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Diffraction et microscopie €lectroniques sur
des petits grains métalliques: Effets de taille.
I. Défauts et structures anormales
multimaclées dans ’or et le platine

By C. Solliard et J.-P. Borel

Institut de Physique Expérimentale, Ecole Polytechnique Fédérale de Lausanne,
1015 Lausanne, Suisse

(9. TI. 1988)

Abstract. Vacuum evaporated small particles of gold and platinum lying on an amorphous
carbon substrate are studied by both electron diffraction and transmission electron microscopy.
Precise powder electron diffraction patterns profiles are recorded in a scanning diffractograph, with
electrostatic filtering of diffracted beams and electron counting. The intensity profile from selected
rings of these electron diffraction patterns are analysed using a Fourier type method. Informations on
the size of the diffracting domains and on the existence of defects in the structure of the small particles
are obtained. They are compared with electron microscopy observations and size distribution
measurements. In the case of platinum, the particles are found to be monocrystalline over the full size
range investigated, 3.5 to 11 nm. Gold behaves quite differently: in the limit of small sizes — down to
3 nm - our results are well explained by the presence of a high ratio of Multiply Twinned Particles
(MTP) in the samples. For the large size limit — up to 23 nm — measured structure defects contribution
to the shape of diffraction peaks is understood in terms of a constant twinning probability per unit
volume.

I. lntroduétion

L’apparition de propriétés nouvelles de la matiére lorsqu’on la divise en
particules de plus en plus fines est I’objet de nombreux travaux, car elle présente
un intérét tant du point de vue fondamental (domaine intermédiaire entre la
physique de l'atome et la physique du solide massif), que du point de vue
technologique (catalyse par example). Nous présentons ici les résultats d’une
étude combinant la microscopie et la diffraction électroniques sur des échantillons
constitués de petits grains d’or et de platine dont la taille varie entre 3 et 20 nm;
cette étude concerne essenticllement un effet de taille thermodynamique
(modification du facteur Debye—Waller dans I’or), et un effet de taille structurel.
La diffraction électronique, de par l'efficacité de I'interaction électron-matiére,
permet d’analyser des échantillons de trés faible volume, caractérisés dans notre
cas par le fait que les grains sont totalement séparés les uns des autres sur leur
support. Le nombre de grains englobés dans le faisceau du diffractographe est de
lorde de 10° et la figure de diffraction, constituée d’une suite d’anneaux
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concentriques, a un profil d’intensité typique de la figure 1. En admettant qu’il est
possible de séparer les pics de diffraction les uns des autres, trois parameétres
pourront €tre mesurés sur chacun d’eux [1]:

(i) La position d’un pic correspondant & une réflexion de Bragg {h, k, [} est
directement liée a la distance entre les plans atomiques {A, k, {}. Notons
que l'ordre de succession des réflexions donne une information sur la
structure cristallographique, structure c.f.c. (cubique & faces centrées)
sur la figure 1. Les mesures que nous avons faites sur I’or et le platine et
pour la réflexion {2,2,0} mettent en évidence une diminution de la
maille cristalline lorsque la taille des grains diminue. Ces résultats sont
présentés dans la référence [2].

(ii) L’intensité intégrée (surface) d’un pic, ou plus exactement sa variation
en fonction de la température est liée aux propriétés vibrationnelles des
atomes dans un petit grain, propriétés que nous décrivons, dans le cas
de ’or, a I'aide du facteur Debye—Waller dans ’article ci-apres (réf. 3],
notée II dans la suite).

(iii) La forme du profil d’intensité d’un pic (analyse de Fourier) donne des
renseignements supplémentaires sur la structure cristallographique, plus
particulierement sur la présence de défauts ou de déformations du
réseau cristallin. Cette analyse, que nous avons menée comparativement
sur 'or et le platine fait 'objet du présent article.

Le choix de l'or, qui est 'objet commun a ces trois chapitres, est dicté
principalement par le fait que ce métal est facile a préparer sous forme de petits
grains (par évaporation sous vide), qu’il ne s’oxyde pas, et enfin que sa faible
énergie de macle (1.5 x 107>J m™2, soit 1% de 1’énergie moyenne de surface [4])
favorise 1'apparition pour les plus petits grains de structures anormales du type
Multiply Twinned Particles (M.T.P. [5]). Quant au platine, il posséde sous forme
massive la méme structure cristallographique que 1’or, mais son énergie de macle
plus élevée (3.75 x107*Jm™° représentant 5.5% de I’énergic moyenne de
surface [4]) rend moins favorable I’existence de ce type de défaut; nous verrons
plus loin que la structure monocristalline c.f.c. subsiste pour ce métal jusque vers
les plus petites tailles. La comparaison entre I'or et le platine est par conséquent
spécialement intéressante dans le cadre de l'analyse de la forme des pics de
diffraction.

II. Echantillons

Les échantillons sont préparés par évaporation sous vide (107°mbar) et
condensation de la vapeur métallique sur un film mince (10-15nm) de carbone
déposé sur une grille de microscopie électronique. L’évaporation est suivie d’un
recuit de formation d’'une durée d’environ quatre heures, a une température de
650°C dans le cas de 'or et de 850°C pour le platine. Les échantillons obtenus par
cette méthode présentent une forte densité de particules: entre 3 X 10" em™
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pour les échantillons de grande taille moyenne et 2 x 10">cm™2 pour ceux de
petite taille moyenne. Les grains métalliques sont bien séparés les uns des autres
sur le support et ont une forme quasi-sphérique ainsi que le montrent les
observations de microscopie électronique pratiquées sur un échantillon fortement
incliné (45°).

Nous caractérisons les échantillons par leur distribution de taille obtenue a
partir des micrographies électroniques (Philips EM300 avec étage haute
résolution) a I'aide d’'un Analyseur Quantitatif d’Image (Quantimet 720). Nous
définissons la valeur de la taille d’un échantillon comme étant le maximum de la
distribution de ‘volume’ v des particules dont il est constitué: v(D) x Dn(D), ol
n(D) = nombre de particules de ‘diamétre’ D; ce choix correspond au fait que
'intensité intégrée d’un pic de diffraction est, dans le cadre de la théorie
cinématique, proportionnelle au volume diffractant (pour une argumentation plus
compléte, voir réf. [1] page 173). La taille des échantillons produits varie de 3 a
23 nm pour l'or et de 3.5 a 11 nm dans le cas du platine.

III. Théorie

Dans le formalisme développé par Warren [7, 8], chaque cristal composant
une poudre est considéré comme la juxtaposition de colonnes de cellules
élémentaires perpendiculaires au plan réflecteur envisagé. La distribution radiale
de l'intensité diffusée par unité de longueur de I’anneau de diffraction (profil de
raie) s’exprime alors comme une fonction pseudo-périodique du parametre de
diffraction s:

I(s)=NK(s) D, {A, cos(2wnsd) + B, sin (2nnsd))
i
avec s =2sin /A, 6 =angle entre faisceau incident et plan réflecteur, A=
longueur d’onde des électrons, N =nombre de cellules dans un cristal et
0 = distance interplanaire ou distance harmonique.

Le facteur K(s), proportionnel a F?(s)/s*, est une fonction lentement
variable d’un bord a 'autre du pic de diffraction, et il est facile d’en tenir compte
a partir des valeurs tabulées du facteur de diffusion électronique F(s) [9]. Les
coefficients de Fourier A, et B, se décomposent sous forme du produit d’une
contribution due a la taille finie des cristaux (indépendante de l'ordre de la
réflexion) et d’une contribution due aux distorsions ou défauts du réseau cristallin
(qui dépend de I'ordre de la réflexion).

A. Cas ou seul I’effet de taille intervient

Les coefficients de Fourier se réduisent a:

N,
- B,=0

Anz—y
Ny
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ou N, est la moyenne, prise sur toutes les colonnes, du nombre de paires de
cellules séparées par n cellules et N; la moyenne, également sur toutes les
colonnes, du nombre de cellules dans une colonne.

Les coefficients A, se calculent pour chaque réflexion de Bragg et pour
différentes formes géométriques des grains [10, 1]. L’analyse de Fourier des pics
de diffraction donne alors accés aux informations suivantes:

(i) La somme des coefficients de Fourier est égale a la moyenne volumique
des longueurs (exprimées en nombre de cellules) des colonnes perpen-
diculaires au plan réflecteur; son produit avec la distance harmonique 6

donne la taille apparente L que ’on trouve dans la fameuse relation de
Scherrer [11, 10]:

5 > A,/Ay=L=1/A"T ou

n=—x

surface du pic

A™T = largeur intégrée = 1
5 & hauteur 1)
généralement utilisée sous la forme:
: : : _ K
dimension des cristaux = AINT (2)

ou K est une constante de forme.
(ii) La dérivée a 'origine des coefficients de Fourier est égale au signe pres
a la moyenne numérique des longueurs des colonnes; nous noterons
dA,
dn n=0

=)

iy 3)

Le rapport L/N est caractéristique de la forme extérieure du cristal
(pour une sphére L/N = 1.125 pour un tetragdre, L/N = 1.5).
(iii) La dérivée seconde des coefficients de Fourier donne la distribution des
longueurs des colonnes:
d*A, -y
>- < probabilité de trouver une colonne contenant n cellules
dans le cristal

Remarquons que jusqu’ici, nous nous sommes limités au cas ou tous les
cristaux d’une poudre ont la méme taille. Quel sera alors I'influence de la
dispersion des tailles que 'on rencontre dans un échantillon réel? Une étude
détaillée basée sur les distributions de taille mesurées sur nos échantillons nous a
permis de tirer deux conclusions [1]:

(i) La distribution de taille tend a uniformiser la distribution des longueurs
des colonnes, initialement tres typique de la forme des cristaux.

(i) Du point de vue de L et de N, tout se passe comme si I’échantillon
contenait des cristaux d’une seule taille, égale a la taille la plus probable
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de la distribution volumique v(D). C’est ce qui justifie notre choix de la
définition du ‘diamétre’ d’un échantillon.

B. Cas ou le réseau n’est pas parfait

Lorsque le réseau cristallin contient des défauts ou des déformations locales,
les coefficients de Fourier sont atténués par un facteur multiplicatif qui dépend du
type et de I'intensité des déformations. L’élargissement supplémentaire des pics
qui en résulte se convolue avec I’élargissement di a la taille finie des cristaux. On
entrevoit alors les difficultés qui apparaissent dans I’analyse de Fourier d’un pic
mesuré pour séparer les deux effets, sans introduire des hypothéses trés sévéres.
Warren [12, 7] a montré que dans certains cas, 1’analyse de plusieurs ordres (au
minimum 3) d’une réflexion donnée permet de séparer les deux effets. Cette
méthode est basée sur le fait que I’élargissement dii a la taille finie est
indépendant de 'ordre de la réflexion, contrairement a I’élargissement di aux
imperfections du réseau cristallin; elle donne de bons résultats dans le cadre de
I’étude de certains alliages écrouis [13, 14] mais n’est malheureusement pas
applicable a nos échantillons. L’élargissement di a la taille étant a la base déja
important, il est trés difficile de trouver des pics de diffraction suffisamment isolés
pour que I’analyse de leur forme ait un sens. En particulier pour un réseau c.f.c.,
le deuxieme ou troisieme ordre des réflexions tombe toujours prés d’une autre
réflexion, et les ordres supérieurs sont trop peu intenses en diffraction
électronique.

Le fait que notre étude porte sur des échantillons de tailles variées et
connues a priori nous a cependant permis de tirer des renseignements sur les
imperfections du réseau en divisant I’analyse des formes de raies en deux
domaines limites:

— limite des grandes tailles: I'effet des défauts et des déformations domine
car pour un cristal de dimension infinie la largeur des pics est nulle si le cristal est
parfait.

—limite des petites tailles: I’élargissement di a la taille finie des cristaux
domine.

IV. Appareillage expérimental

Pour les mesures par diffraction électronique, nous avons utilis€é un
diffractographe a balayage tout spécialement congu dans le but d’enregistrer les
intensités diffractées avec une grande précision (comptage d’électrons) et une
haute résolution angulaire. La densité de courant du faisceau d’électrons de
40 keV a été maintenue 2 moins de 5x 107> A cm™? au niveau de I’échantillon,
évitant ainsi tout échauffement notable des particules par absorption. Un filtrage
électrostatique [15] élimine des faisceaux diffractés tous les électrons ayant perdu
plus de 2 eV dans leur interaction avec I’échantillon, réduisant ainsi sensiblement
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le fond di au film de carbone et éliminant la contribution des électrons
in€lastiques a la largeur des pics. La détection des électrons diffractés, leur
comptage avec compensation tant des fluctuations de I'intensité du faisceau
incident que des variations de la transparence de la grille-support, ainsi que
I’acquisition des données ont été décrits ailleurs [16].

Une canne de transfert a azote gazeux alli€ée a un échangeur de chaleur nous
ont permis de faire varier la température de ’échantillon entre 100 K et 700 K.
L’échangeur, au cceur duquel se trouve I’échantillon, est entouré par une pieége
anticontamination a azote liquide: de ce fait, le vide dans la région de
I’échantillon est meilleur que 10™7 mbar.

Tous les résultats présentés dans cet article ont été obtenus a 173K,
température qui constitue un compromis entre une forte intensité des pics (voir
II) et un faible taux de contamination. L’analyse numérique des raies de
diffraction a été accomplie sur un calculateur HP9830 couplé a un ordinateur
CDCCYBER 170/720. La premiere étape de ce traitement consistait a soustraire
le fond di au film de carbone enregistré sur chaque échantillon dans une zone
libre de tout dépot métallique.

V. Résultats et discussion

L’application de la méthode de Fourier décrite au $III pose quelques
problemes techniques liés au fait qu’une grande partie de l'information
intéressante est déduite de la forme des queues des pics de diffraction [17]; c’est-
précisément le relevé de ces queues qui est le plus sujet a erreur, et ceci pour
plusieurs raisons: la faible intensité électronique, le chevauchement entre pics
voisins, et la présence d’un fond continu (diffusion du film de carbone et diffusion
thermique continue).

La figure 1 montre clairement que dans le domaine de taille ou nous nous
situons, seul le pic {2, 2, 0} est vraiment isolé; c’est pourquoi nous avons limité
notre analyse a cette réflexion. Pour les plus gros échantillons (taille supérieure a
10 nm), nous avons également pris en compte la réflexion {4, 4,0}, intéressante
en tant que deuxiéme ordre de la réflexion {2, 2, 0}.

Nous avons déja mentionné la soustraction du fond continu di au carbone;
pour chaque pic, nous soustrayons en plus un fond linéaire, qui représente la
contribution de la diffusion thermique continue, de telle maniére que les queues
du pic tombent a zéro. Le fait de fixer arbitrairement un domaine borné en
dehors duquel les intensités diffractées sont nulles revient a couper les queues des
pics qui théoriquement s’étendent a I'infini, ce qui introduit des oscillations dans
la transformée de Fourier; il en résulte également une erreur de troncature: la
surface des pics est toujours sous-estimée.

La derniere opération avant I'obtention du profil d’intensité expérimental
vral est la déconvolution de la fonction instrument, que nous opérons suivant la
méthode de Stokes [18].
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Figure 1

Cgmparaison entre les figures de diffraction obtenues pour un échantillon d’or et un échantillon de
platine de tailles similaires. Le fond dd au film de carbone supportant les particules a €té€ soustrait.
L’intensité I(s) est exprimée en nombre d'électrons regus par le détecteur par seconde (kHz).
Température de I’échantillon: 173 K; Energie filtrée a 2eV.

A. Cas du platine

1. Analyse de Fourier compléte. Nous nous fixons dans ce paragraphe sur un
échantillon donné de diametre D =6.4nm, dont le comportement est
représentatif de I’ensemble des échantillons de platine; le profil des intensités
mesurées pour le pic {2,2,0} est donné a la figure 2 (courbe (1')). Le bruit
statistique entachant la mesure des intensités introduit dans la transformée de
Fourier des composantes haute fréquence difficilement séparables des com-
posantes intrinséques du pic sans bruit [19]. Nous avons atténué ces composantes

——

!
T
&»
o

Intensité [KHZ]

!
T
N
o

— A

s[hmt 76 72 6.8

Figure 2
Réflexion {2,2,0} d’un échantillon de platine de 6.4nm. (1'): profil des intensités diffractées

mesurées par le détecteur. (1): profil aprés déconvolution de la fonction instrument. (I): fonction
Pearson ajustée sur le profil déconvolué.
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en procédant a un lissage du deuxieme degré avant le calcul des coefficients de
Fourier (le pic lissé n’est pas représenté sur la figure 2). Aprés déconvolution de
la fonction instrument, nous obtenons le profil définitif (1). Quant au profil (Z), il
représente une fonction du type Pearson, ajustée au sens des moindres carrés sur
le profil (1); cette fonction, comportant 4 paramétres ajustables, est de la forme
[20, 21]:

B (s —s50)*) "

I (S ) Io{l + maz }
Lorsque m varie de 1 a 'infini, elle prend toutes les formes intermédiaires entre
une Lorentzienne et une Gaussienne.

Sur la figure 3a), nous avons représenté les coefficients de Fourier A" et BY"
du pic (1) par des points (+ eterespectivement) et ceux AY” de la Pearson par une
courbe continue. Comme le laissait prévoir la qualité de ’approximation par une
Pearson, les coefficients B{" sont petits vis-a-vis des A": le pic de diffraction est
quasi-symétrique.

La taille apparente, calculée a partir des A{"” a I'aide de la relation (1) vaut

nd [nm])

T
nd [nm]

Figure 3
Analyse de Fourier du pic de la figure 2: réflexion {2, 2, 0} pour un échantillon de platine de 6.4 nm.
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L=5nm. La longueur moyenne des colonnes N est donnée directement par
Iabscisse a l'origine de la tangente en n =0 des A}" (relation (3)). Pour cette
tangente, nous pourrions prendre la droite passant pas les points A" et A{"; cela
n’est néanmoins pas possible, car visiblement le coefficient A{"” est trop petit,
résultat de 'erreur de troncature des queues des pics [22, 23]. De fait, la dérivée
seconde des A, ne peut, par définition, étre négative. Etant donné qu’en
premicre approximation les A, varient linéairement avec n, nous prenons comme
tangente en n =0 une droite ajustée sur les premiers A", excepté A§". Nous
obtenons dans notre exemple N=3.9nm. Le méme procédé de calcul donne,
pour la Pearson, des valeurs trés proches, respectivement L=35.2nm et N =
3.9 nm.

Les difficultés apparues dans le calcul de la dérivée premiere sont insurmon-
tables dans le cas de la dérivée seconde d*A."/dn*: elle est négative pour n <5,
puis oscille trés fortement; telle quelle, elle ne donne aucune information fiable.
La source de ces difficultés réside dans le fait que, méme si 'intensité I(s) est trés
petite loin du centre du pic, le produit s*/(s) peut lui ne pas étre négligeable [17].
Ainsi, les queues des pics de diffraction, d’autant plus difficiles a mesurer que les
grains sont petits, revétent une importance capitale pour la détermination de la
distribution des longueurs des colonnes.

C’est dans le but de résoudre ce probléme d’oscillations de la dérivée
seconde que nous avons ajusté une fonction du type Pearson sur le pic de
diffraction. Ce type d’approche a été fait par Zhao [24] dans le cas plus restrictif
d’'un pic gaussien ou lorentzien, et sans comparaison avec l'expérience. Nous
donnons la distribution des longueurs des colonnes d*A{’/dn* obtenues pour la
Pearson a la figure 3b). Nous la comparons avec la distribution ‘réelle’ p(n); nous
avons établi cette dernieére a partir de la distribution de taille donnée par la
microscopie €lectronique, et en faisant I’hypothése que les grains sont des
cubooctaedres a faces (1, 1, 1) hexagonales réguliéres (ce choix n’est d’ailleurs
pas crucial tant que I'on se restreint a des formes compactes, voir [1], figure
VI.5). Bien que I'accord entre les deux distributions ne soit pas parfait, la figure
3b) montre que la méthode consistant a remplacer le pic réel par une fonction
analytique pourrait présenter un intérét certain dans les cas ol I'analyse de taille
par microscopie €lectronique est impossible (grains dispersés dans une matrice
par exemple). Une étude plus poussée quant au choix de la fonction serait alors
souhaitable. On notera en particulier que la distribution obtenue a partir de la
Pearson est négative pour n <35, ce qui montre que cette fonction ne peut décrire
de maniere tout a fait fidele la forme d'un pic de diffraction.

Nous avons jusqu’ici fait implicitement I’hypothése que la forme des pics de
diffraction ne résulte que d’un effet de taille pur. Nous justifions cette hypothése
dans le paragraphe suivant.

2. Largeur intégrée. Le parametre de forme le plus simple 2 mesurer sur un
pic de diffraction est sa largeur intégrée A™" (voir relation (1) ci-dessus). Les
valeurs que nous obtenons dans le cas du platine sont représentées en fonction de
I'inverse du diamétre des échantillons a la figure 4. Nous avons tracé sur ce
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Figure 4
Largeurs intégrées des pics {2, 2,0} du platine, représentées en fonction de l'inverse de la taille des
échantillons.

graphique une ‘droite de Scherrer’ d’équation A™" =1, 3/D; le choix de la pente
de cette droite est basé€ sur le fait qu’a volume donné

V =nD3/6

et pour la réflexion {2, 2,0}, on a D/L =1,3, aussi bien pour la sphére, le cube,
le cubooctagdre a faces (1,1, 1) hexagonales et le cubooctaédre a faces (1,1, 1)
triangulaires. Ces deux derniers polyédres sont deux formes d’équilibre (cristal de
Wulff) possibles pour un monocristal c.f.c. Nous constatons que pour les plus gros
€chantillons, les points expérimentaux sont bien groupés autour de la droite de
Scherrer. Lorsqu’on passe aux plus petits échantillons, les largeurs intégrées
tendent a s’écarter de plus en plus de cette droite, par valeurs inférieures. Cela
provient en partie du fait que plus les grains sont petits, plus les pics sont étendus
et plus la soustraction du fond continu tend a sous-estimer leur surface,
phénomene qui apparaissait sous une autre forme dans I’analyse de Fourier (voir
ci-dessus).

Compte tenu de cette remarque, le fait essentiel qui ressort de la figure 4 est

Table 1
D [nm] AINT (220) [nm-1] AINT (440) [nm~1]:
10.6 0.133 0.128
9 0.169 0.175

8.3 0.177 0.174
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que lorsque D tend vers I'infini, la largeur des pics tend vers une valeur proche de
z€éro. Nous en déduisons que les éventuels défauts ou déformations du réseau
cristallin contribuent faiblement & I’élargissement. Afin de confirmer ce résultat,
nous avons mesuré la largeur du deuxiéme ordre de la réflexion {2, 2, 0} soit le
pic {4,4,0}, en nous limitant aux échantillons de taille supérieure 2 8 nm pour
lesquels cette mesure a encore un sens. La table 1 montre clairement que A™" est
indépendant de I'ordre de la réflexion et ne résulte par conséquent que de la taille
finie des grains.

En conclusion, nous pouvons caractériser nos échantillons de platine de la
maniére suivante:

— Ils sont monocristallins, puisque la taille des domaines cohérents (au sens
de la diffraction), déduite de la largeur des pics de diffraction, concorde avec la
taille mesurée par microscopie €lectronique. Cela signifie en particulier qu’ils ne
contiennent pas de défauts d’empilement du type macle. Ce caractére monocris-
tallin a également €té observé dans le cas d’échantillons préparés par voie
chimique [25,29]. Les observations récentes en Microscopie Electronique a
Haute Résolution (HREM) montrent que des grains de trés petite taille ne
contenant que cinq a dix plans (1, 1, 1) conservent la structure du platine massif
et sont toujours monocristallins [26—28]. La figure 5 met en évidence ’absence de
toute rupture caractéristique des macles dans I’empilement des plans atomiques.
Cette micrographie a été obtenue par la technique du faisceau incliné (micro-
scope Hitachi H-700 a 200 kV) sur un échantillon préparé par réduction d’une
solution acqueuse de HPtCls. Les conditions de croissance des grains ainsi
préparés sont tres différentes de celles de ’évaporation sous vide utilisée pour la

Figure 5
Visualisation des plans atomiques a I'intérieur de grains de platine fabriqués par voie chimique.
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fabrication de nos échantillons. Néanmoins, ces particules obtenues par voie
chimique ont une structure en parfait accord avec nos mesures de largeur de raie
de diffraction.

— Leur réseau cristallin est proche d’un réseau parfait dans le sens ou la
moyenne des déformations locales n’apporte pas de contribution visible a
I’élargissement des pics de diffraction.

B. Cas de l'or

Comme le montre la figure 6, le comportement de la largeur intégrée du pic
{2,2,0} en fonction de I'inverse de la taille des échantillons est notablement
différent de celui du platine. A taille égale, la largeur intégrée est nettement plus
grande pour l'or; d’autre part, elle tend vers une valeur finie, notée AL, lorsque
D — =, Cet élargissement ‘résiduel’ ne peut étre di qu’a des imperfections du
réseau cristallin. La largeur totale A™" résulte par conséquent de la convolution
de Délargissement di a la taille, AN"=K/D (voir relation (2)) et de
Iélargissement dii aux imperfections du réseau A}'" = AT, 11 est généralement
admis que le premier effet est du type Cauchy et le deuxiéme de type Gaussien.
A™T est alors donné en bonne approximation par [30, 31]:

AINT =~ O,S[AiNT e {(A!NT)Z 4 4(Ag\IT)2})/2]
La courbe (a) de la figure 6 ajustée sur les points expérimentaux au sens des
moindres carrés obéit a cette équation; on a alors:

ANT=1.47x10""'nm™" K=1.65

La droite d’équation A™" =1.65/D décrit I'effet de taille seul. Remarquons que
la valeur de 1.65 constitute certainement une borne inférieure pour K puisque, de

1000 A™ [nm"] ‘ &°
A
/ &
1 k
~
4
3 p
2 il
A4
1 §
0 } . } } &
0 1 2 3 1000/D[nm ']

Figure 6
Largeurs intégrées des pics {2,2,0} de I'or, représentées en fonction de I'inverse de la taille des
échantillons.
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} i

20 D [nm]

Figure 7
Longueur moyenne des colonnes d’atomes de direction du type (2,2,0) dans les grains d’or, en
fonction du diamétre des échantillons.

maniére encore plus marquée que pour le platine, plus les grains sont petits et
plus nous sous-estimons la surface des pics.

En présence de plusieurs contributions a 1'élargissement des pics de
diffraction, il est clair que le N défini par la relation (3) ne garde son sens de
longueur moyenne des colonnes que si I'effet de taille domine. C’est pourquoi
nous appellerons N°T le N mesuré. En nous limitant aux tailles inférieures a
10 nm, et en imposant N =0 iorsque D =0, nous avons alors N =0.314D
(figure 7). Pour les tailles supérieures a environ 10nm, N°® ne varie plus
proportionnellement avec le diametre D des échantillons.

1. Domaine des petites tailles. Nous pouvons résumer le cas ou l'effet de
taille domine par les relations ANT =1.65/D et N°"=0.314D établies plus haut.
Dans le cas de grains monocristallins de forme sphérique, on aurait AQN" =
4/3D" et N=2/3D (page 167 de [1]). En restant dans 'hypothése de la forme
sphérique, nous arrivons alors & la conclusion que les grains constituant nos
échantillons ne sont pas monocristallins; ils sont composés de plusieurs ‘sous-
grains’ juxtaposés, de taille 1.24 fois (évaluation d’aprés A]"") ou 2.12 fois (calcul
d’aprés N) plus petite que le diamétre D mesuré par microscopie électronique.
Ces deux valeurs délimitent une fourchette assez large: le rapport entre le volume
des grains et celui des sous-grains qui les constituent serait d’environ deux dans le
premier cas, et d’environ dix dans le deuxiéme cas. Cette incohérence entre les
résultats obtenus pour A™" et pour N°™ n’est en fait qu'apparente, comme nous
le montrons ci-dessous.
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Nous ne pourrions guére avancer plus dans la discussion sans les informa-
tions complémentaires apportées par la microscopie électronique. Les micro-
graphies électroniques montrent qu’une forte proportion des grains (80% [32])
présentent des contrastes internes, typiques de macles, de formes triangulaires ou
rhombohedriques. De nombreux travaux (pour les références, voir par exemple
le chap. III de [1]) ont montré que ces contrastes proviennent de structures
résultant de I'assemblage de tétraédres c.f.c. (déformés ou non) en position de
macle les uns par rapport aux autres (structures multimaclées, M.T.P.). Un
empilement particuliérement compacte et remarquable quant a la stabilité
thermodynamique [6] est I'icosaédre, constitué de 20 tétracdres ayant un sommet
commun.

Sur la base de ces observations, nous proposons alors le modéle suivant: un
échantillon est constitué d’un mélange de monocristaux sphériques de diametre
D, en proportion (1 —K), et de cristaux tétra¢driques, de volume 20 fois plus
petit que le volume des cristaux sphériques, ce qui correspond a une structure
icosaédrique. Nous calculons alors les deux grandeurs qui nous sont accessibles
expérimentalement, la taille apparente L et la longueur moyenne des colonnes N.
Les résultats que nous obtenons sont représentés graphiquement sur la figure 8 en
fonction de la proportion K des tétraedres. Le fait a relever sur ce graphique est
la valeur inhabituellement élevée du rapport L/N lorsque K est compris entre
0.85 et 1. Ce comportement explique 1’apparente divergence que nous avions
notée entre les valeurs 1.24 et 2.12 obtenues en premiére analyse pour le rapport
entre taille des grains et taille des sous-grains (on avait alors L/N =1.93). En

LY/ N°
A
L*/D 11.8
N°/D
A
08 T L/D L16
+ ~—sphéres
114
r 1.2
4 4 + $ $ 4 + ¢ + \ 1.0
0 0.2 0.4 0.6 08 10
K

Figure 8 _
Résultats du calcul de L et de N dans le cadre du modéle sphéres/tétraedres.



726 C. Solliard et J.-P. Borel H. P A.

effet, nous avons reporté les droites d’équation A™'=1/L(D, K) pour
quelques valeurs de K sur la figure 6 (droites en traitillés). Nous constatons que
I'effet de taille observé correspond a une proportion de tétra¢dres de 91%. Selon
le méme principe, les droites en traitillés sur la figure 7 indiquent une valeur de K
égale a 95%, tres proche de la précédente.

Finalement, a partir de deux parameétres de forme, la largeur intégrée et la
dérivée a l'origine des coefficients de Fourier, nous avons mis en évidence deux
caractéristiques des échantillons d’or:

(1) En forte proportion, les grains qui les constituent sont polycristallins.

(2) Le modele spheres/tétracdres, suggéré par les micrographies
électroniques, rend bien compte du comportement de L et de N. Dans
ce modele simple, nous avons omis les relations géométriques existant
entre deux tétraedres appartenant a un méme édifice.

2. Limite des grandes tailles. Lorsque la taille des échantillons devient trés
grande, la largeur intégrée tend vers une valeur limite AY'". Parallelement, N°"
atteint un plafond NS qui se situe aux environs de 2.7 nm. Ce comportement ne

peut provenir que d’imperfections du réseau cristallin, que nous classerons en 3
catégories:

(i) Les déformations uniformes: En particulier pour les structures
multimaclées du type décaédre ou icosaédre, I'empilement de S5,
respectivement 20 tétraedres ne “remplit” pas I’espace. Le défaut de
fermeture subsistant entre les tétracdres pourrait alors étre comblé par
une déformation uniforme du réseau c.f.c. de chaque tétraedre [5, 33—
35] ou, ce qui revient au méme, le réseau passerait de la structure c.f.c.
a une structure orthorhombique centrée (décaedre) respectivement
rhomboédrique (icosaeédre) [36]. Une telle déformation produirait alors
un dédoublement des pics de diffraction. En ce qui concerne le pic
{2,2,0}, il se verrait accompagné de deux pics satellites qui devraient
commencer a se détacher du pic habituel a partir d’une taille d’environ
8nm [1]. Or nous n’avons en aucun cas observé I'apparition des ces
raies supplémentaires; nous pouvons donc exclure I’existence de ce type
de déformation pour les échantillons concernés (nous ne pouvons
malheureusement pas conclure en ce qui concerne les échantillons de
taille inférieure a environ 8 nm).

(ii)) Les déformations non-uniformes: comme dans le cas du platine, nous
n’avons pas mesuré de différence notable entre les largeurs des pics
{2,2,0} et {4,4,0}. De telles déformations, si elles existent, ne
représentent par conséquent qu’une faible contribution a la valeur
élevée de AN,

(i11)) Les macles: seule leur existence peut expliquer le comportement de
A™T et N°" lorsque D — . Un cristal divisé en deux par une macle se
comporte normalement pour certaines réflexions (plans cris-
tallographiques communs aux deux sous-grains) et comme deux parties
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indépendantes pour les autres: I’élargissement produit par les macles est
du type ‘effet de taille’, donc indépendant de 'ordre de réflexion.

L’effet d’'une macle est de diminuer la taille apparente, et c’est d’ailleurs ainsi
que nous avons interprété les résultats dans le domaine des petites tailles.
Cependant, le fait que A™" ne tende pas vers zéro lorsque D — « signifie que
pour les gros cristaux, la dimension des sous-grains n’est plus proportionnelle a la
dimension extérieure du cristal, mais tend vers une limite. En d’autres termes,
lorsque D augmente au-dessus d’un certain seuil, le nombre de macles augmente
aussi. Warren [12,7] a étudié théoriquement ce probléme en considérant une
répartition aléatoire des macles dans I’échantillon; si B est la probabilité de
maclage, c’est-a-dire I'inverse du nombre moyen de macles entre deux plans
{1,1,1}, la longueur moyenne effective des colonnes N°¥ est inférieure au N

correspondant a la dimension ‘vraie’ des cristaux. On a, pour la réflexion
§2;2, 0}

1 1
W = N + aoi\/i a, = maille de I’or = 0.40784 nm

Avec

lim N*f= N¥=2.7nm

D—ox
nous avons B =1/4.7, soit une distance moyenne entre les macles d’environ
4.7 X ag/V3=1.11nm. La figure 9 illustre la structure complexe des gros cristaux
d’or; certains d’entre eux comportent peu ou pas de défauts (notés A). D’autres
présentent de nombreux plans de macles paralleles (notés B), et enfin la majorité

Figure 9
Echantillon d’or de ‘grande taille’: D =23.2 nm.
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d’entre eux présentent des contrastes triangulaires caractéristiques d’empilements
polytétraedriques. Il est difficile, & partir d’une telle micrographie, d’estimer une
distance moyenne entre les macles: il semble cependant que la valeur de 1.11 nm
obtenue ci-dessus soit trop petite. Cela résulte probablement de 'hypothese faite
par Warren selon laquelle, au sein d’un cristal, les macles sont toutes parall¢les,
ce qui n’est visiblement pas le cas ici. Revenons alors au modele d’un mélange de
sphéres (cristaux non maclés) et de tétraédres (sous-grains dans les cristaux
maclés). Avec N¥=2.7nm et K =0.95, nous avons (traitillé sur la figure 7)
D =8.4nm, soit T = aréte d’un tétraedre = 5 nm. (Rappelons que le volume du
tétraedre est pris égal au vingtieme du volume de la sphére). De méme (traitillé
sur la figure 6), avec ATT=22x10"'nm™! (moyenne des 4 plus gros
échantillons) et K = 0.91, nous aurons D =7.5nm, soit T =4.5nm. Ces valeurs,
considérées comme ordre de grandeur pour la ‘distance moyenne entre les
macles’, sont, au vu de la figure 9, tout a fait raisonnables. Il est clair cependant
que le modele spheres/tétraedres ne peut décrire que de maniére trés approxima-
tive les échantillons de grande taille; en particulier, I’hypothése fixant le volume
des tétraédres au vingtieme du volume des spheéres n’est plus justifiée: la forme
oblongue des édifices polytétragdriques visibles sur la figure 9 est assez €loignée
de I'apparence d’un icosaédre.

3. Conclusions. La représentation graphique de la largeur intégrée des pics
de diffraction et de la longueur moyenne des colonnes d’atomes dans les grains
pour des échantillons de tailles variées montre que les grains ne sont pas
monocristallins et plus précisément qu’ils contiennent des macles.

(i) Dans la limite des petites tailles, la dimension des sous-grains est
proportionnelle a la dimension extérieure des grains. Nous parlerons de
domaine des structures homothétiques. Le modele sphéres/tétraédres
permet d’estimer a 90-95% la proportion des tétragdres.

(ii) Dans la limite des grandes tailles, la dimension des sous-grains tend vers
une valeur limite indépendante de la taille des échantillons. Nous
parlerons de domaine des structures maclées aléatoires.

Le fait que les échantillons que nous avons étudiés aient subi un recuit de
formation joue certainement un réle important dans ces résultats. Pour les petites
tailles, I'influence de la surface des grains est prépondérante en ce qui concerne
leur stabilité thermodynamique: les structures homothétiques (icosaédre ou
décaedre) présentent a I'extérieur des plans (1,1,1) de faible énergie super-
ficielle. Ino [6] a montré dans le cas de I'icosaédre que ce gain d’énergie de
surface est favorable vis-a-vis de I’énergie de macle et de I’énergie de déformation
élastique (déformation des tétraédres pour combler le défaut de fermeture)
jusqu’a une taille limite de stabilité de 10.6 nm pour I’or.

Dans le domaine des grandes tailles, deux phénoménes au moins intervien-
nent: d’une part certains grains résultent de la coagulation de deux grains plus
petits, ce qui aboutit & des structures polytétragdriques complexes, et d’autre
part, lors de la croissance d’un grain, il existe une certaine probabilité de faute
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d’empilement dans la séquence des plans {1,1,1}, probabilité inversément
proportionnelle a I’énergie de faute d’empilement.

La transition entre structures homothétiques et structures maclées al€atoires
se situe dans une fourchette assez large, comprise entre 8 nm et 12 nm environ
(voir figures 6 et 7). A notre sens, cela montre que le calcul de Ino, bien qu’il soit
bas€ sur un modéle purement mécanique, donne une bonne estimation de la
limite de stabilité de la structure icosaeédrique, tout au moins dans le cas de l'or.
Une étude expérimentale plus poussée de ce probléeme est difficile, car au départ
il n’est déja pas possible d’assurer qu’un échantillon est a I'équilibre thermo-
dynamique. La croissance des grains métalliques en I’absence de tout support et
de toute adsorption gazeuse, réalisable par la technique des jets moléculaires,
permettra sans doute d’avancer dans ce domaine.
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