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Thermodynamic quantities and the motion of
energy levels

By W.-H. Steeb, A. van Tonder, J. Louw and S. J. M. Brits

Department of Physics, Rand Afrikaans University
PO Box 524, Johannesburg 2000, South Africa

(12. XI. 1987, revised 26. I. 1988)

Abstract. From the eigenvalue equation Hk |^>„(A)) £„(A) \tp„(X)) where Hk H0 + XV one
can derive an autonomous system of first order differential equations for the eigenvalues E„(X) and
the matrix elements Vmn(X):= (tpm(K)\ V \if>„(X)) where A is the independent variable. Thus one finds
the 'motion' of the energy levels En(X). We discuss the dependence of the survival probability as well
as some thermodynamic quantities (free energy, entropy, specific heat) on A. This means we calculate
the differential equations which these quantities obey. An application is given. Then we derive the
equations of motion for the extended case Hk H0 + XV, + X2V2 and given an application to a
supersymmetric Hamiltonian.

1. Introduction

Let Hk H0 + XV be a Hamiltonian, where H0 is the unperturbed Hamiltonian

operator, V is the perturbation and A is the real coupling parameter
(0 < A < °°). in the following it is assumed that the hermitean operators HQ and V
are time-independent. Furthermore, it is assumed that the spectrum of Hk is

discrete and bounded from below. If the Hamiltonian Hk admits symmetries then
the underlying Hilbert space is decomposed into invariant subspaces so that the
eigenvalues are non-degenerate in these subspaces. It is assumed that there are
no accidental degeneracies.

Recently Pechukas [1] and Yukawa [2, 3] discussed the 'motion' of energy
levels E„(X) where A plays the rôle of the time. Let us assume that the
eigenfunctions are real orthogonal. Using the orthogonality relation

(xpm(X)\ip„(X)) ômn, (1)

the completeness relation

/ Sl^(A))<^„(A)|, (2)

dipn(X)
V-W 0 (3)

dX

and the assumptions described above, these authors derived the following
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autonomous systems of first order ordinary differential equations

dE" CA \
~dx=p" (4a)

-ÏÏT 2 2. t: =- (4b)
dX m(#n) -E« — £.

dVmn= y
"A kt¥=m,n)

VmkVkn[-T. —+ "
Vmn(Pm-Pn)

(4c)
.-fc.m £,^. __.„ £,£/

wherepn(A):=<Vn(A)|V|V„(A)) and Vmn(X):= (xpm(X)\ V \yn(X)) (m*n).
Pechukas [1] and Yukawa [2, 3] discussed the dynamical system (1) in

connection with quantum chaos (compare [4] and reference therein). Moreover,
Yukawa [3] showed that the system (4) admits a Lax representation and is

completely intégrable. Consequently, no chaotic behaviour can be expected for
system (4). Nakamura and Lakshmanan [5] gave the equations of motion for the
eigenfunctions, namely

d\Xpn) ^ Vm7 mn

dk m(¥=n) En
IVm> (5)

Steeb and van Tonder [6] discussed the connection with the perturbation theory
and considered the extended case Hk H0 + XXVX + X2V2. Steeb and Louw [7]
discussed energy dependent constants of motion for system (4). Let us mention
that Aizu [8] described the parameter differentiation of quantum mechanical
linear operators already 25 years ago. The results given above can be considered
as a straightforward application. Furthermore we mention that the system given
above is related to the generalized Calogero Moser system [5, 9].

First we describe the analytic perturbation of eigenvalues. Then we derive
the dependence of the survivial probability and of thermodynamic quantities on
A. Then we give an application. Finally we derive the equations of motion for the
eigenvalues of a supersymmetric Hamiltonian.

2. Analytic perturbation of eigenvalues

Let us consider the Hamiltonian

Hk H0 + XVX + X2V2 + ¦ ¦ ¦ + X"Vn. (6)

We assume that the Hamiltonian (6) acts in a finite dimensional Hilbert space ffl.
More generally, we may suppose that a Hamiltonian is given, which is holomorphic

in a given domain D0 of the complex A plane. The eigenvalues of Hk satisfy
the characteristic equation

det(//A-£) 0. (7)

This is an algebraic equation in A of degree dim "X, with coefficients which are
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holomorphic in A. It follows from function theory that the roots of equation (7)
are (branches of) analytic functions of A with only algebraic singularities. In other
words, the eigenvalues of equation (7) for A e D0 constitute one or several
branches of one or several analytic functions that have only algebraic singularities
inD0.

3. Survival probability and thermodynamic quantities

It is obvious that the quantities which are derived from the energy spectrum
also depend on A. We discuss now the 'time evolution' of the quantities:

(i) survival probability

P(t,X) \(xp(0)\ip(t,X))\2, (8)

where |i//(0)) is the initial state,

(ii) the Helmholtz free energy

F(ß, A) - hn "S exp (-ßE.(X)), (9)
P (=0

(iii) the entropy

(iv) the specific heat

cr^p. oi)
In this discussion we assume that we have a finite dimensional system, i.e., N

energy levels.
Since

\y>(t, X)) =exp[-iHkt/h]\xp(0)), (12)

we find
/v-i

IVC A)> 2 *m(A) exp [-iEm(X)t/h\ \<pm(X)), (13)
m=()

where we have used the expansion

IV(0)> t <xm(X) \<pm(X)). (14)
m=()

Consequently
/v-i

P(t, A) 2 cc2(X)a2(X) cos [(£,(A) - Ej(X))t/fi]. (15)
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We find the following equations for the 'evolution' of P(t, X) with respect to A (t
fixed)

dP -r, 2 T V akVjk
"TT 4 Jj aiaj 2jdX ; ;__n Li-r^/l E, — E/,i.y-0 ¦*(*/) Cj

cos [(E, - Ej)t/h]

where
1 S aìaì sin [(E; - E;)t/ft](p, -p/)
» i.;=o

^A t(#y) £y — £fr

(16)

(17)

Here we have used equation (5). These equations can be solved together with
system (4) to give the A-evolution of P.

For the thermodynamic quantities, free energy, entropy and specific heat we
find the equations of motion (ß fixed)

and

dF
dX

dS

dX

dC

(V),

ß2((H)(V)-(HV))

ß2(l + ß(H))((HV) - (H)(V)) + ß\(H2)(V) - (H2V))
dX

where, taking

Z:=2 exp (-/_*£,-),
1=0

we have put

{H): \\t E,exp(-ßEi)
£ i=0

{V)-\N'tPitxV(-ßEl)

(HV): ^t EiP,cxp(-ßEi)
£• .=0

(H2): CtlE2exp(-ßE,)
£ i=0

(H2V): ^t E2Plexp(-ßEi)
£ i=0

and S S/k and C= Ck. Equations (18) through (20), together with system (1),
form an autonomous system of (nonlinear) first order ordinary differential
equations.

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)
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4. Example

First we notice that if we have a finite dimensional system with N energy
levels then the number of differential equations n is given by

n N + N + N(N - i)/2 m N(3/2 + N/2). (27)

In our first example the scaled Hamiltonian operator is given by the matrix
representation

1 A 0 0

A 2 2A 0

0 2A 3 A

0 0 A 4

H,= „ „, 1 (28)

This Hamiltonian operator admits no symmetry. We put H0 —diag(l,2,3,4)
where diag denotes that H0 is a diagonal matrix. Obviously the eigenvalues
of H0 are given by £„ 1» Ex 2, E2 3, E3 4. The eigenfunctions are the
standard basis in S.4, namely |Vo(0)> (1, 0, 0, 0)T, |t/»3(0)> (0, 0, 0, 1)T

(T denotes transpose). In order to solve the dynamical system (4) where N 4 we
have to determine the initial conditions. Since

V \n « .\ (29)

1 0 0

0 0 1

it is obvious that p0(0) =px(0) p2(0) =p3(0) 0 and V10(0) 1, V2o(0) 0,
V2l(0) 2, V30(0) 0, V31(0) 0, V32(0) 1. The number of differential equations
is n 14. Integrating the dynamical system (4) with these initial data we find that
E0(X) and EX(X) become smaller with increasing A and E2(X) and E3(X) become
larger with increasing A. This is called level repulsion. No level crossings occur.
Notice, however, that for large A only the interacting part plays a rôle. The
Hamiltonian Hk H0 + XV has the asymptotic form XV, so that in this region
eigenvalues are proportional to A, i.e., they dissipate in 'time'. This is not level
repulsion and should be distinguished from genuine repulsion.

Here we mention the classic theorem of von Neumann and Wigner [10]. This
theorem shows that real symmetric matrices (respectively Hermitian matrices)
with a multiple eigenvalue form a real algebraic variety of codimension 2

(respectively 3) in the space of all real symmetric matrices (respectively all
hermitian matrices). This implies the famous 'non-crossing rule' which asserts that
a 'generic' one parameter family of real symmetric matrices (or two-parameter
family of Hermitian matrices) contains no matrix with a multiple eigenvalue. Lax
[11] showed that in a three dimensional vector space of nxn symmetric matrices
the eigenvalues must cross if n 2 (mod4), i.e., the vector space must contain a

non-zero matrix with a multiple eigenvalue.
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Figure 1

Entropy as a function of A for various /?'s.

Notice further that the constants of motion are given by

X E0(X) 10
ta=0

3

S £m(A)£„(A) + 6A2 35
<n

2 Ek(X)Em(X)En(X) + 30X2 50

m<n
3

E0(X)EX(X)E2(X)E3(X) + 30A2 - A4 24.

(30a)

(30b)

(30c)

(30d)

where 10 Tr H (Tr denotes the trace). The technique to find these constants of
motion is described by Steeb and Louw [7].

In particular we are interested in the case where the entropy S(ß, X) takes
the maximal value as a function of A. Figure 1 shows the dependence of the

entropy on A for various ß's. For small temperatures (large ß) we expect from the
definition of S(ß, X) that only the lowest energy eigenvalues will play a significant
role in the behaviour of S. In fact we find that 5 attains a maximum where
Ex — E2 is smallest (see discussion below for a two level system). For large
temperatures (small ß) the higher energy levels also become important and the
behaviour of S becomes more difficult to analyze.

5. Two level system

Let us consider a two level system where the energy eigenvalues E0(X) and
EX(X) depend on a real parameter A. We assume that E0(X) < EX(X) for X 0.
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Now the partition function Z(A) is given by

Z(X) exp (~ßE0(X)) + exp (~ßEx(X)) (31)

Then for the Helmholtz free energy we find

F(X) E0(X) - - ln [1 + exp (-ßAE(X))} (32)

where

AE(X) EX(X)-E0(X). (33)

The entropy is given by equation (8). It follows that

f^n-pi-w^rS (34)

We are interested in finding the maximum of 5(A) as a function of A. From
dS(X)/dX 0 and equation (34) we obtain

ß2AE(X) exp (ßAE(X)) d(AE(X))
1 + exp (ßA(X)) dX

0 (35)

Let us first discuss the limiting case 7 0 and T^>oo. For T 0 we know that
S(T 0, X)/k 0 if E0(X) * EX(X) and S(T 0, X)/k ln 2 if E0(X) EX(X). For
T—»oo (ß_»o) we know that S(T^><*>)/k ln2. Therefore equation (35) is

satisfied identically in the limiting cases.
If T > 0 and ß > 0 then the condition (35) for the extremum of S(X) becomes« 0. (36)

The second derivative of 5 with respect to Â at any point where the condition (36)
is satisfied is given by

d2S(X)
_

ß2AE(X) exp (ßAE(X)) d2AE(X)
dX2 ~

[1 + exp (ßAE(X))]2 dX2 '
When AE(X) attains a minimum, 5(A) will attain a maximum, as long as AE(X)
remains positive.

6. Supersymmetric Hamiltonian

In some applications we also find different coupling within the interaction.
For example, let

Q: (b-X(b + tf)X (38)

be the generator of a supersymmetric Hamiltonian [12], where b and c are boson
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and fermion annihilation operators. Then the Hamiltonian is given by

Hk {Q, ßW (39)

where the braces denotes an anticommutator bracket. The Hamiltonian can be
written as Hk H0 + V where

H0 cW + bfb (40)

and

V -4Xctca + 2Xa - Xa2 + AV, (41)

where a 6T + b.

The equations of motion for the Hamiltonian

Hk H„ + XVx + X2V2 (42)

can be derived taking into account the assumptions described above. We find

-j£=pn + Xqn (43a)

d£n=2 V VlXVlmn + 2V2mn)

dX m(#„) En — Em

dq„ _ v V2nm(VXmn + 2XV2mn)
~n=2 Z f—f (43c)

dVXmn
_ y (V\mk +2XV2mk)Vjkn y (Ylkn + 2XV2k„)VXmk

dX kl*m,n) Em — Ek klikm.n) En — Ek

|

(Vimn + 2XV2mn)(pn-pm)

dV2mn
_ y (V\mk + 2kV2mk)V2k„ y (Vxkn +2XV2k„)V2mk

dX k(*m.n) Em — Ek *(#m,«) En — Ek

iv\,nn + 2XV2mn)(q„ - qm)

E-EM-'m L-In

where pn(X)--(y„(X\Vx\ipn(X)) and qn(X):=(ipn(X)\V2\y„(X)).
Equations (43a) through (43e) cannot be applied to the Hamiltonian (39)

since energy levels are degenerate. A basis of the underlying Hilbert space is

given by

{|m)|0>;|m)ct|0);/n =0,1,2,...} (44)

where

\m): (m\)-m(bX\®)- (45)

The matrix representation of the unperturbed Hamiltonian H,x is given by
//o diag(0, 1, 1, 2, 2, In order to apply equations (43a) through (43d) we
have to decompose the Hilbert space owing to the symmetries. In the present
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case we find the invariant subspaces S1 {\m) |0)} and 52 {\m)ct |0)}. For the
subspace with basis Sx the matrix representation of H0 is given by H0

diag(0,1,2,. and for the subspace with the basis 52 we find H0
diag (1, 2, 3,. In these subspaces we can apply equations (43a) through (43d).
We have calculated the 'A evolution' of 100 energy levels of the infinite matrix
and taken into account the lowest 10 levels. For the range 0^A---0.5 no level
crossings occur in both subspaces.

7. Conclusions

Pechukas [1] and Yukawa [2, 3] have shown that the eigenvalues En(X) and
the matrix elements Vmn(X) for the Hamiltonian Hk- H0 + XV can be written as

an autonomous system of ordering differential equations (1) which admits a lax
representation. Nakamura and Lakshmanan [5] found the time-evolution for the
eigenfunctions \xpm(X)). We have shown that the 'time-evolution' of other
quantities can also be written as ordinary differential equations and can therefore
be included into system (4). Furthermore we have derived the equations of
motion for the extended case Hk H0 + XVX + X2V2 and applied to a super-
symmetric Hamiltonian. The system of ordinary differential equations for the
'time-evolution' of the eigenvalues and matrix elements has the advantage that
for all Hamiltonian operators of the form Hk H0 + XV with nondegenerate
eigenvalues we have the same equations of motion (4). Only the initial values
must be changed for different systems. The disadvantage is that the number of
equations increases very rapidly with increasing number of energy levels N.
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