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Abstract. A variety of basic formulae of general interest are derived in a uniform manner within
the 3+ 1 formalism of GR. These include: (i) The 3+ 1 split of electrodynamics in terms of
differential forms. (ii) Convenient forms of the Liouville operator for a geodesic spray. (iii) The 3 + 1
split of hydrodynamics. (iv) Applications to spherical collapse and inhomogencous inflation. (v)
Gauge invariant cosmological perturbation theory. Many of the resulting equations are known, but
some are new. Numerical solutions for the evolution of cosmological perturbations and in-
homogeneous inflationary models are deferred to future publications.
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1. Introduction

The importance of the 3 + 1 formulation of general relativity is well known.
It plays a crucial role in basic theoretical investigations and is also very useful for
more practical purposes. The 3 + 1 or dynamical approach is, for instance, used in
discussions of the initial value problem [1], [2] and in numerical relativity [3]. It is
directly related to the Hamiltonian formulation of geometrodynamics, which was
originally introduced as a tool for quantizing general relativity. (For a description
of these roots see Ref. [4].) More recently, the 3+ 1 formalism has become
important as a technique for studying astrophysical processes around black holes.
This viewpoint is called the ‘membrane paradigm’ and has been fully described in
a recent book [5].

It is the purpose of this paper to systematize and extend the 3 + 1 formalism
in various directions. We derive in detail and in a uniform manner a variety of
basic formulae of general interest. Many of the resulting equations are known but
some are new. Even in cases where we obtain known results, we hope that our
derivations will be useful for other workers, since we arrive at them in a smooth
manner, making full use of the Cartan calculus. A large portion of the paper is
devoted to cosmological perturbation theory. We have solved the resulting
equations numerically for various scenarios. This part of our work will be
presented in a separate publication [7]. Numerical investigations of in-
homogeneous inflationary models are also under way.

In Section 2 we recall the general setup of the 3 +1 formalism. With the
Cartan calculus we obtain in Section 3 the 3 + 1 split of electrodynamics in a very
elegant manner for an arbitrary spacetime background. The form of the 3+1
split of the Liouville operator for a geodesic spray given in Section 4 is new.
Section 5 treats the 3 + 1 split of hydrodynamics and in Section 6 (and Appendix
A) we recall for later use the 3 + 1 split of Einstein’s field equations.

Specializations to spherically symmetric collapse and inhomogeneous infla-
tion are carried out in Section 7 for a gauge satisfying the maximal slicing
condition. Section 8 is devoted to the gauge invariant cosmological perturbation
theory. Here, we give first alternative derivations of known results [8], [9]. With
the help of the 3 + 1 formalism we arrive much faster at the final equations. We
also add some new results. In particular we develop the gauge-invariant
perturbation theory of collisionless particles. Furthermore, the entropy produc-
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tion rate of the perturbation is related generally to a certain gauge invariant
matter amplitude.

2. 3+ 1 formalism, generalities

We assume that spacetime (., g) admits a slicing by slices Z,, i.e., there is a
diffeomorphism ¢ :#— X x I, I =R, such that the manifolds =, = ¢ ~'(Z X {t})
are spacelike and the curves ¢ ~'({x} x I) are timelike. These curves are what we
call preferred timelike curves. They define a vector field 8,, which can be
decomposed into normal and parallel components relative to the slicing (Fig. 1):

o, =an + f. (2.1)

Here n is a unit normal field and f is tangent to the slices Z,. « is the lapse
function and P the shift vector field [1,2]. A coordinate system {x'} on X induces
natural coordinates on 4 : ¢~ '(m, t) has coordinates (¢, x') if m € £ has coordin-

ates x'. The preferred timelike curves have constant spatial coordinates. Let us
set p= B’ 9,(3; = 3/3x"). From g(n, 3;) =0 and (2.1) we find

8(3,, 3)=—(a® - B'B.), g(3., 3;) = B-.
Thus in ‘comoving coordinates’

g=—(a’— B'B) di* + 2B; dx' dt + g;; dx' dx’ (2.2)
or

g=—a’di’ +g,(dx' + B dr)(dx + B dt). (2.3)

This shows that the forms dt and dx’ + B dt are orthogonal.
The tangent and cotangent spaces of /# have two natural decompositions. One
is defined by the slicing

TL(#)=H,®V,, (2.4)

g

Y
ST /
i 7

Figure 1.
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where the ‘horizontal’ space H, consists of the vectors tangent to the slice through
p and the ‘vertical’ subspace is the 1-dimensional space spanned by (9,),
(preferred direction). The dual decomposition of (2.4) is

T,()=H, ®V,, (25)

with H} ={w e T;(M):(w, 8,) =0} and V; ={w e T;(M):{w, H,) =0}, which
is spanned by (dt),.
The metric defines — through the normal field n — yet another decomposition

T,(M) = H, ® H, (2.6)
where H, is spanned by n, and dually
T =(V3) @V}, @.7)

Equation (2.1) reflects the fact that, in general, the two directions V, and H, do
not agree. Dually this implies that H; and (V )~ do not coincide. We have for
w* €(V})" the following decomposition relative to (2.5)

w* =hor (w*) + {w*, B) dt. (2.8)

The decompositions (2.4) to (2.7) induce two types of decompositions of arbitrary
tensor fields on 4. We call a tensor field horizontal if it vanishes, whenever at
least one argument is &, or dt. Relative to a comoving coordinate system such a
tensor has the form

$=5195,® - -®3, Qdx'® - - - ® dx".

This shows that horizontal tensor fields can naturally be identified with families of
tensor fields on Z,, or with time-dependent tensor fields on X (‘absolute’ space).
We shall denote them with boldface letters (except 8; and dx’).

As an often occurring example of a decomposition, we consider a horizontal
p-form ® and its exterior derivative dw. We have

do=do + dt A J,mw,

where dw is again horizontal. In comoving coordinates d involves only the dx’
(d=dx' A 3;) and J,m is the partial time derivative. dw and 3,m are horizontal
and can be interpreted as ¢-dependent forms on X. In this interpretation de is just
the exterior derivative of w. Similarly, other differential operators (covariant
derivative, Lie derivative, etc) can be decomposed. We use two types of bases of
vector fields and 1-forms which are adapted to (2.4) and (2.5), respectively (2.6)
and (2.7). Obviously, the dual pair {J,} and {dx"} for comoving coordinates
{x"} are adapted to (2.4) and (2.5). On the other hand, equations (2.1) and (2.3)
show that the dual pair

{8;,n} and {dx'+ B'dt, adt} (2.9)

is adapted to (2.6) and (2.7).
Instead of {3,} we shall also use an orthonormal horizontal basis
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{e;}(g(e;, €) = §;), together with the dual basis {#'} instead of {dx’'}. Then we
have the following two dual pairs, which will be constantly used:
{e;, 3,}, (¥, di} (adapted to slicing), (2.10)
{e;,ep=n}, {6%} (adapted to (2.6) and (2.7)), (2.11)

.where the orthonormal tetrad {0"} is given by

0° = a dt, 0" =9 + B dt (2.12)
with B’ defined by p = ’e;. We note also the relation

eg=n =Cl¥(8,—ﬁ‘ei). | (2.13)

3. 3+ 1 split of electrodynamics

As a first example of a 3+ 1 split of physical laws we rewrite now Maxwell’s
equations on (A, g) in terms of horizontal differential forms for electric and
magnetic fields. The resulting equations have been widely used in black-hole
electrodynamics [5]. The following derivation is, however, valid for any slicing of
an arbitrary spacetime. Using the general setup of Section 2, we first decompose

the Maxwell form F as in special relativity with respect to the orthonormal tetrad
(2.11):

F=EA6°+B,
E=E}?', B=3B,;0' A 0. (3.1)

Next we use (2.12) for a further decomposition into horizontal and vertical
contributions:

E=E¥ +p'dt)y=€+ig€ dt, (3.2)
where

E=E¥ (3.3)
is the horizontal electric 1-form. Similarly, we have

B=®B+dtni B (3.4)
with

B =3B,9 . (3.5)

We obtain thus the following decomposition of F into horizontal and vertical
components

F=®B+(a€—i;B) A dt. (3.6)
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The homogeneous Maxwell equation dF = 0 gives

dB +dt A OB+ d(a&) Adt —d(igB) Adt=0
and thus

d®B =0, d(a&) + 3,8 = d(izB). (3.7
Here we have everywhere horizontal forms. We reemphasize that they can be

interpreted as time-dependent forms on Z. Using the Cartan formula for the Lie
derivative Lg = dig + igd, they can also be written as

dB =0, d(a®)+ 05,8 =L%B. (3.8)

Next we consider the inhomogeneous Maxwell equation. From (3.6) we find for
the Hodge dual *F':

*F =9 — (ad +igD) A dt (3.9)
with
H = xR, €=x9 (3.10)

(# denotes the 3-dimensional Hodge dual). Now we also decompose the current
3-form & in d* F =4x¥. Its dual 1-form J = * & can first be decomposed as in
special relativity

J = pa0° +j.0%, (3.11)

where p,, is the charge density and j* the electric current relative to the tetrad
{e,}. It is natural to introduce the horizontal forms

p=p. ' AFAY,  j=id F =) (3.12)
Then one finds with (2.12) easily
F=p+ (igp — af) A dt (3.13)

With this and (3.9) the inhomogeneous Maxwell equation can be written as
dxF=dD +dt A 3,9 —d(ad) A dt —d(igD) A dt
=4mp + 4n(igp — af) A dt.

From this we find the following 3+ 1 split of the inhomogeneous Maxwell
equation

dD =4np, d(a¥)= (3, — Lp)D + 4na . (3.14)

From (3.14) we obtain immediately the local law of charge conservation in the
form

(0, —Lg)p +d(af) =0. (3.15)
We write also the Hodge-dual of this equation. Using equation (A.9) of
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Appendix A, 1.e.,

3, vol (g) = (div B — a tr K)vol (g), (3.16)
where K denotes the second fundamental form of the slices, we obtain
(3~ Lg)pes + V- (a % $) — apy tr (K) = 0. (3.17)

4. 3 +1 split of the Liouville operator for a geodesic spray

In this section we derive a useful form of the Liouville operator for a
geodesic spray for an arbitrary 3 + 1 split. In later sections this will be worked out
for spherical collapse and in a gauge-invariant manner in cosmological perturba-
tion theory.

We start with some generalities. The metric g of the spacetime manifold .#
defines a natural diffecomorphism between the tangent bundle 7/ and the
cotangent bundle 7*., which can be used to pull back the natural symplectic
form on T* /. In terms of natural bundle coordinates the diffeomorphism is given
by (x*, p*)— (x*, p, =8, p") and thus the induced symplectic 2-form on T/ is

w=dx" Ad(g,..p") 4.1)

The Lagrangian L =3g,,p“p” on T.# defines a Hamiltonian vector field X, on
TAM, determined by

nga) =dL.

In terms of natural bundle coordinates the geodesic spray X, is given by
X, = (p*, —Tapp°p”), (4.2)

where I';; are the Christoffel symbols for (#, g). (For further details see [10].)

The one-particle phase space for particles of mass m, i.e., the submanifold
{veTM:g(v, v) = —m?}, is invariant under the geodesic flow and we denote the
restriction of X, to the one-particle phase space also by X,.

Let f be a distribution function on the one-particle phase space. The Vlasov
and Boltzmann equations for f involve the Lie derivative Ly f. If we consider the
spatial components p’, relative to an orthonormal tetrad {e"} as independent
variables of f, then the Liouville operator Ly, can be written as

. of

Ly f=pe(f) - wiv(p)p"‘@, (4.3)
where o’ are the connection forms of (., g) relative to the dual basis {6"}.

We derive now a more explicit expression of (4.3) for an arbitrary 3 +1
slicing. In order to do this, we need the connection forms relative to the basis
{6"} introduced in Section 2. These are derived in detail in Appendix A. They
can be expressed in terms of «, B, m} cj where w} are the connection forms of
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the slices Z, belonging to the induced metric g and c; is defined by
oY =cid. (4.4)

Using equations (A.5), (A.3), (A.6) and (A.2) we find (p=p'e, E=p’=
Vp? + md):

3= wi(p)p’ —;
' p i ap’

0 p)p*®

— [w}(e")p° + wh(p)]p" f, + [P + o]

O i 9, 3
=E’a'a"— — KEp/ (p)p’ —— + wj(e")Ep’ —

op' o o'
. 8 8 .3
=E2 =l i~ =] E s v Ny

Here Kj are the components of the second fundamental form of Z,, for which we
also use equation (A.7) of Appendix A. (, denotes the covariant derivative on

(20, 8))-
This leads to the following useful 3 + 1 split of the Liouville operator:

E ; E . ; , of
Lng = [; 3, + Lp_gﬂ]f - [mj(p - ﬁ)p’ + E*(In )" — EH p’] ap" (4.5)
where we have introduced the horizontal tensor field
Hj s a‘l(ﬁ} — cf,) (4.6)

5. 3+ 1 split of hydrodynamics. Equation of motion for a test particle

Calculations similar to those in the last section lead quite rapidly to a 3 +1
split of hydrodynamics. The resulting equations have been used, for instance, in
black-hole physics [5]. We shall apply them in Section 8 on cosmological
perturbation theory.

Let us decompose the energy-momentum tensor into horizontal and vertical
components:

T=€ce,@e,+¢,@S+SRe,+T. (5.1)
For an ideal fluid with

T=(p+pu®u+pg” (5.2)
we find, setting as in special relativity u = y(e, +v), y=(1 — v}~ "2

e=y*p +pv’), (5.3)

S=(p+p)r’v, (5.4)

T=(p+p)y’v®v+pg”. (5.5)
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Now we compute V - T for an arbitrary 7. From
V. (€eo®eg) = L. (€)e, B e+ ewplen)e; ® ey + €ey ® wiley)e;
and
V(€0 ®ey) = L, (€)e, @ e, + ewie)e; ® e, + e, @ wie,)e;
we obtain
V- (ee, ®ey)L. (€)ey+ ewie)e; + ewie)e,.
In the same manner one finds the other contributions with the result:
(V- T)’=L,(€) + ewife;) + wi(ey)S + S + w)(e,)S + w(e)T".

Inserting the expressions for the connection forms given in Appendix A, leads to
the following form of the energy conservation:

1(8, —Lg)e=-V-S—-2grad(Ina)-S+ e tr (K)+tr (K- T). (5.6)
o

Similarly one finds
(V- T) = wiep)e + L. (S') + [wi(e) + wi(en)]S + wl(e)S' + wj(e,))T" + T,

and from this we obtain the momentum conservation equation
1
- (8, — Lg)S= —grad (In a)e + 2K+ S + tr (K)S — a~ 'V - (aT). (5.7)

This form of the conservation laws will turn out to be very convenient in our
treatment of cosmological perturbation theory.

Some of the terms on the right hand side of (5.7) appear also in the equation
of motion for a charged test particle. Indeed, the horizontal component of V,, p,
p = mu, 1s similarly found to be given by

1/d
y~ (V. p)"r = > (Et - Lﬁ)p +V,p+mygrad (In &) — 2K - p, (5.8)

where p is the horizontal part of p.
In order to work out the Lorentz equation

V.p=eF* - u, (5.9)

we use
(F* - w)° = —i,F,  u=y(e,+v)="(3,+av—p)
«
and (3.6), giving us

[ F=— ;]: (€ —igB) + vi, B — Zif;% + terms prop. to dt.
o



1036 R. Durrer and N. Straumann H. P. A.

Thus

— (i, F)" = y(€ —i,B), (5.10)
and hence

(F¥ - u)* =y(E +vxRB), (5.11)

where E and B are the electric and magnetic vector fields belonging to € and %8
(via the metric g). Using (5.8) and (5.11) in (5.9) gives us the equation of motion
in the form

1/d
P (Zt — Lﬁ)p =—mygrad(lIn o) - Vp+2K-p+e(E +vXB) (5.12)
which shows some similarity of electromagnetic and gravitational ‘forces’ (relative

to ‘absolute’ space).
Let us finally write the local baryon number conservation law

V- (pou)=0 (5.13)

in a 3+ 1 splitting. Here p, is the rest mass density of baryons and u the
four-velocity of baryon number. With u = y(e,+v) and p:= yp,, we find as
above

d

(d—t— L,,)p = ¥ = {npx) -+ ap i {K), (5.14)

Note the similarity of this equation with (3.17).

6. 3 + 1 split of Einstein’s field equations

For the sake of completeness and for later applications we discuss also the
often-used 3 + 1 split of the gravitational field equations. The calculation of the
curvature forms relative to the basis (2.12) is presented in Appendix A. The
reader will note that Cartan’s calculus leads rather quickly to the required results.

We use the notation introduced in the previous section (5.1) for the various
projections of the energy-momentum tensor 7T into normal and horizontal
components:

T=Ge()®e(,+eg®s+5®e()+T. (61)

From equations (A.14), (A.16) and (A.17) of Appendix A for the Einstein and
Ricci tensors, Einsteins field equations can be written in the form (recall that
boldface letters always refer to the slices 2,):

R+ (tr K)* — tr K* = 167Gk, (6.2)
V:-K-V-tr(K)=8aGSs, (6.3)
3,K =LgK — Hess (a)

+ afRic (g) — 2K - K + (tr K)K — 87GT — 47Gg(e — tr T)]. (6.4)
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In addition to (6.2), (6.3) and (6.4) we have the following relation (Appendix A,
equation (A.8)) between g and the second fundamental form K:

o,g=—2aK+ Lgg. (6.5)

Note that this decomposition into constraint equations (6.2), (6.3) and dynamical
equations (6.4), (6.5) involves only horizontal quantities and thus provides the
3 + 1 split of the gravitational field equations.

Later we shall also use the following consequence of (6.4) and (6.2)

3, tr (K) = —Aa + Lg tr (K) + aftr (K*) + 47G (€ + tr T)]. (6.6)
Note that 9, and tr do not commute. With (6.5) one shows easily
tr (8,K — LgK) = 3, tr (K) — Lg tr (K) — 2o tr (K?). (6.7)

7. Applications to spherically symmetric spacetimes

We now specialize the previous results to spherically symmetric spacetimes.
This will lead to useful expressions for relativistic collapse problems or in-
homogeneous inflationary models.

The shift vector § has only a radial component: p = 3, and the metric (2.2)
can be put into the form

g=—(a®— A’B?) dt* + 2A*B dr dt + A dr* + B*r*(d6* +sin* d¢?),  (7.1)

where A and B are two functions of r and ¢.

7.1. Field equations for maximal slicing

For a spherically symmetric configuration the gravitational field is not
dynamical (no radiation). Therefore, it must be possible to find a gauge in which
the metric variables are determined instantaneously in terms of the matter
variables. Such a gauge can be constructed as follows.

First we can arrange f such that A = B, which means that the metric g on the
slices Z, is conformally flat. Next we restrict & by imposing the ‘maximal slicing’
condition [2] tr K=0 for all times. It can be shown that this is indeed possible,
because the dynamical equations guarantee that this condition propagates. An
obvious advantage can be seen from (6.6) which then becomes a time-
independent equation:

Aa = aftr (K*) + 3(e + tr T)]. (7.2)

(In this section we set 8xG =1.) Now we work out the expression (A.7) of
Appendix A for the second fundamental form relative to an orthonormal basis,
which we repeat here:

1
K= S (Biyj + Bjji — ¢ij — ¢io)- (7.3)



1038 R. Durrer and N. Straumann H. P. A.

In the present situation the basis {#} of Section 2 is

¥ =Adr, V' =Ardo, & =Arsinfdo. (7.4)
Thus the coefficients ¢; in (4.4) are
ci= A S (A = %). (7.5)
A ot

The connection forms o] of the slices =, are readily found to be (a prime denotes
d/ar):

(rA)’ (rA)’
o= —mé=71‘}2, o] = —mé=i2—ﬁ3. (7.6)
From this one finds for
ﬁj|i =e(8;) — mf(ei)ﬁk
the expressions
_(Ap) (ra)’ e |
ﬁ1|1 =T’ ﬁ2|2 = B33 = A2 AB, ﬁf|j =0 for i #J. (7.7)
Thus tr K =0 implies
(3/A)A'B—A)+2B/r+ B’ =0. (7.8)
We note also
Ki=Ki=-1K!,  tr(K?)=3(K})> (7.9)
Furthermore we find
_@py A
Ku="4y""3 (7.10)
=3B’ - BIr),
and thus,
B = —grf Rt . (7.11)

Next, we work out the constraint equations. First we need the Riemann scalar R
for the spatial slices. Since these are conformally flat one can write down the
result immediately

R=-8r24723,(r* 3,A"). (7.12)

In addition, we need the covariant divergence of K’ (with respect to g). The
absolute exterior differential [11] is

DK!=dK:+ oK} + oK.
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Inserting the connection forms (7.6) gives in particular

VK, =rA"*3,(rA’K)). (7.13)
Now we write down the constraint equations (6.2) and (6.3):

r28,(2 9,A") = A" + }(K1)?], (7.14)

rA~*9,(rA’K})) =S,. (7.15)
The explicit form of (7.2) becomes

A7r 2 9,(r’A d,a) = af3(e +tr T) + 3(K})?]. (7.16)

The last three equations, together with (7.10), provide four equations for the
functions «, 3, A, K| which contain only derivatives with respect to r! Thus the
metric coefficients are instantaneously determined by the source terms €, S, and
tr T and we have thus found the gauge we were looking for. (See also [13].)

For our choice of gauge (A = B, tr K =0) numerical simulations simplify very
much. Numerical studies are underway for spherically symmetric inhomogeneous
inflationary models, where the source terms are given in terms of the energy
momentum tensor of a Higgs field. The self-consistent set of equations contains
then only one partial differential equation. For the Lagrangian

Litiges = 1/2(d¢, d¢) — V(9) (7.17)

the source terms are

e=112[(a79-L o)+ a2(0] + vio,

Si=—-A""¢'(«" "¢ - B9'),
s 1
trT=3a"(¢ - Bo') - Yt (') =3V(¢).

The field equation

aVv
0,0 ——=0
8¢ a¢

reads explicitly

(oo epe (e 4-2)

N, 8V
(:3 Jo' = (7.18)

+AT (AT + A“((afA)"tp' +2
One of the purposes of a numerical investigation of these coupled equations is to
decide whether the chaotic scenario of inflation [14] works for ‘generic’ initial
conditions.
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7.2. Explicit form of the Liouville operator

It is now very easy to work out the general formula (4.5) for the Liouville
operator. Let us parametrize the four momentum p of a massless particle as

= (E, Ep, EV1—y?cos ¢, EV1— u?sin ). (7.19)

The distribution function f is considered as function of r, ¢, E and u. If we insert
the expressions (7.6) in (4.5), we obtain in a first step

Luf=Zaf+a (Eu-CAp)a

( )[( 2)2+( 3)2] f

_ I:(rjg p'p? —;}A“COt 9(p3)2] %{2
of

(rA)’ 1
[ 2 p1p3+ ) cot Op p3] 8p3

3 3
—EA_'af"af’;f,+ Ea‘[(ﬁm —Cl|,)p2$+- . -]f. (7.20)

From
of of of
=t =-—" p3 +— p2
¢ op op

we see that the terms proportional to cot 6 in (7.20) cancel. Furthermore, the
chain rule gives immediately

E(1—p?) g’{ =[(p?*+ (P’)] % —-p'p?

of of of of
E—=p'—=+p*—S+p’—;,

I
ap? ap*’

and thus,
of of of
E(1- + uE® —-=E*—.
=3, ER 3E_ " 3p
This enables us to collect terms in (7.20) as follows:
d
Laf = Ea™ f + A~ (Eu— Ea~ AB)a,f + ) E(1— ) oL
u

—A a7 'a [E(l—,u )—+uE2£E]f

+Ea"’[(ﬁ1|, ci)p! i+ ]f.
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In the last row we insert now (7.7) and (7.5) to obtain

o
e’ g+ = (5 8+ 8-3)Sp L -t L

(aern-2)e

f+uE af]

+(B' —-r! [1—

(B =r ') (1 = ) 5+ WE
Finally, we use the maximal slicing condition (7.8) and obtain after some
rearrangements

E7 Ly f=a"'3,f+A (u— a'AB)S,f

+E-L[ua™ St oo g g - )

+(1— uz)%{ [(1 — a uBAY(1/Ar) — a_l(%)' + gﬁ] (7.21)

This equation can, for example, be used for the Boltzmann equation describing
the neutrino transport in a type II supernova explosion.

A similar calculation leads to an explicit expression for Ly f in the following
gauge, which is so far used mostly in numerical simulations of supernovae
explosions

g=—e*?dr + e** dr* + r dQ. (7.22)

Details can be found in Ref. [12].

8. Gauge-invariant cosmological perturbation theory

The blackbody nature and the astonishing isotropy of the microwave
background radiation provide strong evidence that the early universe can be
described to a good approximation by a Friedman model. Initial deviations from
homogeneity and isotropy must have been very small (<3 -107°, [18]) indeed.
Thus there was a long period during which deviations from Friedman models can
be studied perturbatively, i.e., by linearizing the Einstein and matter equations
around the solutions of the idealized Friedman models.

Until recently this perturbation analysis was always carried out in a
coordinate dependent manner [15, 16], by fixing the gauge freedom in some
convenient way (synchronous gauge, etc). This leads often to misinterpretations
of the growth of density fluctuations — especially on super-horizon scales — and
gave rise to incorrect conclusions in the literature.

In recent years, Bardeen [8] and others [9] have developed a manifestly
gauge-invariant formalism, which eliminates ambiguities and problems of inter-
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pretation. In this section we give simplified derivations of the main equations of
this formalism by using the tools developed in this paper. We also present some
new results. These include gauge-invariant equations for the entropy production
rate and gauge-invariant perturbation equations for collisionless particles (neutri-
nos, etc). One of us (R.D.) has translated the resulting system of perturbation
equations into computer programs. The results of this numerical investigation will
be published in an accompanying paper [7].

For the unperturbed Friedman model with metric g
conformal time,

“O=a@),  BO=0, g”=a(y. 8.1)

© we have, if t denotes the

Here a(t) is the scale factor and y is a metric on Z with constant curvature K =0,
+1. In addition, we have matter variables for the various components (baryons,
radiation, neutrinos, axions, strings, etc).

In the following we linearize all the basic equations around the unperturbed
solution in the usual manner. For the small-amplitude departures in g =g + dg,
etc, we have in the linearized approximation the gauge freedom

dg > g + L:g©, etc, (8.2)

where § is any vector field. This transformation changes in particular the lapse
function and the shift vector field.

8.1. Harmonic analysis

The unperturbed spaces (Z,y) of constant curvature K =0, %1 are highly
symmetric which invites us to carry out a harmonic analysis of the perturbations.
This is achieved in two steps.
a) Decomposition into scalar, vector and tensor contributions:

This decomposition of the quantities éa, 6B, 6g, 6K, etc, proceeds as follows.
Consider first the set Z(Z) of vector fields on 2. This module can be decomposed
as follows into ‘scalar’ and ‘vector’ contributions

¥E)=2" D",

where Z° consists of all gradients and ¥ of all vector fields with vanishing
divergence. (More generally, we have for the p-forms A” on X the decomposition
AP =dAP"' @ Ker 6 | A?, where & denotes the codifferential) Similarly, we can
decompose a symmetric tensor te ¥(Z) (= set of symmetric tensor fields) into
‘scalar’, ‘vector’ and ‘tensor’ contributions:

t=t +t" + ¢/,
where
tg = (t)Yij + (vivj - % 6:‘;'A)f,
t/ =V.X + VX, with Xe £"(3) (8.3)
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and
tr(t")=0, V-t =0.

One can show [9] that these direct decompositions are respected by the covariant
derivatives. For example, if Xe Z(Z), X=X, +grad (f), V-X, =0, then one
finds easily

AX = AX, + grad (Af + 2Kf)

and V - (AX,) =0. (A group theoretical discussion will be given in [6].)

This observation implies a decoupling of scalar, vector and tensor modes.
Only the scalar modes are interesting for the problems of galaxy formation,
because only these contribute to density perturbations. In what follows we
consider only the scalar modes. (For the other modes we refer to [9] and [6].)

b) Decomposition into spherical harmonics. In a second step we decompose
the scalar components of all functions, vector fields and symmetric tensor fields
on X in terms of spherical harmonics on (Z, ¥) and their covariant derivatives.
The spherical harmonics Y are eigenfunctions of the Laplace-Beltrami operator

on (Z,Y)
(A+ kY)Y =0. (8.4)

The possible eigenvalues depend on the curvature K [19]. Indices, referring to the
various modes, are always suppressed. The scalar contributions of the vector and
symmetric tensor fields can be expanded in terms of

Yi o= —k_lv,-Y,

Y:'j = k_zv,'v]'Y + %YUY and Y'}’U

The following properties are easily derived by computing covariant deriva-
tives (using the Riemann tensor for (Z, y)):

V.Y'=kY,
AY;= —(k* - 2K)Y;,
ij:' = "k(Yij - %Yijy):
VY, =3k~ '(k* - 3K)Y, (8.6)
vjvmyim %(31( - kz)(Yr'j - %Yijy);
AY;=—(k* - 6K)Y;,
V. Yy = VYo = (k/3)(1 — BK/K*))(Yim Y; — Vs Yon)-
Clearly, different modes in a harmonic expansion do not couple in the linearized
approximation. Hence it suffices to consider a generic mode.

For the metric perturbations éa, Op and 6g we have, using the same
notation as [9],

da=aA(1)Y,
5= —B()Y' 3, 8.7)
Sg=a’[2H,(t)y,Y +2H(1)Y;] dx' dx'.

(8.5)
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Gauge transformations (8.2) affect scalar modes only for vector fields of the
‘scalar’ type:

E=T()Y 3,+ L(t)Y'3;. (8.8)
Using
Le dt =d(Lgt) =d(TY)=TY dt — kTY, dx’, etc, (8.9)

one finds the transformation laws
A=A+ T+ (a/a)T,
B—B—-L—kT,
H, — H, + (k/3)L + (a/a)T,
Hy— Hr — kL.

(8.10)

Next, we consider perturbations of the energy-momentum tensor 7. The
4-velocity u is defined to be the normalized timelike eigenvector of T

Tu=—pu, g(u, u)=—1. (8.11)
We decompose T as follows
T=pu®u+r, (8.12)

where 7 is orthogonal to u,
T,u"=0. (8.13)

For the unperturbed model we have

u®=a"13, TP =, iD= pe§ (8.14)
For a general mode the perturbations have the form

op = p 05y, (8.15)

du=a"'(—AY 3, + vY' 5,). (8.16)

Here the coefficient in the first term for ou is fixed by the normalisation condition
in (8.11). For the spatial components of the stress tensor T we set

81, =pO[n, Y8} + n, Y]] (8.17)
The other components are fixed by the condition (8.13):
019=0, 67h=—(p” + pOWY’, 87 = (p + p)(v - B)Y.. (8.18)
Under a gauge transformation defined by the vector field (8.8) we find
60— 0 -3(1+w)(a/a)T,
vov-—1L,
ap— my —3(c2/w)(1 + w)(a/a)T,

Ar—> A,

(8.19)
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where w=p@/p@ and c2=p?/p? is the velocity of sound. In deriving the
substitution rules for é and 7, use was made of the unperturbed equation

p©@=-=3p9(1+ w)(d/a). (8.20)

8.2. Calculation of geometrical quantities

For scalar perturbations the 4-velocity field u is hypersurface orthogonal. Indeed,
it can easily be seen that u is proportional to the gradient of the function

t,=t+k (v—B)Y. (8.21)

This function defines another foliation of spacetime, which plays a certain role in
what follows. We compute first the second fundamental forms for the two families
of slices {t =const} and {z,, = const}. This is conveniently done with the use of
(6.5). For the original slicing {¢ = const} we obtain in zeroth order

KO =—ay,dx'dx/, tr(K?)=-3a/a% (8.22)
Using (8.7) and (8.6) one finds in the linearized approximation

K= —ako,Y; dx' dx/,

8.23
tr (K) = —3(d/a*)(1 + &, Y), (8.23)
where K is the trace-free part of K and
kK, =—A+3(a/a) kB + (a/a) 'H,, (8.24)
o,=k™'Hr— B. (8.25)

Similarly, we calculate the second fundamental form K of the slices {t,, =
const}. It is easy to see that one obtains the same expression as in (8.23), but with
B replaced by v in (8.24) and (8.25). Thus

K™ = —ako,,Y; dx' dx’,

tr (K™) = —-3(a/a®)(1 + k,,Y), (8.26)
with

K,=—A+4a/a) kv + (a/a)"'H,, (8.27)

0,=k 'Hy —v. (8.28)

We need also the scalar Riemann curvature R of the slices {¢t = const}. This is
derived in Appendix B with the result (B.8)

OR= 4a‘2(k2 —3K)RY, (8.29)
where

% = HL " %HT' (8.30)
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8.3. Gauge-invariant amplitudes
From the transformation laws already written down we deduce
R—> R+ (a/a)T,
K,—> K, — (a/a)"'[(a/a)* + (k*/3) — (a/a)]T, (8.31)

0,— 0, + kT.

Therefore, the following combinations, [9], are gauge-invariant:

a* _\
A=A —a“(; ge) : (8.32)
B=k(d/a)"'R— g, (8.33)
M=, (8.34)
I =, - (/w)d, (8.35)
V=-0,=v-k'Hr=v—-B—o0, (8.36)
A,=6+3(1+w)(a'/a)k™ o,. (8.37)

Bardeen [8] originally introduced also the following combinations, which we have
used in our numerical simulations [7]:

® =k (d/a)B=R— k™ '(a/a)o,, (8.38)
Y=o + (ka)"'(aB) = A — (ka)"'(aq,), (8.39)
A,=0+3(1+w)R (8.40)
=A; +3(1+w)d. (8.41)
Another gauge-invariant quantity is the acceleration of u
a=V,u=—-kA,Y' 9, (8.42)
with
A,=A—(ka) a(v—B)] =W — (ka) '(aV). (8.43)

This result can be obtained by noting that for an arbitrary slicing one has (see
Appendix A, (A.S))

Vene(] — wa(eo)e,’ == a’—la’ﬁe,-.

If this is used for the slicing {#,, = const} one finds the given result.
Summarising, we have shown that each scalar mode is described by 2 gauge
invariant metric amplitudes &, 9B (or ®, ¥) and four gauge-invariant matter
amplitudes that describe the source terms in Einstein’s field equation. These are
A, (density contrast), V (peculiar velocity), IT (anisotropic stress) and ', which
describes the entropy production, as will be shown in the next subsection.
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8.4. Perturbation Equations

8.4.1. Gravitational field equations. The perturbed field equations can be
directly obtained from the general formulae (6.2) to (6.5).

a) Constraint equations. By comparing (8.14) and (8.16) with n = o~ '(3, — B)
one sees that u is equal to n up to a first order horizontal contribution. Hence, we
obtain to first order from our expression for T in subsection 8.1:

T(n,n)=p=p1+8Y), T(n, 3)=—a(p®+p?)(v-B)Y.
Indicating as before the traceless part of a tensor by a twiddle, we have
(tr K)* — tr (K?) = 3(tr K)* — tr (K?).
Equation (8.23) shows that K is of first order, and we find for the first order term
[(tr K — tr (K3)]® = 12(%)1g Y.
Using also (8.29) we can write down the constraint equation (6.2)
6(da/a)’k, +2a~*(k* — 3K)R = 8xGp$.
With (8.40) and using the zeroth order relation
4xGp (1 + w)=a?*[(a/a)* — (d/a) + K] (8.44)
we can write this as
4nGp A, = 3(d/a)’k, + a7’[k* + 3((d/a)* — (a/a))]R.

Expressing finally the right hand side in terms of gauge-invariant quantities, one
finds

4nGa’p VA, = —3(d/a)* A + k(d/a)RB. (8.45)
In order to write down (6.3), we note that

(tr K), — KJj; = 3(tr K),, — K

=2k(d/a*)k,Y; +3a ' (k* — 3K)0, Y,

Thus (6.3) reads

—87Gp (1 + w)(v — B) =2k(a/a*)k, + 3a~'(k* — 3K) o,
or, with (8.36) and (8.44)

—4xGa*p@(1 + w)V = k(a/a)k, + [3k* + (a/a)* — (a/a)]o,.
Expressing again the right hand side in terms of & and % leads to

4nGa*p (1 + w)V =k(a/a)d + [(a/a)* — (a/a)]B. (8.46)
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With the two constraint equations (8.45) and (8.46) one can express @
algebraically in terms of V and A,:
4nGa’p®

b=
k*—3K+127G(1 + w)a

2, (Ag +3(1 +w)(a/a)k™'V). (8.47)

b) Dynamical equations. In order to work out the content of the dynamical
equation (6.4), it is convenient to start from the tracefree part of this equation.
With help of (6.7) we obtain

3K =LgK — Hess a + a[ Ric — 2K - K + K tr (K) — T). (8.48)
Since K is of first order, LJ( is of second order. If we use also ﬁiEii =—k’R Y,
(see Appendix B, equation (B.9)) we find immediately

8a2Ga’p 11 = k*[—(A — (ka)~'(ag,)) + ((a/a)k~ o, — R)],

or with (8.38) and (8.39)
- 8aGa*k*pONI =0 + W. (8.49)
This also enables us to express W algebraically in terms of matter variables.
8.4.2. Energy-momentum conservation. These ‘conservation’ laws are of
course a consequence of the field equation. In order to work them out we start

from the 3 + 1 split of V- T =0 carried out in Section 5.
To first order the quantities in (5.6) and (5.7) are

e=p (1 + 6Y),
S=(pP+pD 3, v'=a"'(v - B)Y,
T=ap (1 + 7, Y)Yy’ +7,Y"]5, ® 3,
a=a(1+AY), B=-BY'a.
Inserting this in (5.6) and using the zeroth order relation
p©@ = —3(a/a)(p® + p?),
gives
(0 +p®)3(a/a)(k,, + A) + p @b — p©3(d/a)(6 — 7)) = 0.

This can be expressed in terms of gauge-invariant quantities. Making use also of
the unperturbed relation

w=—-3(cZ—w)(1+w)i/a, (8.50)
we find

Ay +3(c2— w)(d/a)A, + (1 +w)kV +3w(a/a)l =0. (8.51)
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Similarly, equation (5.7) gives after a short calculation
: c? kw 2 3K
1 -3¢V = —3¢? —— kA, + —— F—-w(l———)ﬂ).
V+(a/a)(1=3c)V = k(W —3c;P) + T+ w kA, T ( 3 e
(8.52)

If we substitute the algebraic expressions (8.47), (8.49) for ® and ¥ in terms of
the matter variables A,, V, Il and T into the last two equations, we obtain
dynamical equations for A, and V, with source terms determined by I1 and I'.

8.4.3. Entropy production and heat flux. In the following discussion use is
made of Appendix B in [11], where basic aspects of general relativistic
thermodynamics are developed. Adopting the fitting procedure of Eckart for
small departures from equilibrium, one obtains for the energy-momentum tensor
(see equation (B.12) of [11]):

T* =(p + pe)UUY + p..8"" + 6T, (8.53)
where p,, is the pressure of the equilibrium state which is fitted to the actual
state, and &T*" is of first order and satisfies

oT*U, U, =0.

We recall that U* is the four-velocity of particle transport, i.e., the particle
current N* is given by N* = nU".

On the other hand, the matter four-velocity u* is defined by (8.11) and T*¥
can also be written in the form given by (8.12):

T =(p+putu’+pg" + 11", (8.54)
where we have set

™ =p(utu+g")+II*, I} =0. (8.55)
The tensor I1*" is orthogonal to u*, I[1*"u, = 0. Defining Q" by

ut=U"+ Q"
we can rewrite (8.54) in the following manner:

" =(p+p)U"U" + pg"”+ U"q" + U"q" + 11"

= (p +Pe)UMU” + pogg™ + Utq” + U'q"
+[(p = pe(UFUY +g™) + I1*7], (8.56)

where

q"=(p +p)Q*~. (8.57)

Since u?=U?=—1, we have to first order g - U =0, g - u=0. Comparison of
(8.56) with (B.16) of [11] shows that g is the heat flux. In addition, we obtain with
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(8.53) up to first order
OT" = (p — peg)(utu” +g"") + IT* + (u¥q> + u*q"). (8.58)
From p =p(1+ #,Y) and p., = p (1 + (c2/w)SY) we find with (8.35)

2
P —Peq =p‘°’(nL + c; 6) Y =pOrY. (8.59)

Hence,

OT" ="+ uq + u'q",
with

t* = pOTY(u*u” + g") + I+, t“u, =0. (8.60)
Finally we use this expression in (B.29) of [11],

St =—T"%T,— Ta,)q"+ T7'0,,™,

for the divergence of the entropy current. (T denotes the temperature.) Since T,
is in zeroth order proportional to u,, we have to first order T, ¢* = u,q"=0.
Furthermore, equation (8.42) shows that a, is also of first order. Thus to first
order

St =T7'16,,*. (8.61)
Now 6,, = —K,,, since in an orthonormal basis {e,} adapted to the slicing
{t,, = const} with u = e, we have

0, = 3l(e;, V.eo) + (e, V..e0)] = 3[wi(e;) + wife)] = —-K;.

In such a basis (8.61) becomes with (8.22)

Sk = —T KO = 3% T-pOrY. (8.62)

This demonstrates that the entropy production rate is proportional to I'.

8.5 Gauge-invariant perturbation theory for collisionless particles

In this section we shall derive a gauge-invariant version of the perturbed
Liouville equation. For that we first have to find gauge invariant amplitudes
which describe the perturbation of the distribution function. For the sake of
simplicity, we specialize now to K =0. The scalar harmonics are then given by
Y(x) =e’**. This simplification can always be made in applications, since the
deviation of Q from 1 is very small in the regime where the deviations from
homogeneity and isotropy can be treated by linear perturbation theory.

8.5.1. Gauge-invariant perturbation amplitudes for the distribution
function. We split the perturbed distribution function, f, on the one-particle
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phase space P, ={(x,p)e TM|g(x)(p, p)=—m*} into an unperturbed con-
tribution £ and a perturbation f"? in the following manner:

F(p¥e.) = (p e) + O (prel?), (8.63)
where {e,} is the adapted orthonormal basis (2.11) and {e!"} is the correspond-
ing basis for the unperturbed metric. Under a gauge transformation given by a
vector field &, f transforms into f = f + L. f, where T§ is the natural lift of & to
TM. Similarly to (8.63) we set

f(pre) =fO(prel) + fO(prel), (8.64)

The subtraction of these two decompositions shows that the change 8. f" of f
under a gauge transformation is given by (ignoring higher order terms)

O fV(prel)=f(p¥e,) — f(p"e,)
= (LT;: - L(Tig)i)f(n)(P "‘eﬁ”)

where
(TE)" =p*(e. —&.)" a‘,- (8.65)
op
We write this result as follows:
S: fM = Ligeyf® (8.66)
with
(TE)"'=TE—(TE)". (8.67)

In order to work this out, we must calculate é, — e, for a gauge transformation
given by & From the transformation properties of the lapse function and the shift
vector, equation (8.10), we find:

eg=n=a '(8,—B)=ey+ (e — &)d, + ((B' — B)e”
=e,— [(gn + (a/a)g())e(ﬂ} + (é:' _ 5()“)650)].

For the horizontal basis vector fields we have the following transformation law:

(8.68)

€ =e+ (Lgei)hor =e + [g’ e,(-”)]h‘“
=e; + (EO(an-l)-aeI(()) _ gﬁe‘(u()))hor (869)
= e~ [(@/a)E%” + &)

The second term on the right hand side of (8.69) is of first order. Therefore, it is
sufficient that the square bracket is horizontal with respect to the background

metric.
With the help of (8.68) and (8.69), equation (8.65) yields

)
(TE)" = ((@/a)&"+ Ep" ot

3 U+(§ E‘“)p“ +(a/a)E”' +Ep —
ap’
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Furthermore, in a coordinate frame {3, } we have
, 9
Tg — E'u a’.t + Eflvp @.
This leads to
Il — gu . 0.0 0;‘9 . 0,.i O,EUa
(T8)" =3, — ((@/a)s'p" — Ep") 55— ((a/a)E'p" — EVp") /. (8.70)
P P
For a vector field of the form given in (8.8) we arrive at

(TE)“ = TY a! + LYJ a‘_ _ T[((a/a)Yp”+ k};’p;) 58_6+ ((a/a)Yp‘ + Yip()) i{]
p op
(8.71)

Let us choose variables (¢, x, v, y) on P, where

v= (a/mX)g(O)(pa p)UZJ

and y denotes the unit vector in the direction of p. Then f” is a function of v
alone: Since collisionless particles in a Friedman universe move on geodesics with
respect to the Friedman metric, their distribution function changes only by
redshifting the momenta and we have

O p)=1(to, (a/ao)p)

for an arbitrary reference time ¢,. Because of its isotropy, £ is thus a function of
v alone and we obtain

)

(B f M), =2(a/a)v T (8.72)
3f ® df®
(%7) =o' G (8.73)

where the variables which are kept constant are indicated by subscripts. Setting

q = (@*/mx)p° = (vV* + a*)'?, (8.74)
equation (8.71) yields
dr® ‘
Lizeyf©® =T—=—[(a/a)vY — kq¥'Y}]. (8.75)

dv

For the sake of simplicity, we specialize now to K = 0. The scalar harmonics are

then given by Y(x) = e™™. Let us now perform the harmonic analysis also for V.
For a specific mode Y we set

fQ=F( p)Y.
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Defining
u=k=ky', (8.76)
equations (8.66) and (8.75) lead finally to the following transformation law for F:

(0)

F>F=f+
_éfdv

[(a/a)v + ikuq]T. (8.77)

If one compares (8.77) with the transformation properties of the geometrical
quantities given in (8.31), one finds that the first term in the bracket of (8.77)
transforms like v® and the second term like iquo,. Thus, the combination

®

F=F— Z;v [VR + iquo,] (8.78)

is gauge-invariant. Of course every linear combination of % with gauge-invariant
quantities is again invariant, but (8.78) will turn out to be suitable for the
calculation of the gauge-invariant fluid variables in the next subsection.

8.5.2. Momentum integrals of %. In an orthonormal frame, the invariant
volume element, (x) of the mass shell P, (x) is as in special relativity:

2

(x) =%dp Q.

Using the definitions of v and g, we therefore obtain

2

a(x) = TZX%-dv e, (8.79)

where we have set
Ty = mx/a. (8.80)

Since we are treating collisionless particles, they are not in thermodynamical
equilibrium, and thus Ty is not an equilibrium temperature. It is however related
to the decoupling temperature (see, e.g., Ref. [7]).

Equation (8.79) leads to

p©® =TiAx f FOu?q dv, (8.81)
4
p = T’?nff(o)(v“/q) dv. (8.82)

The calculation of the energy momentum tensor from f yields the following
equations for the gauge-invariant fluid variables defined in equations (8.40),
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(8.36), (8.34), and (8.35):

4

T
A, =— | v’ qF dvdQ,

p(O)
v iTx _ f vuF dvdQ
“ o0 @ | UK ’
T
=3 f (*/q)(1 = 3u?)F dv d,
T4
r=-a [ @'3q - gy Fav g,
P

where u is defined by (8.76).

R. Durrer and N. Straumann H. P A.

(8.83)

(8.84)

(8.85)

(8.86)

Let us derive the first two of these equations. The energy momentum tensor
is given by the second moments of the distribution function:

Té=T% f ot %, v, Y)(v2/q) du dS.

Here the p*’s and p,’s are considered as functions of (¢, x, v, y). In first order we

find
Th=~ T}'rf qui(f@ + FY) dv dQ.

On the other hand we have by (8.15)
TS=—p9(1 + 6Y),
and thus

p9é = T}f qu’F dv dQ.

If we use this, the definition (8.78) and the isotropy of f?, we obtain

d
T f qu*F dv dQ = p©5 + RT%, [ = (qu)f© dvdQ (8.87)

The integral on the right hand side of (8.87) is

d
T4[ = (quIf© dv d@ = 3o + p),

(8.88)

Using finally the definition of A,, (8.40), we obtain indeed (8.83).

Next we calculate

T)=YT%| fy,v’ dvdQ.

(8.89)
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In flat space we have to first order for a general mode (see Section 8.1)
kTKHT=(p + pO)v — B)Yk 'k = —i(p + pP)(v — B)Y, (8.90)
so that by the definition of V, equation (8.36),
VY =i(p©@+pO) 'k 'K'T} - 0,Y.
Inserting (8.89) here gives

V=-0,+i(p? +p(°))“Tf\,f v uF dvdQ

and thus, with (8.78), we obtain (8.84). Equations (8.85) and (8.86) are derived
similarly.

8.5.3. Liouville’s equation. Liouville’s equation provides the equation of
motion for # which we derive now. Using equation (4.5) of Section 4 we can
write the Liouville equation in the form

X.f=0, (8.91)
with
0 0 q
P 14 i 14 / / “(B) —cj =
X =—3,+p-"—PB- [w,-(P & ﬁ)p’ +(p")(In )" + & '(B} — "f)”(””] ap"”
(8.92)

Here the momentum components are those with respect to the tetrad {e,=n, e;}
adapted to the slicing {# = const.}. Let us consider, as before, f as a function of
the variables (¢, x, v, y). Since

v= (a/mX)P = T;'lp’

we have

3),~ (), @ansy,

where the subscript p, v indicates which varnable is kept constant while evaluating
the t-derivative. Using in addition

p=Txvy, p’=Tyq,

we can write (8.91) in the form
q : q
% (&, +(@lay 3,)f + (vy - L)
« @

- Tx[(ﬂ}(vy —%B) Yv + () (a"/a)+ a () — cj)qu"] —é%f =0. (8.93)

To find the background and the first order contribution to (8.93) we use the
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decomposition

f=fO+Fy

and make use of the background quantities
P =0, =0,
aP=a, (cM)i=(i/a)é.
Taking into account the homogeneity and isotropy of f(:
(V)] ()] ©)
we obtain the background contribution to (8.93),
3,f@=0.

. P. A

(8.94)
(8.95)

(8.96)

Hence, f is a function of v alone as we already reasoned in subsection 8.5.3.

To find the first order contribution we use (8.7) and

ci=(d/a)di+ (H.Y &+ HyY)

as well as (8.94) and (8.95). Equation (8.93) then yields the following first order

equation:

/a)(8,F + (a/a)v 8,F)Y + ivkua™'FY — (a/a*)quT %' "E Y
(9 Z WTxY 5,
—[AYqu(a/a®) +ia'AYq’ku + a 'BYku*vqg — AYqu(a/a?)

i i o ()]
+a '(HY 6, + HyY;)y'yY'vq]

=0.
dv

After some rearrangements this leads to

df (D]
dv

O,F + iku ZF= [iAkug + Bkp*v + H, + (3 — uH)H)
q

Now we use

HL + %HT =R,
B — k_lHT = _Ug,
and add
. d (0)
~iulaqa,) + k)AL

on both sides. With the help of (8.78) we then find

df(“’[ LA 2
i gA — k™ 'qo, kq(a/a)og—(v /q)@].

8,F + iku— F = ikp
q

(8.97)
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Inserting g°> — v* =a? in the third term of the square bracket, and making use of
(8.38) and (8.39) gives finally

dr©® 2
0.9 +iku F=iku Y [q‘I’—U—(IJ]. (8.98)
q dv q

This gauge-invariant perturbation equation, together with the field equations
(8.47) and (8.49) and the momentum integrals (8.83), (8.84) and (8.85), form a
closed system of ordinary differential equations which we have solved numerically
for hot and cold dark matter, adding also photons and massless neutrinos to the
matter content. A discussion of the numerical results is presented in [7].

8.5.4. The nonrelativistic limit. At this point we derive an integral equation for
A, in the nonrelativistic limit. Let us introduce the quantity

Ay, 1y, v) = f ol (8.99)

which is the comoving distance travelled by a particle of momentum v in the
time interval ¢, to f,. With this notation (8.98) has the following integral
representation:

(Y]

[z’kur (q¥ — (v?/q)®) exp (—ikuA(t', t, v)) dt’
+ F(ts, v, u) exp (—ikuA(t,, t, v)]. (8.100)

F(t., v, u) is the initial value.
Let us proceed now to the nonrelativistic limit for which

g=a>uv, (8.101)
and therefore,

A(ty, t, V)= vf a~ =rvs. (8.102)

¥

We then obtain

) rs ) )
F(s, v, n) = F(, v, u)e " ¥ + ik - v o j a*We™*v6=sds'. (8.103)
0

In the nonrelativistic approximation (p‘’II < pPA,, kt>>1), (8.47) and (8.49)
give

8aGa*p®
_8aGa’p® |

a’W = e .-
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Recalling that p©@a? is constant, leads to

F(s, v, p) = F(0, v, p)e **"

(]
—ik- f

4Jer(°’(0)a(O)3 J al ke ™ e ds’, (8.104)

After multiplication by g and integration over d*v we obtain

+ a(s)4Jer(°)(O)a3(0)r a(s")A(s)p(k(s —s'))(s —s') ds’, (8.105)
with

¢(x)=Jf(°)(v)e_""'" d’v. (8.106)

For the left hand side of (8.105) we used (8.83). On the right hand side we
applied (8.101), and in the second term we integrated by parts. With the help of
(8.80), we finally bring (8.105) into the form

Ag_wfg(o H, v)e tkvsd?’

+ 4ft(m§(/mp,)2f a(s")A (s")p(k(s —s'))(s —s') ds’. (8.107)

This integral equation coincides with Gilbert’s equation (see [20], equations (32)
and (33)).

Appendices

A. Connection and curvature forms

In this Appendix we calculate the connection and curvature forms in the
orthonormal basis introduced in Section 2, equation (2.11).

A.1. Connection forms. From the first structure equation,

do*+ w\ A 8V=0,
and the definition of the second fundamental form:

Kj=—n;; (A.1)

where n denotes the normal field of the slicing, one finds immediately the Gauss
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formulas (remember #n = e):

wi(e) = vile,), (A2)
w?(ej) = —Kj. (A.3)
We define the coefficients ¢} by
3 = c}\‘}’. (A.4)
Then we can calculate the following quantities (details are given below):
(B?(e()) = a’—la‘.’“’, (A.S)
wj(eo) = wji(B) + (ﬁu —cj+cl), (A.6)
1 P
Kz, =£(ﬁiu+ ﬁﬂi——cj—ci): (A.7)

where the vertical bar | denotes covariant derivation with respect to g. The last
equation implies

1
K=—/[Lge— o,¢g], .
2a[ s€ — 9,g] (A.8)

Using the general relation
d,(detg) =tr (3,g) det g,
we find from (A.8)
3, vol (g) = (div § — a tr K) vol (g). (A.9)
The derivation of (A.S), (A.6) and (A.7) proceeds as follows. First we note that
d’=d(adty=da rndt=aW rndt=a "'a,0' A 0.
From the first structure equation and (A.3) we conclude
Iofe, dO' = —igi, (WG A 60"+ Wi A &)
= —(Ky + wi(ey)).
The left hand side of this equation is
g de’ =i zend(ﬂ‘ + B' dt)
= ig i, (A +dt A 3,0' +df’ A dt)
= o i (ig(o) A ') + 3,0 — dg’)
= o '[wj(B) — wi(e)B" — dB'(e;) + 3,¥(e))]
= o '[0j(B) - B, + c]]-

The symmetric and antisymmetric contribution of the last identity yield the
formulas (A.7) and (A.6) for K;; and w/(e,), respectively.
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A.2. The curvature forms. From the second structure equation,
Q¥ = do* + ok A w?,
and equations (A.2) to (A.7) one finds immediately
Qi(e,, e) = Qi(e,, ) + KiK;— KIK;  (Gauss), (A.10)
Ql(ex, )= Ky — Kyx  (Mainardi). (A.11)

We need also the other components of Q. The second structure equation gives
with (A.3) and (A.5)

Qo= —d(K;0') +d(a'a,0°) + w) A (—K,;0' + o' a;,0°).
A straightforward calculation leads to
o=a ‘o (0 A0°)—dKjA 0 + Ki(w) A 08— K}6' A 0°)+ 0K} A O,
which yields (A.11) and the following components of Q:
o(e;, e0) = @™ ayj + dKj(e,) — Kiwj(eo) + (K?); — wi(e)K;. (A.12)

Now we can calculate the Ricci tensor, Rg, = Qg(e,, €,),
1
Rm:c_vAa+ a (3, tr (K) — Lgtr (K)) + tr K* (A.13)

and (A.11) gives
Ry = (tr K), — K. (A.14)
For the spatial components
R; = Q)(e, €;) + Qi (e, €)).
(A.12) and (A.10) lead to
R;=R; +tr (K)K; — o 'a);— a7 '(8,K; — LgK;) + K;;wi(eo) + Kj;wi(eq).
(A.15)
With help of (A.6), (A.7) and (A.8) one can bring (A.15) into the form
Ric (g) = Ric (g) + tr (K)K — 2K* — o (3 K— LgK) — "' Hess (o). (A.16)
Using (A.13) and (A.15) we find
Goo = 3(Roo + L; Ry;)
=[R + (tr (K))* — tr (K?)]. (A.17)

B. The Ricci tensor of the spatial slices of a perturbed Friedman universe

To make use of (A.16) we need the Ricci tensor Ric (g) of the {¢ = const.}
slices for the perturbed Friedman universe. This is the Ricci tensor of the induced
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metric
g=a’[(14+2H,.Y) 8, + €2H,Y,]T' ® 7, (B.1)
where the {7’} denote orthonormal 1-forms of the metric y;. We set
Ric (g) = (R}’ + 6R;)7' ®@ 7,
where (generalizing to n spatial dimensions)
R = K(n —1)é,.
By Palatini’s identity (see for example [11] p. 217)
OR;(g'” + 8g) = 3[giu — Ogk|y + Ogjiu — A Og;). (B.2)

The indices are raised and lowered with respect to the background metric g”. To
calculate (B.2) for a perturbation of the form (B.1) we make use of equations
(8.4), (8.5) and (8.6) of Section 8. Furthermore we have to apply the following
identity which is derived like the equations (8.6)

T = (K(n 4t k2) _n= lr)l(z" Dk — k)Y 8y (B.3)

One then finds
« n—1 2 2
n

+Hf2"5

—nK)Y §; + (sz2+2(n — 1)K) }]r Q7.
(B.4)

We want to write Ric(g) with respect to our adapted basis {9‘} which is

orthonormal with respect to the perturbed metric. The transformation matrix is
given by

1 . .
- ; [(1—H)¥ — H Y] (B.5)
A short calculation leads to

Ric (g) =4~ [K(n —1) 8, + (HL+ 1Hr)

<25
Setting
R =H, + Hr/n, (B.6)

— nK)Y 8, + (2 — n)k?Y, )]ﬂ’@ﬂ’

we find the following perturbation of the Ricci curvature with respect to our
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perturbed orthonormal frame:

h

é Ric (g) = a*z[z ; ! (k*—nK)Y 6; + (2 - n)kZY,.,]gaﬂf Q. (B.7)

From (B.8) we can extract the trace term and the traceless contribution:

SR=a"2(n—1)(k* - nK)RY, (B.8)
8 Ric=a 22— n)k’>RY,¥ @ ¥. (B.9)
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