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The memory function formalism in the study
of the dynamics of a many body system

By A. S. T. Pires

Departamento de Fisica, Universidade Federal de Minas Gerais, CP 702, Belo
Horizonte, 30.161, MG, Brazil

(18. III. 1988)

Abstract. In this paper we present a review of applications of the memory function formalism
proposed by Mori. Particular attention is paid to the techniques available in the literature for the
termination of the continued fraction expansion. Some examples are given to illustrate those
techniques.

1. Introduction

Time-dependent correlation functions afford a powerful theoretical tool for
investigating nonequilibrium behavior, providing a rigorous connection between
the macroscopic transport coefficients of phenomenological theories and the
microscopic molecular properties. A wide variety of nonequilibrium phenomena
are described by thermodynamically averaged expectation values of products of
pairs of densities at different space-time points. In particular these correlation
functions completely describe the nonequilibrium behavior of a system in which
the deviation from equilibrium is small [1]. Several general techniques, having the
necessary feature of treating the many-body dynamical calculation as an
initial-value problem, have been devised for the calculation of correlation
functions [2]. One of the most useful and fundamental progress towards the study
of the time evolution of those functions was devised by Zwanzig [3], using
many-body projection operators to select out only the ‘“‘relevant” information
contained in the full dynamical expressions. Later, Mori [4] generalized the
projection-operator technique and obtained an expression for the Laplace
transform of an autocorrelation function in the form of a continued fraction.
Morr’s method is physically appealing, because it shows how two time scales, one
fast and another slow, could possibly arise from Hamiltonian systems and how
transport coefficients could be related to the interaction energy. One difficult with
this method is how to terminate the continued fraction expansion, and several
approaches have been used in the literature [5-16]. Recently, we have shown that
the incorrect use of truncation schemes leads to incorrect results for the
relaxation function [17]. In this paper, which is largely pedagogical, we shall be
primarily concérned with the techniques to evaluate the memory function used to
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terminate the expansion. The article is presented as follows. In Section 2 we
present briefly the Mori’s method. In Section 3 we consider the cases where
certain assumption may be made on the behavior of the frequency moments
(w*") appearing in the expansion, as n— o, thus making the continued fraction
tractable without truncation. In Section 4 we study the correct use of the N-pole

approximation and finally in Section 5 we discuss a technique that can be used at
low temperature.

2. The memory-function method

If A denotes a Hermitian dynamical variable, e.g., the spin component S in
a magnetic system (« =x, y, z), its time evolution is formally given as

A(t) = e Ae™ 7 (2.1)
which leads to the equation of motion

dA(t

%: iLA(1) (2.2)

where H is the Hamiltonian of the system and L =i[H, .] the Liouville Operator.
We assume that A(t) denotes the deviation from its invariant part. The
knowledge of A(f) permits us to obtain the relaxation function F(w) which is of
paramount importance since it can be directly related to scattering cross sections

by Van Hove’s relation [18]. The Fourier transform of the relaxation function is
defined by

_ L7 e (A, AY0))
F(w) =5 Lx dte (A(0), A*(0)) (2.3)
where (A(¢), B) given by [19]
(A(?), B) =% Iﬁ (e A(t)e "B )dA (2.4)

defines an inner product of two variables A and B belonging to the Hilbert space
of dynamical variables. In (2.4) 8 = 1/kT where T is the temperature.

The starting point of Mori is to separate the time derivative (2.2) into a
function F[A(s), t =s =initial time ?,] depending upon the past history of A(z),
and an additional term F(t, t,) depending explicitly upon the other degrees of
freedom; then, expanding the function F; in terms of A(s) and extracting the
linear term, Mori defines the first random force fi(¢) as the sum of F(¢, t,) and the
non-linear terms. Now the same procedure can be applied to fi(¢) to define a
second random force f,(¢), then to f,(¢) to define a third random force f;(¢) and so
on. In this way a hierarchy of random forces f;(¢) is generated, the values of which
at initial time ¢, =0, which we denote by f; obey the recurrence equations

=(1-Z Bt H=[A0)-0=4, 2.5)

=0
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where P, the projection operator onto the vector f;, is given by

PB=(B, f)(f /) 'f: (2.6)
These vectors f; form an orthogonal set,

(f,f)=0  j#k, 2.7)
and evolve in time according to the equations

() =exp GL)iL;fioy  (j=1),  folt) = A(r) (2.8)
where

Li=(1-P_))L;_,, Ly=L. (2.9)
The initial time derivatives f; = [df,(¢)/dt],—, satisfy the recurrence equations

fi= (1 —2}2‘; P,)iLf,.. (2.10)
For Hermitian operators we have

f=fur (2.11)
Introducing the quantities

6; = (f, ;) (fi-1, fi-1), (2.12)

the Laplace transform of the relaxation function E(¢) = (A(t), A)/(A, A) can be
written

E(z) = f E(t)e * dt = (2.13)
0 0,
z+

o
z+2

Z_I_...

This expansion is Mori’s infinite continued fraction representation for the Laplace
transform of time auto-correlation functions. Equation (2.13) is sometimes
written in the form

1 =,(z) 1
esmpata,  Bilgpe = ,
: Z + 01418141(2)

where Z,(z) is the Laplace transform of E,(¢) = (f(¢), £)(f;, f)~'. The knowledge
of singularities of the function represented by (2.13) is essential, since they
determine the relaxation of A(¢). If one is going to describe the approach of A(¢)
toward an equilibrium value, these singularities are expected to be located in the
half-plane Re z <0.

After the work of Mori, Dupuis [20] investigated the mathematical structure
associated to Mori’s generalized random forces showing that these random forces
could be obtained by a Schmidt orthogonalization of the sequence of initial time
derivatives of the dynamical variable considered. He also established the relation

(2.14)
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between the continued fraction representation (2.13) and the moment expansion

S4t San

"'(t)—1+2' TR ! 2t (2.15)
where
(4>, A) . (A" A")
=) =(-1) R (2.16)

and A" = [d"A(t)/dt"],—o. The coefficients s,, are related to the moments (w*")
of F(w), the frequency distribution of Z(¢) (equation 2.3), by the equation

P = [ddn:a;g)],=0 = [; (io)*F(w) dw = (—=1)" (™). (2.17)

Applying Mori’s recurrence formula (2.5) Dupuis was able to express the
coefficients 6, in terms of the moments (w**) and vice-versa. For the first §’s we
have

6= (w?)

6, =(0*)/(0*) - (w?)

63 =((0°)/(0?) — (*)*/(w*)?)/6,

6s=((@0®)/(®?*) = 2{®) (0*)/{w?)* + (0*)’/{0?)%)] 8,05 — 65

Dupuis also examined the convergence criteria for the continued fraction
representation. Introducing the number k, defined by the recurrence law

kl == 1 knkn+1 — 1/6n

he found that if the series Y, k, is divergent, then the continued fraction
expansion converges to Z(z) for every z such that Re z > 0. For the question of
convergence see also Ref. [21].

As pointed out by Lee and Dekeyser [22], for nontrivial Hamiltonians, it is
not a simple matter to obtain (@**) even for n relatively small. Thus, one does
not have explicit forms of 8, except for possibly the first few of them. It is,
nevertheless evident that all correlation functions 8, exist as n— . This implies
that the continued fraction (2.13) does not in general terminate, i.e., it is an
infinite series. So another problem is the nature of the approximation which is
used to terminate the continued fraction. As we can see from equation (2.8), the
time evolution of the first memory function =,(¢) is determined by QLQ, where
Q =1- P, higher order memory functions having more complicated expressions.
The order of truncation of the continued fraction is decisive in determining the
form of the relaxation function in the frequency region of interest, and as has
been shown by Oitmaa et al [23] there appears to be no way of assessing the
validity of the approximations which are used to terminate the continued fraction
and, as it is often the case there is no systematic convergence of the approximants
as more and more moments are used. In the following sections we give some
examples of situations where Mori’s method can be correctly used.

(2.18)
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3. Exact results

For certain physical models as has been extensively discussed by Lee et al
[24, 40], the continued fraction expansion can be terminated exactly. Below we
present some examples.

3.1. Finite dimensional Hilbert spaces

If owing to some symmetry of the system all basis vectors f; for j = N vanish
the Hilbert space of the dynamical variables shrinks to N dimensions [41]. It
follows then from (2.12) that 85 =0. From (2.14) we have

Bu-ilz)= 1]z, Ev_2(2)=z(z"+ 6n-1) ", (3.1)
and for the time dependent memory function

En_o(t) = cos Vo _,t. | (3.2)
From (2.13) and knowing that

F(w)=%Re E(z =iw) (3.3)

we see that F(w) is a sun of pure oscillatory functions. The same conclusion can
also be reached directly from (2.13) putting 85 =0. The denominator is a
polynomial of order N and the poles can be calculated easily. We find that all
roots are imaginary and therefore w is real. For instance if ;=0 we find for the
poles

w=0 o==x(8+06,)", (3.4)
if 6,=0 we find

@*=3{(8,+ 8, + 83) F[(O, + 85+ 85)* — 45,65]"%) (3.5)

In all cases the dynamical variable A can precess in the N-dimensional Hilbert
space. The frequency of the precession corresponding to the energy of the
collective excitational modes arising from many particles interacting coherently.

This case 65 =0 is a special case of the N-pole approximation (in fact if
dy =0 the approximation is exact) to be discussed in Section 4, where a more
general study will be presented. The classical harmonic oscillator chain with the
number of oscillators finite is a trivial example of the case discussed here. Other
physical systems belonging to this dynamical class are: the XY model in the high
frequency limit, the one-dimensional homogeneous electron gas at zero tempera-
ture, the spin van der Waals model in the Ising regime below the critical
temperature. These systems will be discussed in more general form in the next
two subsections.
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3.2. Convergente sequence of the coefficients 6

The second important case occurs when the coefficients 6, converges to a
value 0, i.e.

lim 6, = 9.

n—oc

For example, for a square function defined by

F(w) ={

1/2a; —a<w<a

3.6
0; |w| > a, (3.6)

where a is the width of the curve and [ F(w)dw =1, we obtain 8,=a*/3,
0,=1(4/5)6,, 65=(27/28)0,, 6,=(80/81)6s, . ..
We can choose a N and do the approximation

On=0n11=0pi2=---=0 (3.7)
Taking (3.7) into (2.14) we find

_ 1

Enlz) = (3.8)

z4+8Ex(2)’
which give for the Nth order memory function
E.(z) =[—z + (2% +468)"?]/26. (3.9)

The time dependent memory function is easily calculated
1
) = —= 3.10
N(t) \/St-]i(\/St)’ ( )

where J, is the Bessel function of order 1.

In this case we have a systematic convergence of the approximation as more
and more moments are used, this is, the accuracy of the approximation increases
when we use higher values of N. As a test we have used the memory function
(3.9) in (2.13) as an approximation to calculate F(w) defined by (3.6). We have
found an excellent fit even at the second stage. This approximation was used by
Engelsberg and Chao [42] to calculate NMR line shapes in patamagnetic systems,
obtaining an excellent agreement with experimental data. See also Ref. [12].

If the condition (3.7) holds true the memory function is exactly given by
(3.9). One example of this case is the homogeneous electron gas at 7 =0 in two
dimensions [28].

The electron gas may be defined by the following model:

H= ; Epag ay + 2 ViePrP -k (3.11)
K

where g, = K*/2m, m is the electron mass, v, is the two body interaction (k #0),
a; and a, are the fermion creation and annihilation operators, and p, =
Y, a,a, . We choose A = p,, such that (p,, p,) is the static susceptibility.
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In two dimensions at 7 =0 and k < Ky (K is the Fermi wave vector) Lee
and Hong [28] have found that

0;=2A+T and 4,=A, n=2 (3.12)

where A = (keg)?, T =2m pe’k/m (e is the Fermi energy, p number density, e
charge). The relaxation function is then given by

Z(t)=s i (—au=?)"(8/3t)*J,(ut)/ut + P cos I't (3.13)
where

s=1-(1-a)"% * p=[1-o)"-(1-a&)]/(a/2)
and

a=4A(1—A/8,)/8,, u=2A"%, =a "y,

J, is the Bessel function of order 1. For the ideal degenerate electron gas at zero
temperature we have I' = 0 and the relaxation function reduces to

=() = Jo(ut), (3.14)

where J, is the Bessel function of order zero. The solution (3.13) satisfies the
moment sum rules to all orders.

3.3. Gaussian function
For convenience let us write the nth order memory function as [14]
E(z=iw)=a,(w)—ib,(w) (3.15)
with

a,(w)= L Z,(t) cos wt dt,

. (3.16)
b.(w)=| E,(t)sin wtdt,
0
the spectral shape is found to be
1 d,a,(w)
Flw)=— ; 3.17
) 20— 8@ + BT 47
or
Flw) =~ 0102a5() (3.18)

7 {w[w = 8,b,(w)] — 8,}* + {wdaxw)}*’

according to whether the continued fraction is stopped at the first (n = 1) or the
second (n =2) stage, respectively. A Gaussian form for the memory function
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2,()(n=1,2)
En(t) = exp (—30,111%) (3.19)

has been used by several authors [7, 12, 14, 43-51]. Such a memory function has
the correct expansion in the t— 0 limit and all the integrals [g ¢"E;(¢) dt exist,
moreover, it has been exactly derived as a limiting case in an approach to the
line-shape theory [52] which complements the continued fraction theory. With the
choice (3.19) the spectral function automatically conserve the first n +2 even-
frequency moments. For (3.19) the quantities a;(w) and b;(w) are found to be

1/2
a(w) = (2; 1) exp (—w?/26,4), (3.20)
J+
a2 26_,_ S 5
b,-(a))=exp(fs_ (T/zl)m] ) fo e* dx, (3.21)
J+

where s = @/(28;,,)"”. Now using (3.19) we obtain the successive § according to
the relation

6n+1+m = (m + 1)6n+1 (322)

and this restricts severely the cases where the Gaussian memory function can be
employed, this is, the coefficients §’s should satisfy (3.22) at least approximately,
in order that we could use the Gaussian as a termination function.

It is not easy to trace the position of poles of =(z) in general when Z,(¢) is a
Gaussian. However, when it is possible, it is of some help in understanding the
characteristic behaviour of the spectrum as a whole. For the case n =1 see Ref.
[53].

As example we mention the quantum one-dimensional XY model described
by the Hamiltonian

CH=23 (5355 + 5i50) (3.23)

where s are spin-3 operator (a =x, y, z). We choose A =s7. At T = = Florencio
and Lee [39] have found that 8, =nA, n =1 where A =2J°.

Other example is the spin van der Waals model. This model refers to a
system of spins arranged in a regular lattice, each of which is coupled to all other
spins with equal strength. The model may be defined by the following
Hamiltonian [26, 34]:

N
%;j [J(s¥sT + s¥s¥) + J.s3s7] (3.24)
where N is the total number of spins, the coupling constants J and J, are both
taken to be non-negative and s = 1/2(« = x, y, z). The system will be referred to
as XY-like if J>J, and as Ising-like if J<J,. If we take A=S,=),s7, for
T>T.=J/2Kg, we find that in the XY regime 6,=nA, n=1, where A=
4w*(S2), where w =(J —J,)/N and {(S?) = N/2(2 — BJ,). The same result holds

H=-
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for T <T, only that now (S2) = N/2B(J —J,). In the Ising regime and T > T, =
J./2kg one also has 8, =nA. For T <T,, the ordered state is now characterized
by (S,) and we find that &, =4w?*(S%) and &, =0 if n =2. The time evolution

properties for the low temperature Ising regime are exactly as given in subsection
3.1.

4. N-pole approximation

A standard procedure to truncate the continued fraction, first considered by
Mori on physical grounds and often found in the literature [5, 6,11, 54] is to
replace Z,(z) by a constant z,. This is equivalent to a ‘‘short-memory”
approximation =, (¢) = Ty 6(¢), and is a N-pole approximation to a function with
an infinite number of poles. This approximation is equivalent to take

En-1(t) = On_1e”"™ (4.1)
which gives
En-1(2) = 0n_y(z +1/75) 7", (4.2)

This type of truncation may be justified in some problems, but in others it is an ad
hoc assumption. A further disadvantage of such closures is the introduction of
adjustable parameters such as 75. However if the approximation is justified it has
the advantage that the poles can easily be calculated (at least for small N) since
the denominator of equation (2.13) is a polynomial of order N. This is Z(z) can
be written as a ratio of two polynomials

N-=1 N
E(z) = 20 a,z" 2{ B,.2" (4.3)
n= n={
which for convenience can be rewritten as [55]
N—1 N
iZ(is)= >, a,s" | >, b,s". (4.4)
n=( n=0

The coefficients a, and b, are completely determined by the &’s and t,. The
inverse Laplace transform of equation (4.4) is given by

N
E(t) =D, Ce™" (4.5)
Jj=1
where
N—1 N-—1
Ci= 2, ax!/ > (n+1)b,x!, (4.6)
n=I() n=()
and x;, j=1,..., N denote the roots of the equation

i b,s" =0. (4.7)

n=0
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We now discuss the circumstances in which it becomes possible to introduce
the N-pole approximation. The condition that Z,(¢) decays rapidly corresponds to
the description of Z(¢) in the time scale At distinctly larger than the decay time
Tn+ Of E,(2), At>> 1y5,,. This is E(¢) is a slowly-varying function of time in the
time scale At. The region of interest in the z plane is given by |z| =1/At so we
should have |z| << Ty, in order that Z5(z) could be approximated by a constant.
This condition means that the n poles of E(z) should be located in the
neighborhood of the center of the semi-circle the radius equal to 1/, in the
left-half z plane. These poles represent slow processes and therefore we have a
long-time approximation. In taking this approximation we have neglected the
higher order frequency components, which correspond to the singularities of Z(z)
associated to Ex(z), i.e. rapid process. If only m (<N) poles locate near the
center and the others are distributed away from them, then the m poles correctly
represent m singularities of Z(z) near the center, whereas the other (N —m)
poles are not insured to represent any singularities of Z(z). Thus the N-pole
approximation is convenient if there is a clear distinction between slow and fast
processes. A typical example is a particle undergoing Brownian motion: the time
scales of the fluctuating forces are much smaller than the time scales of the
collective coordinates for the particle. Other example is the long-lived hydrodyn-
amic modes in many-body systems [56].

We can reach the same conclusions quantitatively starting from the inverse
Laplace transform of (2.14)

d= ¢
()= - f S (¢)En( — ') dt'. (4.8)
t . .

Assuming that =, ,(f) decays much faster than Z,(¢) (and this means [57]
6N+1 > 6N) we obtain

TO=|[ Era 0, (4.9
which gives

En(t)=e "N + 1, (4.10)
where

TR =f0 Enea(t') dt'. (4.11)

In order to calculate 7., we have to approximate =, ,(f) by a known function
to calculate the integral, or then step it down, using the relation between
successive memory functions, and use some Z,(f) of lower order [57]. For
example in the three pole approximation proposed by Lovesey and Meserve [5, 6]
where N =3, they have used for Z,(t) a Gaussian function. There are other
approximations to ty in the literature [54] but all of them reduce to the Lovesey
and Meserve expression in the limit 8y << d5,,, Where the approximation of
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N-poles should work. An alternative procedure is to choose 1y to fix F(w =0)
but in most problems of interest we do not know F(0).

Here we present what we think is the correct way to choose . Writing
yy =Ty in Eq. (4.2) and calling the Fourier transform of Z,(t) by Fy(w) we
have

Op-1Yn/T

1 .
FN—l(w)EERe En-1(iw) = 0+ vy
N

(4.12)

As it i1s well known, the problem with a Lorentzian is that all moments are
infinite. To overcome this difficulty we use a truncated Lorentzian

On_
N21YN47I; 0| < w,

Fy_(0)=q @"+7v¥ (4.13)
0; || > w,

where w, is a cut off to be determined. We obtain for the moments (w?7_,) of
Fy_1(w)

2w’
(w%«f—l> = 2wc%7 (w?\r’—1> = 3HYN (4. 14)
which gives
T (w%v_l>3:|1/2
= 4.15
™12 [ (0h) (+.15)
(w?v_1>J“2 \
w, = \/5[— . 4.16
(@%-1) ( )

Expressing (@7 _,) in terms of the coefficients 8, we obtain

T Oy
= ="\ 30442 4.17
YN =3 /""121 /—6N+1 w N+2 ( )

The validity of approximation (4.13) requires yy << @,, which means (w3_,)/
(wh_1)*>1, or

O << On a1 (4.18)

If we step down in order to calculate 7, we will not get the value given by (4.17)
for yy. Thus to use the N-pole approximation first we should have 8, << dx., and
this shows that we can use this kind of cut off only at the Nth stage. The method
is not convergent in the sense that if we use a N+ 1 pole approximation in
general 8., is not large compared to d,.; and the approximation fails. It has
already been noted in the literature that results obtained by progressively
terminating the continued fraction by an exponential have not lead to a
progressively improved shape [55, 58]. Second, we should use the correct 7y,
as given by (4.17), to be consistent with our boundary conditions:
(wn—1)/{wx_1)>> 1. Therefore if 8;,,>> 8,,, we can use a Lorentzian form for
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E,(z). This will be a good approximation for small w. However if F(w) has a side
peak at w = w,, the region of validity of the approximation should be sufficiently
large to include this peak, this is, from (4.17) we obtain w, <V390;,,. This
condition is equivalent to the condition already mentioned that the N-poles of
Z(z) should lie, in the complex plane, within a semi-circle of radius 7.

With regard to higher order 6’s we see that equation (4.13) is equivalent to

. <
FN(w)z{YN) |ZI—(1)C

4.19
0; |z| > w,. ( )

But (4.19) is the square function defined in (3.6) for which éx.,,= 8y, so that
the N + 1 pole approximation to Z(z) would fail because the condition &y, >
On+1 IS not satisfied.

In conclusion, the validity of the N-pole approximation requires not only that
On < On4q but also that d,.,,; be of the same order as &y.,. If these conditions
are met we can use the cut-off Z,(z) = yy, at the nth stage, with y, given by
(4.17).

Pires and Franco [59] have applied the theory discussed in this section to
calculate the neutron scattering cross section in the magnetic compound
(CH;),NM,Cl;, obtaining a good agreement with experimental data.

5. Low temperature approximation

The inverse Laplace transform of (2.14) is given by

‘%:(t)=—fo ¢(1)E(t — 1) dT, (5.1)
where
_ s = _A(2), f)
#(0)= 0,20 = (5.2)
and
fi(£) =" PLi(1 — P)LA. (5.3)

As we have seen (5.1) is exact, and hence only a formal identity with the equation
of motion for the many body system. The memory function ¢(¢) contains the
modified propagator exp [it(1 — P)L] and its study would involve solving the
many body problem directly. To obtain useful results we then have to introduce
approximations, as we have already seen.

In this section we discuss an approximation that can be used when the
Hamiltonian of a many-body system can be written as

H=H,+V, (5.4)

as 1s frequently the case at low temperatures. In (5.4) H, is an approximation to
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H, for instance the Random Phase Approximation (RPA) Hamiltonian, and V is
the part of H not contained in H,,.

To approximate ¢(f) a systematic approach would be to apply standard
perturbative methods. This provides a consistent evaluation of ¢(f) to a given
order of perturbation of the Hamiltonian V. For instance, in the weak-coupling
approximation, the modified propagator exp [it(1 — P)L] is replaced by the free
propagator exp [it(1 — P)L,] = exp [itL,] where L,=i[H,, .]. Let D =(1 - P)LA,
then

¢(t)=(D(1), D)(A, A)™' (3.5)
where now D(t) = exp [itL,]D. This gives for the Fourier transform ¢(w)

_ ,—Bw —[SE?

L —& e
P(@)="—"—2 1D, oo~ E)) —

(A, A)~". (5.6)

where Ej=E]—E}, D,;=(i|D|j) is the matrix element between RPA modes
and Z is the partition function. Note that we suppose that we can solve H,
exactly. The above formalism leads rather naturally to an extension of the
zero-temperature RPA for finite temperatures, and it provides a prescription for
the calculation of the damping width of the RPA modes. An approximation of
this kind was used by Ayik [60] to study relaxation process in nuclear collisions at
finite temperatures.

We can also go one step further and approximate the modified propagator in
the calculation of the second order memory function

2,(1) = —(QL?A, e “CLQI2A)(LA, LA)™ (5.7)

where Q =1 — P. Higher order approximations becomes increasingly difficult to
perform. We show this kind of approximation with an example.

Let us consider the classical one dimensional antiferromagnet described by
the Hamiltonian

H= %2 J(q)gq - §—q’ (5-8)
q

where J(g) =2J cos g, and g is in units of the lattice parameter. The spins in the
spherical coordinates are given by

Sy =(—1)"S sin 6, cos 7,
S =(—1)"Ssin 0, sin 1, (5.9)
S:z=(—-1)"Scos 6,

The (—1)" factor is present because, at low temperatures, the spins are almost
antiferromagnetically aligned. At low temperatures, the spins are ordered
antiferromagnetically for distances less than a correlation length. Although
strictly speaking spin-wave theory is applicable to systems which are almost
completely polarized we can use an extension of the method for one dimensional
systems in which there is a well developed local order. Following Reiter [61], and
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De Raedt et al [62], we can calculate correlation functions of operators that are
combined in rotationally invariant quantities involving spins located within a
distance much less than a coherence length. To get the correct isotropic result in
the spin wave formalism we could then choose an arbitrary direction for the
magnetization but we should calculate, for instance, (§5%,) (¢ =x,y, z), add
the three correlation functions and divide by 3, since X, (S55%,) is rotationally
invariant. Having this in mind we introduce the coordinates

Y, =x/2-0,, $,=7T,— T (5.10)

where t is arbitrarily chosen and W, is taken in a way so that the ground state
corresponds to the spin in the XY plane. Substituting (5.9) and (5.10) into
Hamiltonian (5.8), and expanding in W, and ¢, we obtain, after performing a
Fourier transformation of ¥, and ¢,,,

Ho=3 3 16(@)0,9—, + d(g)¥rm ¥ (5.11)

where
b(q) =2JS(1 —cosq)

(5.12)
d(q)=2JS(1+ cos q).

In this approximation the one-dimensional system (5.8) is analogous to the
anharmonic magnon system. Performing the canonical transformation

P, = a(q)(a; +a_,)

5.13
o =1iB(q)a; —a_,), -8
where
1 d(q) 1/4 1 b(q) 1/4
@ =750+ P50 (5.14)

and a, and a®, are the magnon creation and annihilation operators, we find the
harmonic Hamiltonian

Hy= 2 o(q)(n, +3), (5.15)
where
0*(q) = b(q)d(q) = 4J°5*(1 — cos’ q), (5.16)

is the characteristic frequency and n, =a_a, is the usual occupation number.

q%yq
Using the comutation relation [a,, aZ,]|= 0, and inserting the Hamiltonian

(5.15) into the equation of motion for operators a, and a,; we easily obtain

Bo(1) = @(g)[e Va5 (0) + e Wa_,(0)]

W, (1) =iB(q)[e“a}(0) — e " Da_(0)]. (5.17)
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To proceed we write the second order memory function (5.7) as

Ex(t) = —M,(t)(LS%, LSY)™! (5.18)

M, (t) = (QL?S}, e "CH2'QL2SY), (5.19)
whose expansion in powers of ¢ is

0= 3 SO ous;, (eLoors; (5.20)

Considering each coefficient separately we can expand each of them in a
temperature series. Reiter and Sj6lander [63] have shown that all but the first
terms in this temperature series contribute to order 77 in (5.20) and that keeping
only the lowest-order contribution is equivalent to omitting the Q operators in the
time evolution. With this simplication we have

M, (t) =(QL?S}, e "™ QL*S3) + O(T?) (5.21)

where M,(f) needs to be evaluated to lowest non vanishing order in temperature.
The essential gain obtained with this approximation is that we can use H, to
calculate (5.21). To calculate QLS we use Hamiltonian (5.8) finding

QL*S; = L’S; — (w?), S} (5.22)

where the second moment (w®) is equal to w?*(g) at the lowest order in
temperature and

LZS; == E 5q|+qrz+qs-q F(ql , ;]2’ qs) [521822‘95]1 - Sélszzséil’ (523)
where |
[(q1, 92, 93) = [V(q — q2) = J(q) [V (g5) — T (q1)]
+[J(g — q3) = J(g)][/(q2) — T(q.)]. (5.24)

An expansion in the normal coordinates ¢, and W, gives

QLZS; = S; [f(k)lp(q*/z)+kq’(q*fz)—k + g(k)¢(q*/2)+k¢(q*/2)—k] , (5.25)
where

f(k)= &zsz{cosz—g— (1 cos’ g) + sin g cos k(l + sin Z cos k)} (5.26)

g(k) = 4]252{c0s2% (1 —cosq)+ 2sin % cos k(l + sin % cos k)}, (5.27)

and
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The evaluation of E,(¢) is straightforward. The time evolution e~ is

replaced by the harmonic time evolution specified by (5.17) and the expectation
values are taken using the harmonic Hamiltonian (45). The final expression is

M) =~ 2T (560, 0~ g, K0P cos @2
+ [s(g, k) + t(g, k)]* cos (Q_1)} (5.28)
where
s(g, k)= {sinzg (1+cosq)+2cosk cosg (1 + cos k cos %)}
X [1+cos (k+%)]m[1+cos (k—%)]m, (5.29)
t(q, k)= {sinzg(l +cosq) —2cosk cos—;z (1 — cos k cos g—)}
X [1—cos (k +q/2)]""?[1 — cos (k — q/2)]"?, (5.30)
Qi+ =2\fst{sin (g + %)[1 + cos (k + -Z—)J -
% sin (g—%)[1+cos (k——g)]m}. (5.31)

Equation (5.28) is a sum of N oscillatory terms. In the limit N — o the sum can be
replaced by an integral and we find
) _q-ll(glt)

2,(t) = -—8JST{sm > O + cos“%J(,(ta)} (5.32)
1

[x

Q,=4JS

sin—g-‘; Q, = 4JS

q
s 5.33
cosz‘ (5.33)

A system with a finite number of particles may have only a finite-dimensional
Hilbert space, and there will therefore be a 6, such that 8, =0, but the
dimensionality may grow with the number of particles, that is infinite in the
thermodynamic limit.

Equation (5.32) was obtained by Reiter and Sjdlander [63] without resorting
to a spin wave expansion, as we did here, and since these authors have discussed
extensively these results we add just one comment. For g =0, equation (5.32)
becomes

Z(t) = —8JSTI|(Qt), (5.34)
which gives

-8JS

2(z) = Vi o (5.35)
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and for g = 7 one has

J1(Q1)
E.(t)=—8IST——— 5.36
0 o (5.36)
and then
JST
=.(z) = — 892 VT -2), (5.37)
where Q = 4JS.
On account of the discussion of Section 3 we see that we have 8,=65=
c-=Qforg=0and 6;=08,=065="---=Q for g = . This is in agreement with

the low temperature calculations [12] of the parameters § for the Hamiltonian
(5.8).

We have chosen this example for its simplicity and because it has been
already studied in detail by Reiter and Sjolander [63] using a different approach.
However the method can also be applied to other models, such as anisotropic
Hamiltonians, magnetic chains in the presence of external fields, quantum
models, etc., where Reiter and Sjolander’s approach is not appropriate.

6. Conclusion

The problem of expanding the correlation function into continued fraction
was considered in the light of the Mori formalism. We have examined some of the
techniques available in the literature for terminating the continued fraction
expansion and shown how to use correctly each of them. We hope our paper can
be used as a guide to the reader interested in applying Mori’s method to study the
dynamics of physical problems.

The use of the memory function formalism for coupled operators can be
found, for instance in Ref. [64]. Extension of the method to treat non-Hermitian
case is found in Ref. [65].
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