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Diffraction et microscopie électroniques sur
des petits grains métalliques: Effets de taille.
I. Défauts et structures anormales
multimaclées dans l'or et le platine

ByC. Solliard et J.-P. Borel

Institut de Physique Expérimentale, Ecole Polytechnique Fédérale de Lausanne,
1015 Lausanne, Suisse

(9. II. 1988)

Abstract. Vacuum evaporated small particles of gold and platinum lying on an amorphous
carbon substrate are studied by both electron diffraction and transmission electron microscopy.
Precise powder electron diffraction patterns profiles are recorded in a scanning diffractograph, with
electrostatic filtering of diffracted beams and electron counting. The intensity profile from selected
rings of these electron diffraction patterns are analysed using a Fourier type method. Informations on
the size of the diffracting domains and on the existence of defects in the structure of the small particles
are obtained. They are compared with electron microscopy observations and size distribution
measurements. In the case of platinum, the particles are found to be monocrystalline over the full size

range investigated, 3.5 to 11 nm. Gold behaves quite differently: in the limit of small sizes - down to
3 nm - our results are well explained by the presence of a high ratio of Multiply Twinned Particles
(MTP) in the samples. For the large size limit - up to 23 nm - measured structure defects contribution
to the shape of diffraction peaks is understood in terms of a constant twinning probability per unii
volume.

I. Introduction

L'apparition de propriétés nouvelles de la matière lorsqu'on la divise en
particules de plus en plus fines est l'objet de nombreux travaux, car elle présente
un intérêt tant du point de vue fondamental (domaine intermédiaire entre la
physique de l'atome et la physique du solide massif), que du point de vue
technologique (catalyse par example). Nous présentons ici les résultats d'une
étude combinant la microscopie et la diffraction électroniques sur des échantillons
constitués de petits grains d'or et de platine dont la taille varie entre 3 et 20 nm;
cette étude concerne essentiellement un effet de taille thermodynamique
(modification du facteur Debye-Waller dans l'or), et un effet de taille structurel.
La diffraction électronique, de par l'efficacité de l'interaction électron-matière,
permet d'analyser des échantillons de très faible volume, caractérisés dans notre
cas par le fait que les grains sont totalement séparés les uns des autres sur leur
support. Le nombre de grains englobés dans le faisceau du diffractographe est de
l'orde de 109 et la figure de diffraction, constituée d'une suite d'anneaux
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concentriques, a un profil d'intensité typique de la figure 1. En admettant qu'il est

possible de séparer les pics de diffraction les uns des autres, trois paramètres
pourront être mesurés sur chacun d'eux [1]:

(i) La position d'un pic correspondant à une réflexion de Bragg {h, k, 1} est
directement liée à la distance entre les plans atomiques {h, k, /}. Notons
que l'ordre de succession des réflexions donne une information sur la
structure cristallographique, structure c.f.c. (cubique à faces centrées)
sur la figure 1. Les mesures que nous avons faites sur l'or et le platine et

pour la réflexion {2,2, 0} mettent en évidence une diminution de la
maille cristalline lorsque la taille des grains diminue. Ces résultats sont
présentés dans la référence [2].

(ii) L'intensité intégrée (surface) d'un pic, ou plus exactement sa variation
en fonction de la température est liée aux propriétés vibrationnelles des

atomes dans un petit grain, propriétés que nous décrivons, dans le cas
de l'or, à l'aide du facteur Debye-Waller dans l'article ci-après (réf. [3],
notée II dans la suite).

(iii) La forme du profil d'intensité d'un pic (analyse de Fourier) donne des

renseignements supplémentaires sur la structure cristallographique, plus
particulièrement sur la présence de défauts ou de déformations du
réseau cristallin. Cette analyse, que nous avons menée comparativement
sur l'or et le platine fait l'objet du présent article.

Le choix de l'or, qui est l'objet commun à ces trois chapitres, est dicté
principalement par le fait que ce métal est facile à préparer sous forme de petits
grains (par evaporation sous vide), qu'il ne s'oxyde pas, et enfin que sa faible
énergie de macie (1.5 x 10~2J m~2, soit 1% de l'énergie moyenne de surface [4])
favorise l'apparition pour les plus petits grains de structures anormales du type
Multiply Twinned Particles (M.T.P. [5]). Quant au platine, il possède sous forme
massive la même structure cristallographique que l'or, mais son énergie de macie

plus élevée (3.75 xlO~2Jm~2 représentant 5.5% de l'énergie moyenne de

surface [4]) rend moins favorable l'existence de ce type de défaut; nous verrons
plus loin que la structure monocristalline c.f.c. subsiste pour ce métal jusque vers
les plus petites tailles. La comparaison entre l'or et le platine est par conséquent
spécialement intéressante dans le cadre de l'analyse de la forme des pics de

diffraction.

II. Echantillons

Les échantillons sont préparés par evaporation sous vide (10~6mbar) et
condensation de la vapeur métallique sur un film mince (10-15 nm) de carbone
déposé sur une grille de microscopie électronique. L'évaporation est suivie d'un
recuit de formation d'une durée d'environ quatre heures, à une température de
650°C dans le cas de l'or et de 850°C pour le platine. Les échantillons obtenus par
cette méthode présentent une forte densité de particules: entre 3x10" cm-2
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pour les échantillons de grande taille moyenne et 2 x IO12 cm-2 pour ceux de

petite taille moyenne. Les grains métalliques sont bien séparés les uns des autres
sur le support et ont une forme quasi-sphérique ainsi que le montrent les

observations de microscopie électronique pratiquées sur un échantillon fortement
incliné (45°).

Nous caractérisons les échantillons par leur distribution de taille obtenue à

partir des micrographies électroniques (Philips EM300 avec étage haute
résolution) à l'aide d'un Analyseur Quantitatif d'Image (Quantimet 720). Nous
définissons la valeur de la taille d'un échantillon comme étant le maximum de la

distribution de 'volume' v des particules dont il est constitué: v(D)<x D3n(D), où
«(D) nombre de particules de 'diamètre' D; ce choix correspond au fait que
l'intensité intégrée d'un pic de diffraction est, dans le cadre de la théorie
cinématique, proportionnelle au volume diffractant (pour une argumentation plus
complète, voir réf. [1] page 173). La taille des échantillons produits varie de 3 à

23 nm pour l'or et de 3.5 à 11 nm dans le cas du platine.

III. Théorie

Dans le formalisme développé par Warren [7, 8], chaque cristal composant
une poudre est considéré comme la juxtaposition de colonnes de cellules
élémentaires perpendiculaires au plan réflecteur envisagé. La distribution radiale
de l'intensité diffusée par unité de longueur de l'anneau de diffraction (profil de

raie) s'exprime alors comme une fonction pseudo-périodique du paramètre de

diffraction 5 :

I(s) NK(s) 2 {An cos (2nnsô) + Bn sin (2nnsô)}

avec s 2 sin 0/A, 0 angle entre faisceau incident et plan réflecteur, A

longueur d'onde des électrons, N nombre de cellules dans un cristal et
ô distance interplanaire ou distance harmonique.

Le facteur K(s), proportionnel à F2(s)/s2, est une fonction lentement
variable d'un bord à l'autre du pic de diffraction, et il est facile d'en tenir compte
à partir des valeurs tabulées du facteur de diffusion électronique F(s) [9]. Les
coefficients de Fourier A„ et B„ se décomposent sous forme du produit d'une
contribution due à la taille finie des cristaux (indépendante de l'ordre de la
réflexion) et d'une contribution due aux distorsions ou défauts du réseau cristallin
(qui dépend de l'ordre de la réflexion).

A. Cas où seul l'effet de taille intervient

Les coefficients de Fourier se réduisent à:

An=^T, B„=0
N3
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où N„ est la moyenne, prise sur toutes les colonnes, du nombre de paires de
cellules séparées par n cellules et N3 la moyenne, également sur toutes les

colonnes, du nombre de cellules dans une colonne.
Les coefficients An se calculent pour chaque réflexion de Bragg et pour

différentes formes géométriques des grains [10,1]. L'analyse de Fourier des pics
de diffraction donne alors accès aux informations suivantes:

(i) La somme des coefficients de Fourier est égale à la moyenne volumique
des longueurs (exprimées en nombre de cellules) des colonnes
perpendiculaires au plan réflecteur; son produit avec la distance harmonique ô

donne la taille apparente L que l'on trouve dans la fameuse relation de
Scherrer [11,10]:

ZK

ô S AJA0 L =1/AINT où
« — »

aint ¦ tA a
surface du pic

A largeur intégrée —- (1)5 6 hauteur

généralement utilisée sous la forme:

ir
dimension des cristaux ttu= (2)

où K est une constante de forme,
(ii) La dérivée à l'origine des coefficients de Fourier est égale au signe près

à la moyenne numérique des longueurs des colonnes; nous noterons

dA„
dn

N (3)
n=0

Le rapport L/N est caractéristique de la forme extérieure du cristal
(pour une sphère L/N 1.125 pour un tétraèdre, L/N 1.5).

(iii) La dérivée seconde des coefficients de Fourier donne la distribution des

longueurs des colonnes:

d2An
2 a probabilité de trouver une colonne contenant n cellules

dans le cristal

Remarquons que jusqu'ici, nous nous sommes limités au cas où tous les
cristaux d'une poudre ont la même taille. Quel sera alors l'influence de la

dispersion des tailles que l'on rencontre dans un échantillon réel? Une étude
détaillée basée sur les distributions de taille mesurées sur nos échantillons nous a

permis de tirer deux conclusions [1]:

(i) La distribution de taille tend à uniformiser la distribution des longueurs
des colonnes, initialement très typique de la forme des cristaux.

(ii) Du point de vue de L et de N, tout se passe comme si l'échantillon
contenait des cristaux d'une seule taille, égale à la taille la plus probable
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de la distribution volumique v(D). C'est ce qui justifie notre choix de la
définition du 'diamètre' d'un échantillon.

B. Cas où le réseau n'est pas parfait

Lorsque le réseau cristallin contient des défauts ou des déformations locales,
les coefficients de Fourier sont atténués par un facteur multiplicatif qui dépend du

type et de l'intensité des déformations. L'élargissement supplémentaire des pics
qui en résulte se convolue avec l'élargissement dû à la taille finie des cristaux. On
entrevoit alors les difficultés qui apparaissent dans l'analyse de Fourier d'un pic
mesuré pour séparer les deux effets, sans introduire des hypothèses très sévères.
Warren [12, 7] a montré que dans certains cas, l'analyse de plusieurs ordres (au
minimum 3) d'une réflexion donnée permet de séparer les deux effets. Cette
méthode est basée sur le fait que l'élargissement dû à la taille finie est

indépendant de l'ordre de la réflexion, contrairement à l'élargissement dû aux
imperfections du réseau cristallin; elle donne de bons résultats dans le cadre de
l'étude de certains alliages écrouis [13,14] mais n'est malheureusement pas
applicable à nos échantillons. L'élargissement dû à la taille étant à la base déjà
important, il est très difficile de trouver des pics de diffraction suffisamment isolés

pour que l'analyse de leur forme ait un sens. En particulier pour un réseau c.f.c,
le deuxième ou troisième ordre des réflexions tombe toujours près d'une autre
réflexion, et les ordres supérieurs sont trop peu intenses en diffraction
électronique.

Le fait que notre étude porte sur des échantillons de tailles variées et
connues à priori nous a cependant permis de tirer des renseignements sur les

imperfections du réseau en divisant l'analyse des formes de raies en deux
domaines limites:

- limite des grandes tailles: l'effet des défauts et des déformations domine
car pour un cristal de dimension infinie la largeur des pics est nulle si le cristal est
parfait.

- limite des petites tailles: l'élargissement dû à la taille finie des cristaux
domine.

IV. Appareillage expérimental

Pour les mesures par diffraction électronique, nous avons utilisé un
diffractographe à balayage tout spécialement conçu dans le but d'enregistrer les

intensités diffractées avec une grande précision (comptage d'électrons) et une
haute résolution angulaire. La densité de courant du faisceau d'électrons de
40 keV a été maintenue à moins de 5 x 10~5 A cm-2 au niveau de l'échantillon,
évitant ainsi tout échauffement notable des particules par absorption. Un filtrage
électrostatique [15] élimine des faisceaux diffractés tous les électrons ayant perdu
plus de 2 eV dans leur interaction avec l'échantillon, réduisant ainsi sensiblement
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le fond dû au film de carbone et éliminant la contribution des électrons
inélastiques à la largeur des pics. La détection des électrons diffractés, leur
comptage avec compensation tant des fluctuations de l'intensité du faisceau
incident que des variations de la transparence de la grille-support, ainsi que
l'acquisition des données ont été décrits ailleurs [16].

Une canne de transfert à azote gazeux alliée à un échangeur de chaleur nous
ont permis de faire varier la température de l'échantillon entre 100 K et 700 K.
L'échangeur, au cœur duquel se trouve l'échantillon, est entouré par une piège
anticontamination à azote liquide: de ce fait, le vide dans la région de
l'échantillon est meilleur que IO"7 mbar.

Tous les résultats présentés dans cet article ont été obtenus à 173 K,
température qui constitue un compromis entre une forte intensité des pics (voir
II) et un faible taux de contamination. L'analyse numérique des raies de
diffraction a été accomplie sur un calculateur HP9830 couplé à un ordinateur
CDCCYBER 170/720. La première étape de ce traitement consistait à soustraire
le fond dû au film de carbone enregistré sur chaque échantillon dans une zone
libre de tout dépôt métallique.

Y. Résultats et discussion

L'application de la méthode de Fourier décrite au §111 pose quelques
problèmes techniques liés au fait qu'une grande partie de l'information
intéressante est déduite de la forme des queues des pics de diffraction [17]; c'est
précisément le relevé de ces queues qui est le plus sujet à erreur, et ceci pour
plusieurs raisons: la faible intensité électronique, le chevauchement entre pics
voisins, et la présence d'un fond continu (diffusion du film de carbone et diffusion
thermique continue).

La figure 1 montre clairement que dans le domaine de taille où nous nous
situons, seul le pic {2,2, 0} est vraiment isolé; c'est pourquoi nous avons limité
notre analyse à cette réflexion. Pour les plus gros échantillons (taille supérieure à

10 nm), nous avons également pris en compte la réflexion {4,4,0}, intéressante
en tant que deuxième ordre de la réflexion {2, 2, 0}.

Nous avons déjà mentionné la soustraction du fond continu dû au carbone;
pour chaque pic, nous soustrayons en plus un fond linéaire, qui représente la
contribution de la diffusion thermique continue, de telle manière que les queues
du pic tombent à zéro. Le fait de fixer arbitrairement un domaine borné en
dehors duquel les intensités diffractées sont nulles revient à couper les queues des

pics qui théoriquement s'étendent à l'infini, ce qui introduit des oscillations dans
la transformée de Fourier; il en résulte également une erreur de troncature: la
surface des pics est toujours sous-estimée.

La dernière opération avant l'obtention du profil d'intensité expérimental
vrai est la déconvolution de la fonction instrument, que nous opérons suivant la
méthode de Stokes [18].
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I KHzO,-.
Or bbnm...m

-100

50

10 x Platine 5.5nm

S s _______ [nm"1] 12

Figure 1

Comparaison entre les figures de diffraction obtenues pour un échantillon d'or et un échantillon de

platine de tailles similaires. Le fond dû au film de carbone supportant les particules a été soustrait.
L'intensité I(s) est exprimée en nombre d'électrons reçus par le détecteur par seconde (kHz).
Température de l'échantillon: 173 K; Energie filtrée à 2eV.

A. Cas du platine

1. Analyse de Fourier complète. Nous nous fixons dans ce paragraphe sur un
échantillon donné de diamètre D 6.4nm, dont le comportement est

représentatif de l'ensemble des échantillons de platine; le profil des intensités
mesurées pour le pic {2,2,0} est donné à la figure 2 (courbe (1'))- Le bruit
statistique entachant la mesure des intensités introduit dans la transformée de

Fourier des composantes haute fréquence difficilement séparables des

composantes intrinsèques du pic sans bruit [19]. Nous avons atténué ces composantes

a

12.2,0}

-20

slnml 7.6 7.2 6.8

Figure 2
Réflexion {2,2,0} d'un échantillon de platine de 6.4 nm. (1'): profil des intensités diffractées
mesurées par le détecteur. (1): profil après déconvolution de la fonction instrument. (I): fonction
Pearson ajustée sur le profil déconvolué.
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en procédant à un lissage du deuxième degré avant le calcul des coefficients de

Fourier (le pic lissé n'est pas représenté sur la figure 2). Après déconvolution de
la fonction instrument, nous obtenons le profil définitif (1). Quant au profil (/), il
représente une fonction du type Pearson, ajustée au sens des moindres carrés sur
le profil (1); cette fonction, comportant 4 paramètres ajustables, est de la forme
[20,21]:

(s-s0):
I(s) I0\l +

ma

Lorsque m varie de 1 à l'infini, elle prend toutes les formes intermédiaires entre
une Lorentzienne et une Gaussienne.

Sur la figure 3a), nous avons représenté les coefficients de Fourier A^ et Bnl)
du pic (1) par des points (+ et ° respectivement) et ceux A^ de la Pearson par une
courbe continue. Comme le laissait prévoir la qualité de l'approximation par une
Pearson, les coefficients ßJW sont petits vis-à-vis des A^: le pic de diffraction est

quasi-symétrique.
La taille apparente, calculée à partir des A^ à l'aide de la relation (1) vaut

d An

Q

\ ft
AAn

m \dn
n-O

-
(b)p(n)

dn

12 nô [nm]

0 / 2 8 10 12 nô[nm]

Figure 3

Analyse de Fourier du pic de la figure 2: réflexion {2, 2,0} pour un échantillon de platine de 6.4 nm.
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L 5 nm. La longueur moyenne des colonnes N est donnée directement par
l'abscisse à l'origine de la tangente en n 0 des A^ (relation (3)). Pour cette
tangente, nous pourrions prendre la droite passant pas les points A^ et Axx); cela
n'est néanmoins pas possible, car visiblement le coefficient A^ est trop petit,
résultat de l'erreur de troncature des queues des pics [22, 23], De fait, la dérivée
seconde des A„ ne peut, par définition, être négative. Etant donné qu'en
première approximation les An varient linéairement avec n, nous prenons comme
tangente en n 0 une droite ajustée sur les premiers A(J\ excepté AtfK Nous
obtenons dans notre exemple .V 3.9nm. Le même procédé de calcul donne,
pour la Pearson, des valeurs très proches, respectivement L 5.2nm et N
3.9 nm.

Les difficultés apparues dans le calcul de la dérivée première sont insurmontables

dans le cas de la dérivée seconde d2A')/)/dn2: elle est négative pour n < 5,

puis oscille très fortement; telle quelle, elle ne donne aucune information fiable.
La source de ces difficultés réside dans le fait que, même si l'intensité I(s) est très
petite loin du centre du pic, le produit s2I(s) peut lui ne pas être négligeable [17].
Ainsi, les queues des pics de diffraction, d'autant plus difficiles à mesurer que les

grains sont petits, revêtent une importance capitale pour la détermination de la
distribution des longueurs des colonnes.

C'est dans le but de résoudre ce problème d'oscillations de la dérivée
seconde que nous avons ajusté une fonction du type Pearson sur le pic de
diffraction. Ce type d'approche a été fait par Zhao [24] dans le cas plus restrictif
d'un pic gaussien ou lorentzien, et sans comparaison avec l'expérience. Nous
donnons la distribution des longueurs des colonnes d2A(J)/dn2 obtenues pour la
Pearson à la figure 3b). Nous la comparons avec la distribution 'réelle' p(n); nous
avons établi cette dernière à partir de la distribution de taille donnée par la

microscopie électronique, et en faisant l'hypothèse que les grains sont des
cubooctaèdres à faces (1,1,1) hexagonales régulières (ce choix n'est d'ailleurs
pas crucial tant que l'on se restreint à des formes compactes, voir [1], figure
VI.5). Bien que l'accord entre les deux distributions ne soit pas parfait, la figure
3b) montre que la méthode consistant à remplacer le pic réel par une fonction
analytique pourrait présenter un intérêt certain dans les cas où l'analyse de taille
par microscopie électronique est impossible (grains dispersés dans une matrice
par exemple). Une étude plus poussée quant au choix de la fonction serait alors
souhaitable. On notera en particulier que la distribution obtenue à partir de la
Pearson est négative pour n < 5, ce qui montre que cette fonction ne peut décrire
de manière tout à fait fidèle la forme d'un pic de diffraction.

Nous avons jusqu'ici fait implicitement l'hypothèse que la forme des pics de
diffraction ne résulte que d'un effet de taille pur. Nous justifions cette hypothèse
dans le paragraphe suivant.

2. Largeur intégrée. Le paramètre de forme le plus simple à mesurer sur un
pic de diffraction est sa largeur intégrée AINT (voir relation (1) ci-dessus). Les
valeurs que nous obtenons dans le cas du platine sont représentées en fonction de
l'inverse du diamètre des échantillons à la figure 4. Nous avons tracé sur ce
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Figure 4

Largeurs intégrées des pics {2,2,0} du platine, représentées en fonction de l'inverse de la taille des
échantillons.

graphique une 'droite de Scherrer' d'équation AINT= 1, 3/D; le choix de la pente
de cette droite est basé sur le fait qu'à volume donné

V nD3/6

et pour la réflexion {2,2,0}, on a D/L 1,3, aussi bien pour la sphère, le cube,
le cubooctaèdre à faces (1,1,1) hexagonales et le cubooctaèdre à faces (1,1,1)
triangulaires. Ces deux derniers polyèdres sont deux formes d'équilibre (cristal de

Wulff) possibles pour un monocristal c.f.c. Nous constatons que pour les plus gros
échantillons, les points expérimentaux sont bien groupés autour de la droite de
Scherrer. Lorsqu'on passe aux plus petits échantillons, les largeurs intégrées
tendent à s'écarter de plus en plus de cette droite, par valeurs inférieures. Cela
provient en partie du fait que plus les grains sont petits, plus les pics sont étendus
et plus la soustraction du fond continu tend à sous-estimer leur surface,
phénomène qui apparaissait sous une autre forme dans l'analyse de Fourier (voir
ci-dessus).

Compte tenu de cette remarque, le fait essentiel qui ressort de la figure 4 est

Table 1

D[nm] AINT (220) [nm-1! AINT (440) [nm-i]

10.6 0.133 0.128

9 0.169 0.175

8.3 0.177 0.174
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que lorsque D tend vers l'infini, la largeur des pics tend vers une valeur proche de
zéro. Nous en déduisons que les éventuels défauts ou déformations du réseau
cristallin contribuent faiblement à l'élargissement. Afin de confirmer ce résultat,
nous avons mesuré la largeur du deuxième ordre de la réflexion {2, 2, 0} soit le
pic {4,4,0}, en nous limitant aux échantillons de taille supérieure à 8nm pour
lesquels cette mesure a encore un sens. La table 1 montre clairement que AINT est

indépendant de l'ordre de la réflexion et ne résulte par conséquent que de la taille
finie des grains.

En conclusion, nous pouvons caractériser nos échantillons de platine de la
manière suivante:

- Ils sont monocristallins, puisque la taille des domaines cohérents (au sens
de la diffraction), déduite de la largeur des pics de diffraction, concorde avec la
taille mesurée par microscopie électronique. Cela signifie en particulier qu'ils ne
contiennent pas de défauts d'empilement du type macie. Ce caractère monocristallin

a également été observé dans le cas d'échantillons préparés par voie
chimique [25,29]. Les observations récentes en Microscopie Electronique à

Haute Résolution (HREM) montrent que des grains de très petite taille ne
contenant que cinq à dix plans (1,1,1) conservent la structure du platine massif
et sont toujours monocristallins [26-28]. La figure 5 met en évidence l'absence de
toute rupture caractéristique des macles dans l'empilement des plans atomiques.
Cette microg'raphie a été obtenue par la technique du faisceau incliné (microscope

Hitachi H-700 à 200 kV) sur un échantillon préparé par réduction d'une
solution acqueuse de HPtCl6. Les conditions de croissance des grains ainsi
préparés sont très différentes de celles de l'évaporation sous vide utilisée pour la
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Figure 5

Visualisation des plans atomiques à l'intérieur de grains de platine fabriqués par voie chimique.
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fabrication de nos échantillons. Néanmoins, ces particules obtenues par voie
chimique ont une structure en parfait accord avec nos mesures de largeur de raie
de diffraction.

- Leur réseau cristallin est proche d'un réseau parfait dans le sens où la

moyenne des déformations locales n'apporte pas de contribution visible à

l'élargissement des pics de diffraction.

B. Cas de l'or

Comme le montre la figure 6, le comportement de la largeur intégrée du pic
{2,2, 0} en fonction de l'inverse de la taille des échantillons est notablement
différent de celui du platine. A taille égale, la largeur intégrée est nettement plus
grande pour l'or; d'autre part, elle tend vers une valeur finie, notée AiNT, lorsque
D—»°°. Cet élargissement 'résiduel' ne peut être dû qu'à des imperfections du
réseau cristallin. La largeur totale A1NT résulte par conséquent de la convolution
de l'élargissement dû à la taille, A]NT .i^/D (voir relation (2)) et de

l'élargissement dû aux imperfections du réseau A^T ALNT. Il est généralement
admis que le premier effet est du type Cauchy et le deuxième de type Gaussien.
AINT est alors donné en bonne approximation par [30, 31]:

AINT 0,5[AfT + {(AJNT)2 + 4(A^NT)2}1/2]

La courbe (a) de la figure 6 ajustée sur les points expérimentaux au sens des

moindres carrés obéit à cette équation; on a alors:

ALN1 1.47 xlO"1 nm" K 1.65

La droite d'équation AINT= 1.65/D décrit l'effet de taille seul. Remarquons que
la valeur de 1.65 constitute certainement une borne inférieure pour K puisque, de

1000AINT[nm-1]

2 -

INT

3 1000/D[nm_1]

Figure 6

Largeurs intégrées des pics {2,2,0} de l'or, représentées en fonction de l'inverse de la taille des
échantillons.



724 C. Solliard et J.-P. Borel H. P. A.
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Figure 7

Longueur moyenne des colonnes d'atomes de direction du type (2, 2, 0) dans les grains d'or, en
fonction du diamètre des échantillons.

manière encore plus marquée que pour le platine, plus les grains sont petits et
plus nous sous-estimons la surface des pics.

En présence de plusieurs contributions à l'élargissement des pics de

diffraction, il est clair que le N défini par la relation (3) ne garde son sens de

longueur moyenne des colonnes que si l'effet de taille domine. C'est pourquoi
nous appellerons NeS le N mesuré. En nous limitant aux tailles inférieures à

10 nm, et en imposant NeB 0 lorsque D 0, nous avons alors NeB 0.314D
(figure 7). Pour les tailles supérieures à environ 10 nm, NeB ne varie plus
proportionnellement avec le diamètre D des échantillons.

1. Domaine des petites tailles. Nous pouvons résumer le cas où l'effet de

taille domine par les relations A]NT 1.65/D et A^ 0.314D établies plus haut.
Dans le cas de grains monocristallins de forme sphérique, on aurait A]NT

4/3D"1 et N 2/3D (page 167 de [1]). En restant dans l'hypothèse de la forme
sphérique, nous arrivons alors à la conclusion que les grains constituant nos
échantillons ne sont pas monocristallins; ils sont composés de plusieurs 'sous-

grains' juxtaposés, de taille 1.24 fois (évaluation d'après A]NT) ou 2.12 fois (calcul
d'après N) plus petite que le diamètre D mesuré par microscopie électronique.
Ces deux valeurs délimitent une fourchette assez large: le rapport entre le volume
des grains et celui des sous-grains qui les constituent serait d'environ deux dans le

premier cas, et d'environ dix dans le deuxième cas. Cette incohérence entre les

résultats obtenus pour AINT et pour Nef! n'est en fait qu'apparente, comme nous
le montrons ci-dessous.



Vol. 61, 1988 Diffraction sur des petits grains métalliques—/ 725

Nous ne pourrions guère avancer plus dans la discussion sans les informations

complémentaires apportées par la microscopie électronique. Les
micrographies électroniques montrent qu'une forte proportion des grains (80% [32])
présentent des contrastes internes, typiques de macles, de formes triangulaires ou
rhombohèdriques. De nombreux travaux (pour les références, voir par exemple
le chap. Ili de [1]) ont montré que ces contrastes proviennent de structures
résultant de l'assemblage de tétraèdres c.f.c. (déformés ou non) en position de
macie les uns par rapport aux autres (structures multimaclées, M.T.P.). Un
empilement particulièrement compacte et remarquable quant à la stabilité
thermodynamique [6] est l'icosaèdre, constitué de 20 tétraèdres ayant un sommet
commun.

Sur la base de ces observations, nous proposons alors le modèle suivant: un
échantillon est constitué d'un mélange de monocristaux sphériques de diamètre
D, en proportion (1 - K), et de cristaux tétraèdriques, de volume 20 fois plus
petit que le volume des cristaux sphériques, ce qui correspond à une structure
icosaédrique. Nous calculons alors les deux grandeurs qui nous sont accessibles

expérimentalement, la taille apparente L et la longueur moyenne des colonnes N.
Les résultats que nous obtenons sont représentés graphiquement sur la figure 8 en
fonction de la proportion K des tétraèdres. Le fait à relever sur ce graphique est
la valeur inhabituellement élevée du rapport L/N lorsque K est compris entre
0.85 et 1. Ce comportement explique l'apparente divergence que nous avions
notée entre les valeurs 1.24 et 2.12 obtenues en première analyse pour le rapport
entre taille des grains et taille des sous-grains (on avait alors L/N =1.93). En

L7N

L7D 1.8

N7D

0.8 ¦1.6L7D

— spheres

0.6 ¦1.4

0.4 1.2

\.
1.00.2 i 1 1 1 1 1 1 i

0.2 0.4 0.6 0.8 1.0

Figure 8

Résultats du calcul de L et de N dans le cadre du modèle sphères/tétraèdres.
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effet, nous avons reporté les droites d'équation AINT 1/L(D, K) pour
quelques valeurs de K sur la figure 6 (droites en traitillés). Nous constatons que
l'effet de taille observé correspond à une proportion de tétraèdres de 91%. Selon
le même principe, les droites en traitillés sur la figure 7 indiquent une valeur de K
égale à 95%, très proche de la précédente.

Finalement, à partir de deux paramètres de forme, la largeur intégrée et la
dérivée à l'origine des coefficients de Fourier, nous avons mis en évidence deux
caractéristiques des échantillons d'or:

(1) En forte proportion, les grains qui les constituent sont polycristallins.
(2) Le modèle sphères/tétraèdres, suggéré par les micrographies

électroniques, rend bien compte du comportement de L et de N. Dans
ce modèle simple, nous avons omis les relations géométriques existant
entre deux tétraèdres appartenant à un même édifice.

2. Limite des grandes tailles. Lorsque la taille des échantillons devient très
grande, la largeur intégrée tend vers une valeur limite ALNT. Parallèlement, /Vcff

atteint un plafond N"^ qui se situe aux environs de 2.7 nm. Ce comportement ne
peut provenir que d'imperfections du réseau cristallin, que nous classerons en 3

catégories:

(i) Les déformations uniformes: En particulier pour les structures
multimaclées du type décaèdre ou icosaèdre, l'empilement de 5,
respectivement 20 tétraèdres ne "remplit" pas l'espace. Le défaut de
fermeture subsistant entre les tétraèdres pourrait alors être comblé par
une déformation uniforme du réseau c.f.c. de chaque tétraèdre [5,33-
35] ou, ce qui revient au même, le réseau passerait de la structure c.f.c.
à une structure orthorhombique centrée (décaèdre) respectivement
rhomboédrique (icosaèdre) [36]. Une telle déformation produirait alors
un dédoublement des pics de diffraction. En ce qui concerne le pic
{2,2,0}, il se verrait accompagné de deux pics satellites qui devraient
commencer à se détacher du pic habituel à partir d'une taille d'environ
8nm [1]. Or nous n'avons en aucun cas observé l'apparition des ces
raies supplémentaires; nous pouvons donc exclure l'existence de ce type
de déformation pour les échantillons concernés (nous ne pouvons
malheureusement pas conclure en ce qui concerne les échantillons de
taille inférieure à environ 8nm).

(ii) Les déformations non-uniformes: comme dans le cas du platine, nous
n'avons pas mesuré de différence notable entre les largeurs des pics
{2,2,0} et {4,4,0}. De telles déformations, si elles existent, ne
représentent par conséquent qu'une faible contribution à la valeur
élevée de AiNT.

(iii) Les macles: seule leur existence peut expliquer le comportement de
AINT et Ncfi lorsque D—>*>. Un cristal divisé en deux par une macie se

comporte normalement pour certaines réflexions (plans cris-
tallographiques communs aux deux sous-grains) et comme deux parties
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indépendantes pour les autres: l'élargissement produit par les macles est
du type 'effet de taille', donc indépendant de l'ordre de réflexion.

L'effet d'une macie est de diminuer la taille apparente, et c'est d'ailleurs ainsi

que nous avons interprété les résultats dans le domaine des petites tailles.
Cependant, le fait que AINT ne tende pas vers zéro lorsque D—»<*> signifie que
pour les gros cristaux, la dimension des sous-grains n'est plus proportionnelle à la
dimension extérieure du cristal, mais tend vers une limite. En d'autres termes,
lorsque D augmente au-dessus d'un certain seuil, le nombre de macles augmente
aussi. Warren [12, 7] a étudié théoriquement ce problème en considérant une
répartition aléatoire des macles dans l'échantillon; si ß est la probabilité de

maclage, c'est-à-dire l'inverse du nombre moyen de macles entre deux plans
{1,1,1}, la longueur moyenne effective des colonnes Nett est inférieure au N
correspondant à la dimension 'vraie' des cristaux. On a, pour la réflexion
{2,2,0}:

-^g -= + —^t- a0 maille de l'or 0.40784 nm

Avec

lim Nefl N\f s2.7nm

nous avons ß 1/4.7, soit une distance moyenne entre les macles d'environ
4.7 x a0/y3 1.11 nm. La figure 9 illustre la structure complexe des gros cristaux
d'or; certains d'entre eux comportent peu ou pas de défauts (notés A). D'autres
présentent de nombreux plans de macles parallèles (notés B), et enfin la majorité
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Figure 9
Echantillon d'or de 'grande taille': D =23.2nm.
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d'entre eux présentent des contrastes triangulaires caractéristiques d'empilements
polytétraèdriques. Il est difficile, à partir d'une telle micrographie, d'estimer une
distance moyenne entre les macles: il semble cependant que la valeur de 1.11 nm
obtenue ci-dessus soit trop petite. Cela résulte probablement de l'hypothèse faite
par Warren selon laquelle, au sein d'un cristal, les macles sont toutes parallèles,
ce qui n'est visiblement pas le cas ici. Revenons alors au modèle d'un mélange de
sphères (cristaux non macles) et de tétraèdres (sous-grains dans les cristaux
macles). Avec 7Vff 2.7nm et #. 0.95, nous avons (traitillé sur la figure 7)
D 8.4 nm, soit F arête d'un tétraèdre 5 nm. (Rappelons que le volume du
tétraèdre est pris égal au vingtième du volume de la sphère). De même (traitillé
sur la figure 6), avec ALNT 2.2 X 10_1 nm-1 (moyenne des 4 plus gros
échantillons) et K 0.91, nous aurons D 7.5 nm, soit F 4.5 nm. Ces valeurs,
considérées comme ordre de grandeur pour la 'distance moyenne entre les

macles', sont, au vu de la figure 9, tout à fait raisonnables. Il est clair cependant
que le modèle sphères/tétraèdres ne peut décrire que de manière très approximative

les échantillons de grande taille; en particulier, l'hypothèse fixant le volume
des tétraèdres au vingtième du volume des sphères n'est plus justifiée: la forme
oblongue des édifices polytétraèdriques visibles sur la figure 9 est assez éloignée
de l'apparence d'un icosaèdre.

3. Conclusions. La représentation graphique de la largeur intégrée des pics
de diffraction et de la longueur moyenne des colonnes d'atomes dans les grains
pour des échantillons de tailles variées montre que les grains ne sont pas
monocristallins et plus précisément qu'ils contiennent des macles.

(i) Dans la limite des petites tailles, la dimension des sous-grains est

proportionnelle à la dimension extérieure des grains. Nous parlerons de
domaine des structures homothétiques. Le modèle sphères/tétraèdres
permet d'estimer à 90-95% la proportion des tétraèdres.

(ii) Dans la limite des grandes tailles, la dimension des sous-grains tend vers
une valeur limite indépendante de la taille des échantillons. Nous
parlerons de domaine des structures maclées aléatoires.

Le fait que les échantillons que nous avons étudiés aient subi un recuit de
formation joue certainement un rôle important dans ces résultats. Pour les petites
tailles, l'influence de la surface des grains est prépondérante en ce qui concerne
leur stabilité thermodynamique: les structures homothétiques (icosaèdre ou
décaèdre) présentent à l'extérieur des plans (1,1,1) de faible énergie
superficielle. Ino [6] a montré dans le cas de l'icosaèdre que ce gain d'énergie de
surface est favorable vis-à-vis de l'énergie de macie et de l'énergie de déformation
élastique (déformation des tétraèdres pour combler le défaut de fermeture)
jusqu'à une taille limite de stabilité de 10.6 nm pour l'or.

Dans le domaine des grandes tailles, deux phénomènes au moins interviennent:

d'une part certains grains résultent de la coagulation de deux grains plus
petits, ce qui aboutit à des structures polytétraèdriques complexes, et d'autre
part, lors de la croissance d'un grain, il existe une certaine probabilité de faute
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d'empilement dans la séquence des plans {1,1,1}, probabilité inversement
proportionnelle à l'énergie de faute d'empilement.

La transition entre structures homothétiques et structures maclées aléatoires
se situe dans une fourchette assez large, comprise entre 8 nm et 12 nm environ
(voir figures 6 et 7). A notre sens, cela montre que le calcul de Ino, bien qu'il soit
basé sur un modèle purement mécanique, donne une bonne estimation de la
limite de stabilité de la structure icosaèdrique, tout au moins dans le cas de l'or.
Une étude expérimentale plus poussée de ce problème est difficile, car au départ
il n'est déjà pas possible d'assurer qu'un échantillon est à l'équilibre
thermodynamique. La croissance des grains métalliques en l'absence de tout support et
de toute adsorption gazeuse, réalisable par la technique des jets moléculaires,
permettra sans doute d'avancer dans ce domaine.
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