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The Large Deviation Principle for the Kac
Distribution

By J. T. Lewis* and V. A. Zagrebnov

Joint Institute for Nuclear Research, Dubna, U.S.S.R. and Dublin Institute for
Advanced Studies, Dublin, Ireland

J. V. Pulé

University College, Dublin, Ireland and Dublin Institute for Advanced Studies,
Dublin, Ireland

(21. 1. 1988)

Abstract. We prove that the Large Deviation Principle holds for the distribution of the particle
number density (the Kac distribution) whenever the free energy density exists in the thermodynamic
limit. We use this result to give a new proof of the Large Deviation Principle for the Kac distribution
of the free Boson gas. In the case of mean-field models, non-convex rate functions can arise; this is
illustrated in a model previously studied by E. B. Davies.

§1. Introduction

In 1971, Kac discovered that, for the free boson gas, the canonical and grand
canonical ensembles are not strictly equivalent although they give rise to the same
equation of state. This manifests itself in the fact that, above the critical density,
the grand canonical distribution of the particle number density is not asymptoti-
cally degenerate; in the standard example (where the single-particle hamiltonian
is a constant multiple of the Laplacian with Dirichlet boundary conditions in a
star-shaped region and the thermodynamic limit is taken by dilating the region
about an interior point, holding the mean number density fixed) the distribution
is exponential; in general, when the distribution converges, it converges to an
infinitely-divisible distribution. For a full discussion of these aspects of the free
boson gas, see [1] and [2]; using their terminology, we shall refer to the grand
canonical distribution of the number density as the Kac distribution.

Kac conjectured that the lack of equivalence of ensembles in the strict sense
was a pathology of the free gas which would disappear in the presence of a
repulsive interaction, however weak. To test this idea, Davies [3] studied in great
detail a mean-field model of an interacting boson gas. He proved that, if the
mean-field potential is strictly convex, the Kac distribution is asymptotically
degenerate. In [4], a general result was proved, from which it was deduced that

On leave of absence from Dublin Institute for Advanced Studies, Dublin, Ireland.
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the Kac density is asymptotically degenerate whenever the free-energy exists and
is strictly convex. It is often useful to enquire about the rate at which the
asymptotic distribution is approached; this is referred to as the problem of large
deviations. In statistical mechanics, it has proved valuable to do this in the
framework of Varadhan [5] where a powerful generalization of Laplace’s method
is available; this framework is described in §2 of this paper; applications to
classical lattice systems are surveyed in Ellis [6], to models of an interacting boson
gas are given in [7], to quantum spin systems in [8]. In §2 of this paper, we adapt
the arguments of [4] to prove that the Kac distribution satisfies Varadhan’s Large
Deviation Principle whenever the free-energy density exists in the thermo-
dynamic limit; in §3, we provide an alternative proof to that given in [7] of the
result that the Kac distribution for the free boson gas satisfies Varadhan’s Large
Deviation Principle. The result proved in §2 applies also to mean-field models,
even when the mean-field potential is non-convex; in such cases, it is possible for
the free-energy density in the thermodynamic to be non-convex; nevertheless the
Kac density satisfies the Large Deviation Principle, albeit with a non-convex rate
function (examples of such rate-functions were given by Ellis [6], see also [9].)

To illustrate the situation which can arise with a non-convex rate-function,
we investigate in §3 of this paper the model discussed by Davies in [3]. In §4, we
describe in detail possible asymptotic distributions for the Kac distribution in this
example.
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§2. A large deviation result

Varadhan’s Theorem [5] concerns the asymptotic behaviour of integrals with
respect to a sequence of probability measures satisfying the Large Deviation
Principle and extends Laplace’s Method to infinite dimensional spaces. Even in
the case of a one-dimensional space, it has advantages over Laplace’s Method: it
applies to a wider class of measures and to a wider class of integrands.

Let E be a complete separable metric space and {K;:/=1,2,...} a
sequence of probability measures on the Borel subsets of E; let {V;:/=1,2,...}
be a sequence of positive constants such that V,— «. We say that {K,} obeys the
Large Deviation Principle with constants {V,} and rate-function 1(*) if there exists
a function 1: E— [0, =] satisfying:

(LD1): I(*) is lower semi-continuous on E.
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(LD2): For each m <, the set {x:I(x)=m} is compact.
(LD3): For each closed subset C of E,

1
lim sup v In K,[C] = —inf I(x).
C

l—oc !

(LD4): For each open subset G of E,

1
lim inf — In K,[G] = — inf I(x).
{—oc i G

A version of Varadhan’s Theorem adequate for many applications in statistical
mechanics is the following:

Varadhan’s Theorem

Let {K,} be a sequence of probability measures on E satisfying the Large
Deviation Principle with constants {V,} and rate-function I(*). Let G:E— R be a
continuous function which is bounded above on the set U,.., supp K,. Then

lim 1 ln[ exp [V,G (x)]K [dx] = sup {G(x) — I(x)}.

[—= ‘/,' E r

In [4], we proved a large deviation result whose main hypothesis was the
existence of the free-energy in the thermodynamic limit; at the time we were not
aware of Varadhan’s work and so our result was not formulated within the
frame-work which we have just sketched. Here we reorganize the proof given in
[4] to establish a result within the Varadhan scheme; this enables us to give a
simpler proof of the free-boson gas result proved in [7].

Let {f;:l=1,2,...} be a sequence of functions f;:[0, ®)— R satisfying
fi(0) = 0; the grand canonical pressure p,(u) determined by f, is defined by

: |
P =gyin | exp[BVi{mx — fCo)) Imild)

where, for each Borel subset A of [0, «),

m[A]= 2, 6,v[A]

n=0

and

1, xeA,

SalAl= {O xeAC

and {V;} is a sequence of positive constants, V,— . For each u for which p,(u) is
finite, the Kac distribution K}' determined by f; is defined on the Borel subsets of
[0, =) by

KHA] = exp [~ BVipi(w)] f exp [BV;{x — fi(x)} Imildx).
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We prove the following theorem:

Theorem 1. Suppose that, on each compact, the sequence {f;:l=1,2,...} is

bounded below and converges uniformly to a lower semi-continuous function f.
Let u.. be defined by

1
U.. = lim (lim inf (— inf fk(x))).
1T x T X k=l

Then for each u < u.. the grand canonical pressure p(u) = lim,_,.. p,(u) exists and
is given by the Legendre—Fenchel transform of f:

p(u) =£*(1) = sup {px = f(x)}.

Moreover, the sequence {K}:1=1,2, ...} satisfies the Large Deviation Principle
with constants {V;} and rate-function I1*(*) given by

I*(x) =p(p) + f(x) — px.

Proof. Put g/(x) = ux — fi(x) and g(x) = ux — f(x), so that we can write

1
k) = gy In fl e [BVigi)mds]

Choose A such that u <A < u..; choose m such that
1
lim inf (— inf fk(x)) >A;
x Tee X k=m
then there exists x; such that f;(x) > Ax for all x >x, and all / > m; hence

g(x)<—(A—u)x forall x>x, and I>m, and gx)=-—-(A—pu)x

sup g(x) = e g(x).

[0,%)

Now g is upper semi-continuous and bounded above on compacts, so that the
supremum of g on [0, x,] is attained at some point x, in [0, x,]: hence

ff(u)= [Souog) g(x) = g(xg) <.

Furthermore, given £ >0, there exists é > 0 such that g(x,) — g(x) < &/2 for x in
[xo— 6, x,+ 8]; by the uniformity of convergence on compacts which was
postulated for {f;}, there exists m' such that, for all [ >m’', g(x) — g,(x) < £/2 for
all x in [x,— 8, xo + 8]. Thus we have, for all / sufficiently large,

J, exoBvismian> | exp [BV.g:(x)|m[dx] > exp [BVi(g (xo) ~ £)],

[xg—8, xp+ 8]
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. . n
since eventually [x,— 8, xo+ 6] contains at least one point of {v:n=
1

0,1,2,.. } Since £ > (0 was arbitrary, we have

lim inf [)’LV In J{ o exp [BVig/(x)|my[dx] = g(x,).

[—cc !

On the other hand
[ explBvialmiax]
[0,>)

<exp(BVilgl) +e}l|  mldel+ [ expl-BV(A—wixlmildx]

[0,x4] (x1,)
exp [—BVi{(A — p)x, +g(x) + 8}]}
1—exp[-B(A —p)]

< exp [BVilg (xo) + )| (Vor, + 1) +
for all / sufficiently large; hence, since g(xy) =0 and (A — pu)x, >0, we have

1
limsup—=1n [ exp [BVig ()l de] = g(xo) + &
J—oc ﬁvl [O,GC)

and the statement concerning the pressure is proved, since £ > ( was arbitrary.

We turn to the proof of the assertion concerning the sequence {K}:l=
i

(LD1) holds by the hypothesis that x+— f(x) is lower semi-continuous. It
follows that, for each m <o, the set L,, = {x:I{=m} is closed; for x € L,,, we
have

1,2,

fx)=m—p(u)+px;
on the other hand, we have shown that, for x >x,;, f(x)= Ax. Hence, either

x=x,orx<m—p(u)/A— uso that L,, is bounded and (LD2) holds.
For a closed set C, we have, given £ >0,

KICI = exp [=BVip(w]exp V| _sup g)+e) [ mide]

N[0,x>]

i jcﬂ[ ) exp [—BVi(A — p)x]m,[dx]

for all  sufficiently large and all x, in (0, ). Since supcno,x, £(x) =supcg(x), we
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have
KHC] = exp | BVi{pi(w) + sup g(x) + e}

exp | —BV|supg(x) + & + (A — x|

1 —exp[-B(A —u)]
for all / sufficiently large. Now choose x, = x, such that

(Vix,+1) +

Slépg(x) +(A—p)x,=0.

Hence

1
lim sup - In Ki{C] = —p(u) + sup g(x) = —inf /*(x)
| c C

[T

and (LD3) holds.

Let G be an arbitrary open subset of [0, »); given £ >0 and y in G, choose &
such that (y— 8, y+6)=B%<= G and g(y) —g(x)<&/2 for all x in B (this is
possible since g is upper semi-continuous). Thus, for / sufficiently large,

KIG] = KHB3] = exp [~ BVip(w)] || exp[BVig (x)lmla]

= exp [—BVipi(p)] exp [BVi(g(v)Im[B3l.

But eventually B2 contains at least one point of {#/V;:n=0,1,2,...} so that
m[B%] =1 and hence

1
lim infﬁg In Kf[G] = —p(n) +g(y) = —1"(v);

o {
since this inequality holds for each point of G, we have
1
lim inf — In K}[G] = sup (—1"(y)) = —inf [*(y)
1—= BV, G G
and (LD4) holds.

§3. Mean-Field Model of Davies

The basic probability space for the class of models of boson systems which

we consider in this paper is the space € of terminating sequences of non-negative
integers:

Q={w:w=(w1, Wy, ...), W, €N, > wj<oo}.

j=1

The basic random variables are the occupation numbers {o; :j=1,2,...}
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defined by 0;(w) = w;; the Hamiltonian H, associated with a region A, is given by

Hi(w) =2, A(j)oj(w) (3.1)

j=1

where {4,(j):j =1, 2, ...} are the energy levels, labelled in ascending order with
the lowest taken to be zero: 0= 4,(1) = A,(2) =- - -. The volume of the region A,
is denoted by V}; it is assumed that the sequence {V,} diverges to +. To state the
conditions placed on the double sequence {4,(j)}, we define

®,(B) z—},; S exp [~BL,():

we shall assume that the following conditions hold:
(S1) The limit ®(P) = lim,_,.. D,(B) exists for all  in (0, ).
(S2) There exists B, in (0, ®) such that ®(B,) # 0.

It then follows that the sequence of distribution functions {F:/=1,2,...}
defined by
1 ; ,
E@) =3 #1j:4(j) =1} (3.2)
!

converges to F, the integrated density of states (at least at the points of continuity
of F) which is determined uniquely by its Laplace transform ®(f)=
Ji0.«y€~P*dF(A). The critical density p, is defined by

J (exp [BA] — 1)~ dF(A), if A—(exp[BA] —1)"'is integrable.
Pe =173 Jl0.=)
c, otherwise.

Let N(w) = ¥,-, 0j(w) denote the total number of particles in the configuration
w; then the canonical partition function Z,(n) is defined by

1, n =0,

> exp [-BH(w)], nZ1.

{weQ :N(w)=n}

Z(n) = G-

The free-energy density f;:[0, ®)— R is defined first on the set {n/V,:n=
0,1,...} by fi(n/V))=—1/BV,In Z(n), then extended to the whole of [0, ©) by
linear interpolation. Using the methods of [10] and the results of [1] one may
prove (see the Appendix).

Theorem 2. Suppose that (S1) and (S2) hold; then on each compact subset of
[0, ) the sequence {f;} is bounded and converges uniformly on compacts to a
convex function [ satisfying f(0) = 0; moreover, u..= 0.

Putting together this result with Theorem 1 of the previous section, we have

Corollary. Suppose that (S1) and (S2) hold; then, for each u<0, the
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sequence {K!':1=1, 2, ...} satisfies the Large Deuviation Principle with constants
{V,} and rate-function I1"(*) given by

1%(x) = f*(u) + f(x) — px, (3.4)
and

p(u)=f*(w).

It may seem surprising that no use appears to have been made of the special
features of the free boson gas, while the earlier proof of this result [7] made fairly
delicate use of the fact that the occupation numbers {o;:j=1,2,...}, in the
grand canonical ensemble, are independent geometrically distributed random
variables. It is worthwhile, perhaps, to examine this point further. The grand
canonical measure P} is defined by P*[w]=exp [—pV,p/(n)] - exp [B{uN(w) —
H)(w)}] for each u <0; an easy calculation, see [1] for instance, yields

Pi{0;=m] = exp [mp(u — 4())]. (3.5)

By expressing N as 0, + (N — 0,) and using (3.5) a lower bound was obtained for
P{[X, € B2], where X = N/V, and y = E}[X,]; this was required for the proof in
[7] that (LD4). However, the use of (3.5) can be detected in the proof of theorem
2: the convexity of the functions x— fi(x) was used to prove the uniform
convergence of the sequence f; on compacts; the proposition that f; is convex is
equivalent to the proposition that the inequality Z,(n)*= Z,(n + 1)Z,(n — 1) for
each n =1, but this is equivalent to the proposition that n— P{[{o;=m | N =n] is
an increasing function in view of the result, proved in [9], that

exp [-mp1, ()] 25

0 ; m > n.

m=n,
Pilo;=m|N=n]=

Following Davies [3], we consider the hamiltonian
H, = H, + Vw(X)), (3.6)

where H, is the free-gas hamiltonian of (3.1) and X; = N/V/ is the particle number
density; unlike Davies, we require only that w:[0, ©)— R be lower semi-
continuous and satisfy

wx) _

w(0) =0, lim inf +o0, (3.7
X—oc X
Define f, by fi(x) = f,(x) + w(x); it then follows that
~{n 1 -
—]=———In exp [—BN/(w)]. 3.8
iy)=—gymn S expl-pl@) (3.8

Using Theorem 2 and (3.7), we verify that {fi:/=1,2,...) satisfies the
conditions of Theorem 1 with u. = +%; we conclude that the following result
follows from Theorem 1:
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Theorem 3. Suppose that (S1) and (S2) hold and that the mean-field
hamiltonian (3.6) satisfies (3.7); then for each p < the grand canonical pressure
p(p) =lim,_... p/(1) exists and is given by the Legendre—Fenchel transform f* of f,
where

f)=F@x)+w(x) (3.9)

and f is the free-energy density of the free boson gas, and the sequence
{Ki':1=1,2,...} of Kac distributions determined by {f;:1=1, 2, . ..} satisfies the
Large Deviation Principle with constants {V,} and rate-function 1"(*) given by

I"(x) = p(p) + f(x) — px. (3.10)

It follows that p* = f** = conv f, where conv g denotes the convex envelope of g;
hence the intervals [p’_(u), p'(u)] of discontinuity of the derivative of p
correspond to the linear segments in the convex envelope of . We conclude once
more that {K¥} is asymptotically degenerate whenever w is strictly convex.

§4. The asymptotics of the Kac distribution

In this section we examine the consequences of the non-convexity of f for the
asymptotics of the Kac distribution. We consider the case where conv f has
precisely one linear segment [p_, p.] and f(x) > conv f(x) for x in (p_, p.); the
general situation should be clear from this discussion. We recall that the
asymptotic Kac distribution K* = lim,_,.. K} gives the decomposition of the grand
canonical limiting state {(*)* into extremal (canonical) limiting states ()

(oY= (+),K"(dp] C8)
[0,5)

In general, if K*=I1im,_. K} exists its support is contained in the set
{x:I"(x) =0}; however, if this set consists of more than one point there is no
guarantee that the sequence {K}':[=1, 2, ...} converges. Nevertheless, by the
Helly selection principle, {K}':/=1,2,...} contains at least one convergent
subsequence; in the case under consideration, where conv f has precisely one
linear segment [p_, p.] and f is non-convex, we have three cases determined by
u. which is defined by p’ (u.) = p_ (and hence p’. (u.) = p.) so that u. is the slope
of the linear segment of conv f:

I p<p Ki—K*= Op(u)» p(u)=p'(u). (4.2)

II: u=p,; there exists {/;:j=1, 2, ...} such that lim_,.. K;}‘: K* exists and
K“ﬂaép;}-(l— ®)0, ., O=a=1. (4.3)

OI: p>p; K= K*=08,4),  p(u)=p'(n). (4.4)

We sketch the proof of II; the proof of the remaining cases should then be clear.
Choose p, such that p_<p,<p,; Let A_=][0, p,) and A, =[py, *®). Then
{Ki“[A_]} is a bounded sequence of real numbers and hence contains a
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convergent subsequence {K!{A_]:k=1,2...}. Consider the case in which

lim K{[A_] = «, 0<a<l.

k—

Then
f e~*Ki[dx] = REA_] j e~ L, [dx]
[0,%) A_

+(1-Ki[A-D | e “Lildx]

where _ )
KifANnA_] Ki{ANA,L]
KifA] KAL)
Now {L;} and {L[} satisfy the large deviation principle with rate-functions /-

and I respectively, where I~ (1) is the restriction of / to A"(A*). Now I~ has a
unique minimum at p_ and /" has a unique minimum at p., hence

Li[A]=

LilAl=

| expl-mRtdan)> @ exp[~tp_]+ (1= @) exp [1p.].
[0,=)

So that {K}“} converges weakly to
#d,. + (11— &)é,. .

It remains to consider case II in more detail: we investigate the possible
dependence of & on the subsequence {/;:j=1,2,...}. We remark, in passing,
that if we adopt the quasi-average approach of Bogoliubov [11], we get

lim imK¥=68, , limlimK{=6, . (4.5)

ulpe b e t—

On the other hand, the generalized quasi-average procedure [12] enables us to
scan the whole interval 0 = o = 1: here we put

0

NI:HC+BV}I, }’21,

and get the following limiting values:
K3 = lim K1 (4.6)
y=1:K%s=2s8,_ +(1—25)0

where

P+?

exp [, ]o
®* aexp[d, |+ (1—a)exp[d,.]’
Y> 1:K¢f6=}b()6p*+(1 _A())6p+. (4,8)

(4.7)
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Note that

j exp [—(t — SV V)x] K [dx]
[0,0)

f exp [—&x K dx] =
10.) f exp [0V~ "x]K#[dx]
10,)

Now we can choose B and [, sufficiently large so that

S
V}?“ x + BVi{ux —w(x)—filx)} < —BVx

for x= B and [/ =/,. This follows from the fact that lim,_,. w(x)/x = and the
fact that f;(x) > —x for x > B and [ > [,,. Then for t =0,

f exp [~ (¢ — SV P)x]Ri{dx]
[B,==)

= oxp [~ BVipi(u.)] fl e I=( = Vi) exp [BY, {ox — i) -
fi(x)) I ]
—-Bv,B

Sf exp[—ﬁV,x]m,[dx]<1e — for [=l,
1B,) —e

Therefore

iim exp [— (t8V{ " ")x|K}[dx] = :im exp [—(t — VI V)x]Kj{dx]
—>* J10,%) —* J|0, B)
and the proof of (4.7) and (4.8) follows as for (4.2), (4.3) and (4.4).

We end with some remarks on boson condensation in this situation; it is only
necessary to comment on the case in which the Bose—Einstein critical density p,
lies between p_ and p.. In this case we have, in the standard example described
in the introduction perturbated by the mean-field term V,w(X,), the following
result for the occupation of the ground state.

" <y,
‘ Fus 1
}1m Ef‘[;;] =93 P+~ Po H= U, (4.9)
— I
p(u) —pe, B> H.

Appendix: The free-energy density of the free boson gas

Here we prove the results about the free-energy density of the free boson
gas which we used in the body of the paper. First, we remark that, as 4,(1) =0,
pi(p)>—=(BV)) 'In(1 —exp[—PBV]) so that p,(u)— o as u increases to zero.
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Moreover, it was proved in [1] that when (S1) and (S2) hold we have
p(u) =lim_,.. p(u) exists for u <0 and is given by p(u)= 0.« P(p | )F(R)
where p(u |A)=""In(1 —exp [—-B(A —u)])~". It was proved also that

p*(x) = Sup {ux —p(u)}

1s given by
p*(x) =xu(x) — p(u(x))

where u(x) =0 for x > p. and u(x) is the unique real root of x = p'(u) for x < p_;
the function p(u), defined on (—x, 0), is extended, defining p(0) = lim, 1o p(u) =

J10.P(0| 4) dF (A).
Lemma 1. The function x — fi(x) is convex.

Proof. 1t is enough to prove that, for each n,

A=) )

that is, that

Z(n)=Z(n—1)Z(n+1), (*)
where |
Z(n)= { -v;)— } exp [-B{L(Dw, + 42w, + - - -}]

We proceed by induction on the number of levels; let

Zin)y= 2, exp [—B{A(D)w; + - - - + A, (k)w, }].

{w:N(w)=n}
For k =1, the result (*) holds trivially. Assume that
Z¥n)Y’=Zn—1)Zf(n+1) forall n=1,
so that
ZKm)Zi(m)=Zf(n + 1) Zf(m - 1).
Now

ZEmy= S 2" Zb(m)

m=0(

where
z =exp [-BA,(k +1)],



Vol. 61, 1988 The large deviation principle 1075
so that

(ZE )P =S + ZKn) S, 2" Z¥(m),

m=(

where
n—1 n
S=> ¥ 22T Z K (my) Z5(my),
m|=0m2=()
while

(ZF Y n—1NZF* (n+ 1) =S+ Zkn +1) i z" "z (m — 1)

Thus
(Z{ (n)y? = (ZF " (n = D)(ZFH (n + 1))

=2z"Zf(n)+ 2, 2"""{Zf(n)Zf(m) - Z}(n + 1)Zf(m — 1)}
m=1
=0. N

Lemma 2. For the free boson gas, the finite-volume free-energy density is a
decreasing function:

fix)=fi(y) forall x=y.

Proof. Since x— fi(x) is convex, it has a line of support at each point: for
each y, we have

(x =y)(f1)-(x) = filx) = fi(y) = (f)+(x)(x —y) forall x=y.

Suppose there exists a point x, where a,(x,) = (f;)+(xo) > 0; then, for each u <0,
we have

exp [BVipi(w)] = | exp[-BVi{fi(x) — wximild]

[0,5)

= f[ | exp[BVifcx)lmid]

+ exp [—BVifi(xo)] exp [—BViai(xo)(x — xo)]m,[dx]

[xn,ao)

< oo, since a;(xy)>0.

But p,(u)— as u10; contradiction. Hence (f/).(x)=<0 for all x and conse-
quently (f;)_(x) <0 for all x. Thus

fix)—fi(y)=0 forall x=y B

Lemma 3. For all x =0, liminf,_... fi(x) =p(x) =sup, <o {ux —p(u)}
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Proof. We have

exp [BVp(] = | exp[~BVi{ix) - wx} ]

[0.5)

=exp [—BV{fi(x) —ux}] for 0<x<e.

exp [BVipi()] = 3, exp | = BVilA(7) - u ]|

Thus

n n
=>=—fil—)+— foreach n.
P ==A(3) +4

Since fi(x) is defined for all x in (0, ») by linear interpolation it follows that

pi(u) = —fi(x)+ ux for all x in (0, =);
thus

filx) = ux — p/(p)
so that

lim inf fi(x) = px — p(u)-
Hence
lim inf f;(x) = Sp {ux —p(n)}
=p*(x). W
Lemma 4. For all x <p,,

lim sup fi(x) < p*(x)
l—c

Proof. For the measure K} defined in §2 we have

s{p(u) —p(p — 61)}]
o)

f e K{[dx] = exp [—
[0,)

where 8, =s/V,. Now for the free boson gas if u <0, (see [1]),

Tt pi(p) —p(u— 96,

l—x 61

=p'(n).

Therefore K} converges weakly to 6,.,). Let x€[0, p.] and 6 € (0, ©) then
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lim,_,.. K{*=2[(p’(u(x) —28), x)] = 1. But by Lemma 2
= In KO- (' (u(x) ~ 28), )]
7 ’

1 ,
sﬁln Vikx = p'(u(x) —206) + 1)

— fi(x) + (u(x) = 8)p’ (u(x) — 26) — p/(u(x) — 9).
Thus
lim sup fi(x) = (u(x) — 8)p'(u(x) — 28) — p(u(x) = 9).
Since p and p’ are continuous ([1]) and 9§ is arbitrary this proves the lemma. B

Lemma §. For all x = p,,

lim sup £,(x) = p*(p.)-

Proof. By Lemma 2, for every £ >0 and x = p,, we have

fitx) =fi(p. — €);

hence

lim sup f,(x) = lim sup fi(p. — £),
But, by Lemma 4, we have

lim sup fi(p. — ) =p*(p. = £),
so that

lim sup fi(x) = p*(p.),

since ¢ is arbitrary and p is continuous. W

Since p*(x) = p*(p.) for x = p,,
we have by Lemma 4 and Lemma 5 that
limsup fi(x)=p*(x) for x=0.
[—oc
Combining this with Lemma 3, we establish Theorem 2: lim,_,.. fi(x) = p*(x). {f}}

is bounded on compacts by Lemma 2. Since f,(x) =0, p.,=0. From the inequality
filx) = ux — p,(u) for u <0 in Lemma 3 we get u..=0.
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