, New York (1979).

[8] W. THIRRING, A course in mathematical physics, Vol. 1lI, Quantum mechanics of atoms and
molecules, Springer-Verlag, New York, (1979).

[9] W. AMREIN, J. JaucH and K. SINHA, Scattering theory in quantum mechanics, Benjamin,
London, (1977).

[10] D. PEARSON, Quantum scattering and spectral theory, Academic Press, London (1988).

[11] E. MOURRE, Comm. Math. Phys. 91, 279-300 (1983).

[12] P. PERRY, L. SiGAL and B. SiMON, Ann. Math. 114, 519-567 (1981).

[13] R. FrOESE and 1. HERBsT, Duke Math J. 49, 1075-1085 (1982).

[14] R. FrOESE, I. HERBST and T. HOFFMAN-OSTENHOFF, J. Anal. Math. 41, 272-284 (1982).

[15] A. JENSEN, E. MOURRE and P. PERRY, Ann. Inst. H. Poincaré A 41, 513-527 (1984).

[16] T. KaTO, Math. Ann. 162, 258-279 (1966).

[17] T. KaTO, Stud. Math. 31, 535-546 (1968).



	A commutator approach to the limiting absorption principle

