Zeitschrift: Helvetica Physica Acta

Band: 61 (1988)

Heft: 5

Artikel: Schwinger model on S"2

Autor: Jayewardena, Camillus

DOl: https://doi.org/10.5169/seals-115967

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-115967
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Helvetica Physica Acta, Vol. 61 (1988) 636-711 0018-0238/88/050636-76$1.50 + 0.20/0
(© 1988 Birkhiduser Verlag, Basel

Schwinger model on S?

By Camillus Jayewardena

Institute for Theoretical Physics, University of Berne, Switzerland.

(8. II. 1988)

Introduction

The Schwinger model [1] is quantum electrodynamics with a single massless
fermion in two-dimensional space-time. Since it was shown to be exactly solvable
by Schwinger in 1962, there has been a lot of interest investigating various aspects
of the model. The model has been shown to illustrate several phenomena which
are vital to an understanding of particle physics. Spontaneous breakdown of local
gauge symmetry, breakdown of global chiral symmetry through the U(1)-
anomaly, charge shielding and ‘quark’ trapping are among these. For a discussion
of these aspects see [1, 2, 15, 16].

Various generalizations of the model have been considered. Thus Coleman
et al. [15] have investigated a massive theory by giving the fermion a small mass
and then doing mass perturbation theory. Order parameter estimates for a
massive model are given in [18]. The case when one has non-Abelian gauge fields
has also been studied [17, 10]. In neither of these two cases is the model exactly
solvable.

On the other hand, the model has also become a tool for testing various
techniques of quantum field theory. The earlier investigations were based on
Green’s function methods [1,16]. Operator methods were then successfully
employed to study various aspects of the model. See [2, 4] for an account of the
results. The vacuum structure of the Schwinger model has been investigated in
[3, 6] using operator techniques. In the recent years, functional integral methods
have been used to solve the model [5,7,8,9, 11, 13]. Using Fujikawa’s ideas
about fermionic path integrals [14], the Schwinger model has been re-considered
by a few authors [9, 12, 19]. In [19], an extension to the curved space has been
used to suggest that the main features of the model persist even in the presence of
a background gravitational field.

Although the best insight to the solution is probably provided by using the
functional integral methods, no complete, satisfactory account seems to exist in
the literature. It is known that naive calculations using the path integral in the flat
space produce incorrect results [7, 8]. The reason becomes clear when one uses a
compact manifold: The Dirac operator which has a discrete spectrum on a
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compact manifold, is found to possess zero modes for certain gauge field
configurations. The result of the Grassmann integration in this case is not the
same as when there are no zero modes. As we show here, when one takes the
necessary modifications into account, one does indeed get the correct results.
And one should also keep in mind that the fermion path integrals have no
meaning unless defined using a discrete basis [14, 7].

In this work we present a rigorous calculation to reproduce the known results
of the Schwinger model using the functional integral method, and illustrate the
role of zero modes and gauge field configurations with non-trivial topology. More
precisely, we consider quantum electrodynamics on S i.e., the surface of a
sphere, which in the limit of the radius R going to infinity becomes QED in
Euclidean two dimensions. One may say that the Euclidean two dimensional
plane is compactified to $% This kind of compactification is desirable for studying
the above mentioned aspects. Technically speaking, this is equivalent to
introducing an infrared cutoff. In addition, the choice of the sphere as the
compact manifold has the great advantage that it does not destroy the solvability
of the model. The symmetry of the sphere permits the application of a wealth of
familiar mathematical tools enabling one to obtain exact results.

Because of the non-trivial topology of S?, the gauge fields fall into classes
characterized by the winding number &, defined by

k=:L | &xFy
27 s2

which is an integer. Here g is the electron charge and F,, = 9,4, — 3,A,, is the
field strength of the gauge field A,. The number of zero modes of the Dirac
operator then turns out to be equal to |k|. Thus neglecting the zero modes is
equivalent to neglecting all the non-trivial topological sectors and so leads to
incorrect results even in the limit R — . In particular, this leads to (ypy) =0.

The presentation that follows is divided into three main parts. The first part
contains the definition of the model in the general formalism and in an
SU(2)-invariant formalism. The two formalisms are equivalent though the latter is
more suitable for explicit calculation since it incorporates the symmetry of the
sphere. The importance of the fermionic determinant for calculating various
expectation values is emphasized in Section 4. After regularizing the theory using
Pauli—Villars regulator fields, a closed expression for the fermionic determinant is
obtained in Section 6. This is the main result of Part I.

Objects with physical significance, i.e., the expectation values of various
operators, is the subject of Part II. The contributions to the expectation values
from each topological sector are calculated separately. All the results are
obtained for finite R. At the end, the flat-space limit is taken. The properties of
two- and four-point functions establish the cluster property. Considering the
R — c limit of the two-point function of the field strength F,,, one verifies that
the theory is equivalent to that of a free scalar particle. This is in agreement with
the interpretation that the theory describes a scalar meson consisting of a
quark-antiquark pair.
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Finally, in Part III, details of essential mathematical results used in the main
calculation are presented. They are organized in four appendices. After consider-
ing the general properties of the Dirac operator, its complete spectrum for a
special case 1s constructed in Appendix A. This is essential for obtaining a closed
expression for the fermionic determinant. The method used there also gives the
explicit expressions for the zero modes. How to evaluate fermionic path integrals
in the presence of zero modes, is shown in Appendix B using first principles. As
examples, several special cases, which are relevant to the main calculation are
also illustrated. Appendix C shows the equivalence of the two formalisms
mentioned above. Thereafter, the Green’s function of the Dirac operator for an
arbitrary gauge field is obtained. That this can be found explicitly lies at the heart
of the solvability of the Schwinger model on the sphere. An infinite series which
repeatedly occurs in the calculations of Part II is summed in Appendix D.

Part 1

1. General formalism

Consider an orientable d-dimensional manifold .4 with positive definite
metric g,,. In this section we describe how to define quantum electrodynamics on
such a manifold.

1.1. Euclidean y-matrices

The d-dimensional Euclidean Dirac-algebra is

{Yaﬁ ‘yb} =26ab (11)

e = Ve (1.2)
where the indices a, b, . . . run from 1 to d. Without proof we state the following
theorem:

Theorem 1. Every representation of the Dirac-algebra is an orthogonal sum
of irreducible representations. Up to unitary equivalence, there is exactly 1
irreducible representation if d is even, and exactly 2 if d is odd. The dimension of
the representation is 2\%?\, where [d/2] is the largest integer <d/2. If d is odd, the
two irreducible representations are distinguished by the sign in the relation

T
Yayp®®s Yd=ieXP‘Zd(d—1)

1.2. Fields on a patch

In order to describe the manifold # we need in general more than one
coordinate patch. A Dirac field on the patch U < #{ covered by the coordinates
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x*, u=1,...,d is a (complex) spinor field y,(x), a=1, ..., 2% Under a
change x — x'(x) of coordinates in U, v, transforms as a scalar field, i.e.,
Valx') = Yalx) (1.3)

if x and x’ are the old and new coordinates of the same point p € /.
A gauge field on A is a vector field A, taking values in the Lie algebra of the
gauge group G. Under the above coordinate transformation it transforms like')

ox"

A ==

A, (x) (1.4)

1.3. Dirac operator

The Dirac operator on ./ can be given by

D =y*(8u + 37 "Vuv) (1.5)
Here y* = g""y, satisfies

{r, vy =28" (1.6)
and y,., is the (Riemann) covariant derivative of the vector field y,:

YV;M = uYV - rﬁvYA . (17)

T, =38"{38,8vo + Ov&up — Bp8uv) (1.8)
In terms of a fixed set ¥, of (constant) y-matrices we have

y-“‘:eaﬂfja’ (1'9)
where e,, depends on x and satisfies

eaueav = guw (1 10)

€ulii"” = Ogpe (1.11)

For any fixed a, the coefficients e,, may be considered components of a vector
e,. From (1.11) it follows that these vectors are orthonormal. Thus we have a
moving frame which can be chosen to have the same orientation at each point
since  is an orientable manifold.

The Dirac operator described above has the following properties:

* [t is a first order differential operator acting on Dirac fields.

* It is invariant under general coordinates transformations.

* It reduces to the ordinary Dirac operator in local normal coordinates.

* Under frame rotations é,, = A,e,, where A€ SO(d) and x-dependent, it

transforms as D = uDu~' where u is a unitary matrix of determinant 1 and
is related to A by uyu"'= Ay,

') The Greek indices u, v, ... run from 1, . .., d. We also adopt the summation convention that
all repeated indices are summed over.
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If we also transform Dirac fields 3 under frame rotations according to
Y' =uy (1.12)

the action of the Dirac operator becomes frame independent.

In the presence of a gauge field, the Dirac fields may carry a further index
corresponding to some representation R(g) of the gauge group G. In this case,
the Dirac operator may be written as

D = y*(3, + R(A) + 47 V) (1.13)

1.4. Global aspects

Suppose that ( is covered by a set of coordinate patches U“. A point
p € UY then has coordinates x* in U®”. Suppose now that in each patch U we
have chosen a moving frame e%). A collection of Dirac fields ¥9(x)) is then said
to be a Dirac field on ., if on the overlap of any two patches U and UY the
fields w®, e’ and yp©, e’ are related by a ‘gauge transformation’. Let us first
consider the case when there are no gauge fields. Thus for x = h,(x?’) we have,

PO?) = up(x?) (1.14)
Ax v
ax(i).u

egz(x(i)) = Aab(uij)e(b];?(x(i)) (1.15)
where u;; depends on x¥ and is related to A by uy,u"'=Au¥s-
Consistency requires that

¥ = hij(hji»(x (i))) .
l= u,](x(’))u],(x('))

ha(x®) = hi(hj(x “N)

e (x0) = u:j(xU))ujk(x(k))
A manifold . for which a set of transition matrices u; with the above properties
exists 1s called a spin manifold. Spin manifolds are thus the manifolds which admit
globally defined non-zero Dirac fields. All d-dimensional spheres and tori are spin
manifolds.

A similar transition rule holds also for a gauge field A,: For a point on the
overlap U N UY we have

} if peU?NyY

} if peUPNUYNUR

(D) (D5 D)g=] O | &
APEO) = {g,AV 0N + 8y =087} oo (1.16

where g; € G depends on x? and satisfies the conditions analogous to the ones
above.
In the presence of a gauge field, the transition rule for the Dirac field becomes

PO(x V) = R(gij)uijw(j)(xm) (1.17)

where R(g) is the corresponding representation of G.
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On a spin manifold the Dirac operator D defined above maps a globally
defined Dirac field onto a new one. The eigenvalue equation

iDy = Ey (1.18)

therefore has a well defined global meaning with all eigenvalues E being invariant
under gauge transformations and local frame rotations.

1.5. The action for QED on the manifold M

The Euclidean action for a massless Dirac particle, represented by the Dirac
field y interacting with an Abelian gauge field A, on the manifold ./ can be given
by

. 1
S= f d*x\g yDy B f d‘x\g F*'F,, (1.19)
M M
where
g =det(g,.), (1.20)
D= w8, +igd, 9 Vs (1.21)

and the field strength tensor F,, is defined as

Fw=8,A, —0,A,. (1.22)
q is the charge of the particle, which is described by the field . We assume that
q > 0.

Then S is invariant under

» general coordinate transformations x — x’
« frame rotations e,, — A€, and
* local gauge transformations

L. y—hXx)y

1
2. A,—hA L'+ 'l_';h 3,h~ ! where h(x) € U(1)

On conformally flat spaces, like the d-sphere, coordinates may be chosen such
that

8u(¥)=R(x)5,, Q>0 (1.23)
A natural choice for the moving frame is then,
Ca = R71%6,, (1.24)

and the Dirac operator reduces to

D = Q~UVHQ™I%) (3, +igA,)) QD" (1.25)
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1.6. Schwinger model on S*

By setting d =2 in (1.19) we obtain the action for the Schwinger model on a
curved 2-dimensional space. We choose the 2-sphere S to be this space. On S?,
the stereographic coordinates provide a system of conformal coordinates: we have
for re $?

n=2R*'(R*+x*)™! (1.26)
r,=2R**(R*+x*)! (1.27)
r;=R(R*—x*)(R*+x*)"! (1.28)
Buv = a,ur ' Javr (129)
4R*
gy 1.30
(R*+ %) (1-30)

where R is the radius of the sphere.
For the ¥,-matrices we may choose two of the Pauli matrices:

¥1= 0, V2=0 (1.31)
so the Dirac operator becomes
D=Q *{0,(8, +igA,) Q" (1.32)

There is an alternative way to formulate the whole theory, which incorporates the
symmetry of the manifold where the fields live. In the next section this

SU(2)-invariant formalism is described. It proves to be more convenient for the
explicit calculation.

2. SU(2)-invariant formalism

In the SU(2)-invariant formalism, we require the rotations of $* to be
symmetries of the model. In the limit R — = it should also reduce to the ordinary
Schwinger model in flat space. To fulfill the first of these properties, we need

rotation invariant Dirac matrices.
2.1. The I'-matrices

Suppose r=r(x) is any (local) coordinatization of S* by coordinates x*;

u=0, 1. (The orientation is always taken to be such that r-(Jd,rX dr) is
positive). Define

Sur=28x<8,r g¥%.,=90) (2.1)

1
[, =0 (EX3,n) 2.2)
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Here, o, are the Pauli matrices. Then

T T = 2gp0 (2.3)

=T, Til,=0 (2.4)
With this definition for I'-matrices it can easily be shown that

L sr=ulu™! (2.5)

where u € SU(2) and S € SO(3) are related by uo,u™' = 0,5;. Thus, a rotation of

the sphere is equivalent to a unitary transformation in the spinor space.
Furthermore, under a change of coordinates, I', transforms like a vector

field, i.e., I',dx* is invariant. In normal coordinates around r = (0, 0, R), we have

X
Fu = Yu 4 O(}_é) (26)
Yo = O3 Y1 = =0y (2.7)
so that
limI, =7y, (2.8)
R—ox
at fixed x.

2.2. Fields on S*

In local coordinates, the electron field y is a two-component spinor:

‘l’l(x)>
= . (2.9
v= (o )
The gauge field is just a vector field A,. Under a gauge transformation,
Y'=hy (2.10)
A=A, —~h3h" (2.11)
q

where A(x) =e™™ (A is defined mod 2), belongs to U(1).
Under a coordinate transformation, ¥ and A, transform as scalar and vector
fields. Since one needs at least two coordinate patches to cover the sphere, one

has the following transformation rules when one goes from one coordinate patch
to another (cf. 1.16, 1.17):

¥'(y) =h(x)ux)y(x) (2.12)

i ox"
Al =1A,(x)——ho, _1}
u(Y) {A (x) q h ay*

where unprimed and primed quantities are the fields on coordinate patches
characterized by the coordinates x and y respectively. Furthermore, since the

(2.13)
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gamma matrices are specified through equation (2.2), there is no need to consider
frame rotations as before.

2.3. The action
We take the action to be

i ) ;
S= f d*xVg g8 °F, o F.q + f d*xVg w(@ + é)qp (2.14)
S2 52
where
F,,=3,A, —9,A, (2.15)
9 =g"T,a, (2.16)
D, = 9, + iqA, (2.17)

Note that v is a spinor field independent of i as we are in Euclidean space.

S has been so constructed that it is invariant under general coordinate
transformations, gauge transformations and rotations of $2.

The extra term (i/R)yvy is included to make S also chiral invariant (see
below). We also note that the operator D = (2 +i/R) here is, in fact, unitarily
equivalent to the operator D introduced in the general formalism (see equation
(1.21)). That is, there is a unitary matrix u such that

uDu='=D

See Appendix C for the proof. Thus we are indeed dealing with the same theory.

3. Expectation value of an operator O(y, ¥, A,)

In the path integral formulation of the Schwinger model, the Euclidean
expectation value of an operator O given by

(0) =27 [IDFIDYIDAJe 410G, v, 4,) G-
where
Z= [[DPIDYIIDA,Je 15w (3.2)

In the following we show that the sum over all gauge fields can be written as a
sum over classes of gauge fields characterized by the topological charge k.
Indeed, define

k = % Szdsz‘“ (3.3)

Then, k is well defined, gauge invariant and independent of the coordinate system
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used. For all gauge fields, k is in fact an integer. To see this choose the following
coordinates for upper and lower half-spheres:

=z pB=x rn=(R*—x*)" (x| =R) (3.4)
n=y" n=-y' n=—(R*-y)"” (ly|=R) (3.5)

These coordinate systems cover the sphere. They meet at the great circle r; = 0.
Suppose A,(x) and A,(y) are the gauge potentials in these coordinates. Then
using Stoke’s theorem,

k= % ( A et - j{izoA;( y) dy”) (3.6)

where the two line integrals are evaluated along the same direction on the great
circle r; =0.

By definition, the components of a gauge field defined on the overlap of two
coordinate patches are related to each other by a gauge transformation (cf. 1.16),
1.e., there exists h € U(1) such that,

ox”

A) = (4, - h o) i (3.7)
or

ay Ay = (4G " h)) e (3.8)
Thus

k= ﬁ £=de “h(x) 3,h(x) (3.9)

It follows that k is an integer, the winding number of the gauge function A(x)
around U(1) as x runs around the great circle r; = 0.

The gauge fields A, therefore fall into topological classes labelled by £. In
the functional integral one must sum over all fields. A restriction to k =0 would
be a non-local ‘boundary condition’.

Denote the set of gauge fields with topological charge k by ;. Thus we can
write the expectation value of an operator O as

(0)y=2z"" 2 Dw] [Dy][DA,JeS¥¥410(y, v, A,) (3.10)

k=—c

with

z=3 D@][DwJ[DAu]e*SW-‘P'AH (3.11)

k=—oc

where [, denotes the integral over only those gauge fields which have
topological charge k.

In fact, A, may be expressed in a nice form where this dependency on k is
explicitly displayed. To this end, we first construct a rotational symmetric gauge
potential.
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Suppose x* is any coordinates. Choose a spinor z(x) such that
r,0:z = Rz, |ZF=1 (3.12)
Then z is uniquely defined up to a gauge transformation
z(x)— h(x)z(x), helU(1) (3.13)
The vector field

Cu(x)=$2(x) 0,2(x) (3.14)

is hence a gauge potential as described above. In the coordinates x* and y*
introduced in (3.4) and (3.5) we may choose

i R+13
z(x)=[r}+ 2+ (R + 1) “Z(rl . ir:) (3.15)
2) =+ Ry (") (3.16)
R — ¥
so that for ;=0
1 :
2(y) =7 (n—irn)z(x) (3.17)

It follows that C, has charge k = 1.
When r is rotated, z rotates with the corresponding SU(2) matrix; i.e., if

r;—> S,
then
z—ulz
where uoju™' = 0,S;. Hence C,, is rotation invariant. In particular, the associated
field strength F,;/\/g must be proportional to Vg. Because k = 1, we deduce
__ Vg
01 = Z_QW (3.18)

Symmetric gauge potentials for any k are obtained just by multiplying C, by k.
Now suppose that A, is any gauge potential with topological charge k. Then
Fy,/Vg is a scalar field on $? and we may define the scalar potential ¢ by

Bk
—Ap=—Fp— ——

4 Ve 2gR? (3.19)
Szdzx\[g' ¢=0 (3.20)

where A is the Laplacian on $%

1
A =\Tg_a“\/§ g"v o, (3.21)
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The definition (3.19) needs some explanation: If we exand the function E)l/\@ n
a complete orthonormal set of eigenfunctions of the Laplacian A, the piece
k/2qR? is just the term corresponding to the zero mode. Hence the function
Fy,,/Vg — k/2gR?* no more contains a term proportional to the zero mode. This
guarantees that A is invertible on the space of functions orthogonal to the zero
mode so that equation (3.19) may be solved to obtain ¢.

The field ¢ is gauge invariant and scalar under coordinate transformations.
Define

A,=A,—kC,—Vg e, g" 3,0 (3.22)
By construction, we have
9,A,—3,A4,=0 (3.23)

so that A, is a pure gauge. It follows that the representation
A,=kC, +Vg e, g’ ad,¢+ _lh 3,h~! (3.24)
iq

holds. With the constraint (3.20) for ¢, and upto a constant phase in &, the
mapping

A—(k, ¢, h)
is 1:1.

4. Fermionic determinant

In the following, all the calculations are done in the rotational invariant
formalism introduced in Section 3. Later on, in Appendix C, we will use Dirac
operator of the general formalism to obtain Green’s functions of various
operators.

Since the action (2.14) is quadratic in fermion fields, the fermionic
integration can be easily done for many important operators. Before illustrating
this let us note that it is more convenient to use a dimensionless operator in the
action. This can be achieved by setting

Y LY o i
1= =R D_R(@+R) (4.1)

Then we have,

(0y=z"3 [ (p7)Dn)DA,]

k=—x Jo,

xexp (=514, | dxVeiDn)OVR 7, VR, 4,)) (4.3)
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where

z= 3 [ onlpnpalexp (St~ [ eV o) @.4)

Now take, for instance, the two operators O = O(A) and O = y(x)y(y). The
result of the fermionic integration depends crucially on the number n of zero
modes of the operator & (see Appendix B). As shown in Appendix A, this
number is closely related to the topological charge of the gauge field A, present
in D =R(T*(8, +iqA,) +i/R). The following theorem summarizes the results of
Appendix B.

Theorem 2. Corresponding to every eigenfunction n, of the operator iD with
a non zero eigenvalue E.,, there is another eigenfunction n_, =1Tsn, with the
eigenvalue E_, = —E,.

Furthermore, all the zero modes ¥x; have definite chirality, i.e., Usy; = tx; and
the number of the zero modes n =n, + n_, where n, and n_ denote the positive
and negative chirality zero modes respectively, is given by

n.=0  n_=lk| if k=0
=lk| n_=0 if k=0

The chirality operator I's mentioned above is defined by I's = (1/R)o;#; and
has the following properties.

F§=F5, F:’Z=1! {FS’ F.u} =O’ (45)
IsL,=iVge, g, (D, Ts}=0. (4.6)

Now we can perform the Grassmann integration over the fermionic fields (see
Appendix B) and we get, formally,

(O(A)y=Z""| [DA,]detDe s™I0(A,) (4.7)

k=0

(Pa)n(r)) =RZ ™| 1DAJe"

k=0

f [DA, Je $"+)(—det’ D)(det N)~ x(")(x))‘(};")(y)} (4.8)

k:tl

Here

Z=| [DA,]det DeS14)

A g

(4.9)
k=0
In this expression det [ denotes the product of all the eigenvalues of D. When
there are zero modes (i.e., kK #0), the product of all non-zero eigenvalues is
denoted by det’ D. 9,z is the Green’s function of D, ¥'*’ the only zero mode of D
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present for |k| =1, and det N = (&, ). The scalar product ( , ) is defined as
(v, 9) = | @xVgbx)om) (4.10)

where (y)* = (y*)*.

The above expressions for expectation values are only formal because we
have not yet defined what these infinite products mean. To make them well
defined we have to regularize the theory. At any rate, we recognize det’ D and
det D as quantities of central importance in our calculation. In the following we

give a proper meaning to them by using Pauli-Villars regulator fields with masses
M.R.

S. Regularized theory

The theory is regularized by introducing regulator fields y;, whose contribu-
tion to the action is

d’xVg yi(D—MR)y;, M;>0 (5.1)
i J§?
where ; is fermionic or bosonic depending on e; being +1 or —1.
Ye=—-1 D eMR¥*=0 for p=1,...,r—1. (5.2)
i=1 i=1
As a result, det’ D is now replaced by
det' D [] det (D — M;R)* = exp 3T (5.3)
=1
It is more convenient to work with the hermitean operator € with positive (or
zero) eigenvalues, defined by Q = — D?. It is easy to show that
exp 315} = (—1)*(det’ Q)" [ ] {det (Q + MR?)}*" (5.4)

where k is the topological charge corresponding to the gauge field A, present in
D. T%) is finite for finite M;. Taking the logarithm we obtain

T =2im |k| + Tr' InQ + Tr X ¢, In (Q + MIR?) (5:3)

The ‘prime’ on the trace means that the zero modes are excluded.

6. Calculation of T'})

This section is devoted to calculating T{;) explicitly for any given k and for

any A,. The strategy will be as follows. We first recall that (equation (3.24)) a
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gauge field with any topological charge may be represented as
1
A, =kC, + Vg e€,g" 3,0 + 5h 3,h~"

The variation 8T} of I's) for a change 8¢ of the scalar field ¢ is then calculated.
(Notlce that () is independent of ). This turns out to be integrable and thus
gives &) up to a term a independent of ¢. Finally « is obtained by explicitly
calculating T''¥) for the special gauge field kC,,.

. (k)
6.1. Variation of I';¢;

Before taking the variation of I''f), let us write it in a way which is more
convenient for further manipulation:

[ =2z |k| + k| 2 e; In (M;R?) + T’ {2 e; In (Q + M?R?) +In Q}

=27 |k|+|k|2e In (M?R*) + D, > e[ln (A, + M?R*) —In 4,]

An#0

Here, A, are the eigenvalues of the operator Q. The quantity in the square
bracket may be represented as an integral. Thus we get

[les =27 k| + |k| E e;In (M?R)+ >, D e, %(eﬂx o~ 1thn MR

A, #F0 i 0
=27 k1 + K 2 e 0 (MER) — [ S (Tre — k) 1+ 5 %)
i 0 i

Under a variation d¢ of ¢, the change in ') is thus given by

reg
dt
oI = —f — 8(Tr e*'g)(l . Z ee MR ) (6.1)
0

To evaluate 6(Tre ') we use the following results, the proofs of which are
straight foward.

0D = —qI§[D, 6¢] 6Q = —06D°=qls{2D6¢pD + 69 Q + Q¢ } (6.2)
Now

1
6(Tre ) = Trf dse " (—tdQ)e (!~
0

= — 1 Tr (6Qe™'®)
= —4gt Tr (T56¢ Qe ?)

d
= dqt g Tr (Tspe ") (6.3)

It is crucial that the variation of Tre ‘® can be written in this way, i.e., ¢ times a
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total derivative with respect to ¢. This enables integration by parts leading to a
rather simplified result. Inserting (6.3) in the expression for 6I'y) and then
integrating by parts we obtain,

*x

ST®) = —4q Tr (T56¢e“’9)(1 +3 eie—mﬁm)

4]

—4q >, MR f( | dt Tr {Ts8pe ™"} e~ MK (6.4)

To simplify this further to a form which will be more suitable for explicit
calculation we now wish to use the heat kernel techniques. So let us recall some
of the basic properties of the heat kernel K,(x, y | A) of a differential operator A,
which is of the form

A 1
A=—\T§DH\/§g“ D,+C; D,=3,+A,

where C(x) is a field of hermitian n X n matrices and A, is a vector field of
anti-hermitian n X n matrices. The heat kernel is defined by,

g . 5
(gt—i- A)Kt(x, y|A)=0 for t>0, (6.5)
lim K.(x, y | A) =17 6(x —y) (6.6)
—

If Py(x, y | A) is the projector on the zero mode space of the operator A, we have

lim K(x,y | A)=Pyx,y | A) (6.7)
Note also the relation
Tre = fd"x\/é tr K, (x, x) (6.8)

One of the most important properties of the heat kernel is that [25] it has an
asymptotic expansion

. t=0 2 = ~
K(x,y | A) ~ (4mt) 42" 3 thc(x, y | A) (6.9)
k=0

where all the coefficients ¢, are calculable using the defining equations (6.5), (6.6)
for K,. Here d is the dimension of the (compact) manifold on which A is defined,
and r is the geodesic distance between the two points x and y. For the case at
hand we notice that

1

A=R7?Q==—D,Vgg"D, +qls—+ = 6.10
s u\/ég v qrs\/g R? (6.10)

where lA)M =D, + (i/2R)[,, so it is in the general form mentioned above.
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Furthermore, K,(x, y | Q) = Kz2y(x, y | A). Here we conclude the remarks on the
properties of the heat kernel and refer the reader to the detailed account given
in [20].

Now we observe that the first term in (6.4) is zero at the lower limit =0
since the singular part of Tr (I's6¢e ') is proportional to tr I's which is zero, and
the regular part is multiplied by (1+ ) ¢;) which is also zero due to equation
(5.2). Here ‘tr’ stands for the usual matrix trace. At the upper limit we have

Tr {Ts6¢e "2} = Tr {[s8¢Py(Q)) (6.11)

where Fy(€2) is the projection on to the zero-mode subspace of Q.

The second term in 6I''f) can be calculated by noting that in fact we are
interested in the case where M;— x, so, only small ¢ close to zero will contribute
to the integral. Hence we can replace the range of integration by [§ where € is an
arbitrarily small finite value. Thus,

f di Tr [8¢Tse e ™% = | drtr [5¢Tse ™ %)e ™MK (M, — )
0 "
= f J. dzx’\/é 6¢(X) tr [FS(X)K;(X, X | Q)]e_MizR:I
0 Js2

Since the integration over ¢ is now done in the vicinity of t = 0, we can replace K,
by its asymptotic expansion (6.9). Hence,

f dt Tr [T se "2 MR
0

=L2d2x\/§ 6qb(x)J:dt tr [F5(JC)4 “RY kZO (R*)*ci(x, x | A)] e
- L &xVg 69(x) fo e |5+ e e (M)
_—_I d*\Vg 6¢(x)JEdtitr [Ts(x)eq(x, x | A)]e_M'le{ (co=1)

=2 Mszf dzx\/_ ¢ (x) tr [[s(x)cy(x, x | Q)] (M;— =) (6.12)

As mentioned above, the coefficients of the heat kernel expansion are calculable
explicitly. We obtain for ¢,, in particular,

" F 1
ci(x, x| A) = —qrs\% T (6.13)

Putting everything together and also taking the relation Y, ¢; = —1 into account
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we finally get

Ey 1
oL = ~4g Tr (L9 P(R)] ~ 2 | dxVg 80 tr [Tt aTyf + o) |

2q° Fy
= —4q Tr [[s6¢Py(RQ)] — % dezx\/g op(x) V:Z

2
=28(In det N) + 5("; f d*x\g ¢A¢) (6.14)
52

1
where A = \T;} aux/g g"" 3, is the Laplacian on §°, and Nj is the k X k ‘zero-mode

matrix’ of the operator D defined as

N, = [ VR H @) (6.15)

The spinors §; form a complete set of independent zero modes of ) which have
the form (see Appendix A)

i(x) = 777 Oh(x)x,(x) (6.16)

Here {x:(x)} is a complete set of orthonormal zero modes of [, which is obtained
by putting ¢ =0, =1 in D and o is the chirality of y;(x). Integrating back, we
find T%) up to a ¢-independent constant a;

2
[f)=2IndetN + q; f d*x\g A + a(k, M, R). (6.17)
Sz

(terms vanishing for M;— o have been neglected). The constant «, for a given k,
can be found by calculating I''%) explicitly for a special value of ¢. To this end we

consider the case of a spherically symmetric gauge field with topological charge k.
This corresponds to ¢ = 0.

6.2. Evauation of a(k, M;, R)

Consider the gauge field corresponding to ¢ =0, h =1. We have A, =kC,,
1.e., a rotation symmetric gauge field with topological charge k. Let us denote by
Do, Qo and T the operators D, Q and I'%) respectively, corresponding to this
special gauge field. As shown in Appendix A, the non-zero eigenvalues of D, are
of the form € = £Vv(v + |k|) with multiplicity 2v + |k| where v=1,2,.... In
addition, there are |k| zero modes. Hence Q, has the non-zero eigenvalues
v(v + |k|) with multiplicity 2(2v + |k|), apart from the same |k| zero modes.
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Thus,

%0 = 2774 |k| + Tr' In Q + Tr >, ¢; In (Qy + MiR?)

reg
i=1

=27 |k| + |k| D, e; In (M;R)?
i=1

+ Er: e; i 202v + |k|) In [v(v + |k]) + (M;R)?] (6.18)

i=0 v=1

where we have defined e, =1, M,=0.
By introducing a new variable u = v — 1, we can bring this to the following
standard form:

%0 = 270 |k| + |k| 21 e, In (MR + > e, > 2Qu +2 + |kl)

i=0 u=0

In[(v+1D(v+1+Ik])+ (MR)?] (6.19)

The sum over u can now be performed by using the formula [21],

S S eap +b)In [(u + @) + @) + (MR)]

u=01=0

>, e ~a(MRY In (MR) +7 (26 — a(a + ) (M)

i=1

- [g (@} + a?) —g— b(ay+ a,— 1)] In (M,-R)]

+5 (- @) + (aey ~ ), @)

+(aay = b)E'(0, az) —a[E'(—1, @) + &'(=1, a))] (6.20)

Here £(z, q) is the Riemann’s zeta function (see [23, Sec. 9.5]). Thus we get for
the case at hand, for |k| #0,

L4

To% =2mi |k| + [k|*+ 2 |k|InT(1+ |k|]) —4 >, nlnn+ B(MR) (6.21)
n=1
where
B=-22 e(MR)*In(MR)* -1 e In(MR)*—8E'(-1) (6.22)
i=1 i=1

does not contain k, and is irrelevant because it cancels from the numerator and
denominator in the expectation values. For k =0, we simply have

I~ = B(M,, R). (6.23)
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Now, the general expression (6.17) for T'{;) gives, by setting ¢ =0 (and
h=1),
[7%) =21Indet N, + a(k, M;, R) (6.24)

where det N, = det N|,_,. Substituting back the expression for & found in this
way, we finally obtain

det N\ ¢*
r©) =121 ( )+—fd2 A
s = M\ Qe N, T 7 s xVg $A¢

k|

+27i |k|+ k2P +2 k| InTA+ k) —4 > nlnn+B(M,R)  (6.25)
n=1

Thus we have an explicit expression for the effective action, or the fermionic
determinant of the theory for an arbitrary gauge field configuration characterized
by the topological charge k. Note also that I'%) is independent of A.

Part 11

7. Expectation values

Having obtained an explicit expression for I'¥) (or, equivalently for the
fermionic determinant) we are now in a position to calculate a number of
physically interesting expectation values.

With the introduction of the new variables & and ¢ in place of A, (u =0, 1)

we can, first of all, write expressions (4.7), (4.8) for the expectation values of the
regularized theory as

(O(h, #)) = 27" [[DRIIDY] exp GTRIP] - SPIGDOh, Do (1)
(’l/-)(,(X)lpﬁ(y)>

= Rz—l{ - f [DR][D@] exp BTL[@] — SP[S])Gpaly, X | D)]imo

- 3 [IDhIDg] exp Gre] - S¥[oD@et M) EP))  (.2)

k=+1

with
Z = [(DRIID®] exp GTE9] ~ SOLPD]ico (1.3)

Here S%®[¢] denotes the pure gauge part of the action for a gauge field in the
topological sector k:

wk?
2R2

S®[p] = f dxVg pA%¢ (7.4)
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and %(x,y|D) is the Green’s function of the operator [. Similar explicit
expressions can be given for many other operators. We shall calculate some of
them in later sections. Expectation values of fermionic operators contain
explicitly the zero modes of the operator [, which are |k| in number in the
topological sector k. The zero modes ¥, of the operator D can be expressed in
terms of the zero modes y; of D, in the following way (see Appendix A):

2i(x) = e 7T (x) i (x)
= e 17"Wh(x)x:(x) (7.5)
In fact, o0 = %1 is the chirality of y;. The last step follows because all y,’s have

definite chirality.
Let us denote by y and ¢ the normalized zero modes of D), for k = +1 and

k = —1, respectively. According to Theorem 1, they have negative and positive
chirality, respectively.
k=+1  Dyx=0 o x)=1 Tsx=—x (7.6)
k=-1 Dyp=0 (p, ) =1 Isp=+¢ (7.7)

In fact, y and @ may be found explicitly to be

_ 1 (—23x)
X(x)_zR\/?:( z,(x)) (7:8)
_ 1 zy(x)
?() =RV (zz(x)) (7.9)
where
<]
z=(22) (7.10)

is the spinor (see equation (3.12)) used to construct the spherically symmetric
gauge field C, whose components satisfy 27z, + 25z, = 1.

8. (yy) of the Schwinger model

As the first application of the machinery we have developed so far, let us
calculate () of the Schwinger model. Operator methods [2] give a non—zero
value for (). It is however known [7, 8] that naive attempts to obtain { )
using functional integral methods give the wrong result (1) =0. Assuming the
cluster property, the correct magnitude of () has been obtained indirectly,
within the path integral formulation [7]. Taking the presence of zero modes of the
Dirac operator into account, here we show how to calculate () directly. In
Section 10, we then also verify that the cluster property is indeed satisfied.

We first do a formal calculation to obtain () of the model. The
calculation 1s formal because we are just setting x = y in the non-gauge-invariant
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operator 1]}(_x)1p( y), which then becomes a composite operator that has to be
handled with care. In a later part of this section we calculate () in a more

careful way paving proper attention to subtleties.
Define

Y= %(1 - I‘5)14" ’J’L = %J’(l + rs) (8-1)

Yr=3(1+Ts)y Yr=39(1—T5) (8.2)
Then it follows that

YiyYr = 39(1—Ts)y (8.3)

YrYr =391+ Ts)y (8.4)

YY =YL Pr+ YrY,L (8.5)

")U( )1/’ 'PL(D"‘ )U’L+WR(D+ )‘PR (8.6)

We can find (y,yg) and (yry,) separately. We shall see that the
contributions to them come exclusively from the topological sectors with k = —1
and k = +1 respectively.

To this end, first of all notice that

<¢1¢r5 ¢>=RZ“

2
<[~ 1ripgrem argol-setop 3 L7, 0T, |
-g‘i 1 f [DR][D¢](det N)~exp AT%[¢p] — S©[p]x ™ (1 4; L) ,(k)} ®.7)

(see Appendix B - Evaluation of Grassmann integrals) where 7, are the
eigenfunctions of D for k£ =0 and iE, are the corresponding eigenvalues.

It is easy to see that the sum over v gives zero. This follows directly from the
properties of the eigenfunctions and eigenvalues of [ (cf. Theorem 2). Further-
more, since all the zero modes have definite chirality, one of the projectors
(1FT5)/2 acting on a zero mode 3’ always gives zero. Hence we find

(Prr) =<ti) 1 —2r5 w>

= —RZ"*[DRID](det N)™ exp (r&l9] ~ SOIGDFVEV .-

(8.8)
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and

Py = (9" y)

— —RZ"[[DRIID@](det N) ™" exp (TR19] - SPDZOZP |-

(8.9)

i.e., only k =—1 and k = +1 contribute to {yzy,) and (¥, ) respectively.
Recall that ¥ here are the zero modes of the operator D. They have the
form

2TV =e " Oh(x)p(x) (8.10)
2D = e+ 9@ (x )y (x) (8.11)

where @ and y are the corresponding zero modes of D).
Now substituting the explicit expressions for %), S (")[cp] and y* we obtain,

(Fn() () = RZ™ [ [DRIDGNGet N) " exp (5 +5 -3 )

X exp ( ; dx\Vg qb(Az & A)cp)

det N\*="D 1
—2q¢(x) ____ 1
% (det NO) ¢ R’7m L
The factors (det N) cancel eath other. Furthermore,
det Ny=det N|y—o=(p, @) =1 (8.13)
Taking into account also the fact that
Z= [(DRIID®] exp BTA9] - SO[8]) e
~ | (DRI[DJer7ete-o® (8.14)
where 0= 3(A* — (¢*/m)A), we thus have
1 = it Bl
(Yr(x)y.(x)) = (8.15)

J’[Dq:)]e—(qb,@qb)

The h-integral drops out, for the integrands both in the numerator and in the
denominator are now h-independent. Note also that the regulator masses M, have
disappeared in the last expression. The integrals both in the denominator and in
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the numerator are of Gaussian type and can be performed to give

exp (1 — L)
- 2 2¢°R*) _.
(Dr()Ye(r)) = —— e 0410 (8.16)

where G(x, y | 0) is the Green’s function of the operator O.

The eigenfunctions of the Laplace operator on S are the spherical harmonics
Y,.(6, @) with eigenvalues /(/ +1)/R?* [=0,1,2,... and m=—[,..., [l Hence
Y, also form a complete set of eigenfunctions of @. We remark, however, that
becuase of the restriction [ d*xVg ¢ =0, ¢ can always be expanded in the set of
non-zero, modes. Hence the path integral is performed only over these modes.
As a result, in the Green’s function the mode corresponding to / =0 is excluded.
Thus, we have

Y (6, )Y;.(0', @)

G(x,y | 0) =
(x.y]0) ,;) l(l+1){l(l+1)+q_2}
m==bel  gp2 2R2 ' &
(21 + 1)R?
-3 )

Pi(cos w)

2ml(l + 1){1(1 b T q; 2}

1
= ‘2? F(a)) (8. 17)
where
‘R* & 2L+ 1)
2

T 1){1(1 +1)+ q; 2}

F(o)=2

Pi(cos w) (8.18)

Here (6, @) and (@', ¢') represent the polar coordinates corresponding to the
points x¥, y* (u=0, 1) on the sphere. w is the angle between r(x) and r(y) and
Pi(x) is the Legendre polynomial of order /.

Thus we have

€X (1 . i‘)
P 27 24°R?
4Rn

(Pr(x)yL(x)) = e O (8.19)

Obviously for {y,yr) we get exactly the same result:

Y
P\272R?
4Rm

(Yryg) = eF(O)2 (8.20)
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The properties of sums of the type (8.18) are discussed in the Appendix D. In
particular, when R— =, i.e., when we come to the limit of the usual flat-space
Schwinger model we have the asymptotic expansion

k) + 0{ze)
o~ -1+21 (—R + @ — 8.21
F(0) ~ 2y n(7=R)+ 0z (8.21)
where y = 0.577 - - - is the Euler constant. Hence in that limit we finally get

(Yr¥L) = (YY) ‘_T (8.22)

These results are identical to the results obtained by other methods [2].

8.1. {yy) as the limit of a gauge invariant operator

Now we want to do the same calculation more carefully. Instead of the
gauge-non-invariant operator ((x)y(y)), we now start with the gauge-invariant
operator (Y (x)U(x, y)y(y)) and set

(Py) = lim (HOUx, »)Y() (8.23)

Here U(x, y) is the phase factor,
U(x, y) =exp (—iqf dz“AH(z)) (8.24)
y

The presence of U in the expectation value introduces an extra term to the
exponent in the path integral. However, since A, depends linearly on ¢, the
integral remains Gaussian so that the path integral can be evaluated. In place of
equation (4.8) we now have

('!IJQ(X)U()C,)))UJB(_)’)>
= RZ"'{ - [[DIID®] exp (T&9] - 5¥[0])
X exp (—quXdZ"Au(Z))%a(y, x | D)|i=o
J |DR][D](det N)~!

k=21

exp (ritligl - s¥oD exp (~ig [ dza, (1) 10w ] (825)
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Denote by I(x, y) the line integral:
I(x, y)= fxdz“AH(z)
y
= rdz“(kcy +Vg €,,8"° 3,0 + ,—1-h auh‘l)
y

= klc(x, y) + I, (x, y)+lq1 h(y) (8.26)

where we have also defined I(x, y) = [ dz"C,(z), which is independent of both
h and ¢, and I, = [*dz"Vge,g"" 3,¢ Wthh has the sole ¢-dependence.
Recalling that

3V =e""hg (8.27)
D =e*hy (8.28)

we now rewrite the above expectation value in terms of ¢ and h:

(J’a(x)U(xs y)wﬁ(y)>
—Rz"{ - [(DRID] exp Arlp] - S“L6] — ighy[#)

hEX)) Yoo, X | D)o — e‘“’"f[Dh][qu](det N)™!

x exp T @] — S©[@] — igl,[¢]) exp (+q(d(x) + ¢ (¥))Xa (X)X (Y)]k=+1

W'Cf [DR][De](det N)~" exp AT4)p] — S©[¢] — igL,[¢])

X exp (~4($(x) + BN Pul)Bp(]im | (3:29)

Let us denote the three terms in this sum by «&,, «, and a_, respectively. For
instance,

@y = —RZ "'~ [ DRIID@)(det N) " exp (T&l9] - SVI¢] ~ ighy x, y)

X exp (+q((x) + P(¥))Ta(X)2p(¥) k=1 (8.30)

8.1.1. Evaulation of «. and «_. Expressing '), S and Z in terms of h and ¢,
we get
J[D¢]e—(¢,0¢)—iql¢+q(¢(x)+¢(y))

1 T

=Rexp (5  2¢°R?

Je~ R (s )
I[D(P]e—w.ﬁ«r)
(8.31)
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To evaluate the path integrals we first notice that for products of Gaussian
integrals, the following is true:

f l;[ da, exp (—§ (a2 + b,,a,,))

_ b; |
TR R -

where €, and b,, are independent of a,,.

In our case we have a similar expression when we expand the real field ¢(x)
in a set of real eigenfunctions of the Laplace operator on S°. As mentioned
earlier, the zero mode is excluded.

Suppose ¢(x) =Y, a,¢, where {¢,} is a complete, orthonormal set of real
eigenfunctions of L with non zero eigenvalues and let O0¢, = €,¢,. Then we have

(¢, 09) =2, €.a;, (8.33)
$(0) + 9(9) = 3 au($u(x) + 6,()) (8.34)
LIg1= 3 o[ d2Vg g™ 50,(2)) (8.35)

so that we have precisely the same Gaussian integral as above when we identify

by =iq | d2"Vg €t Fbu(2) — 4(9,06) + 6,(2)) (836)

to find the result of our path integral we now only have to calculate Y., (b2/4€,).
Recalling that the Green’s function of the operator € was defined as

Pn(X)Pn(y)
€

n

G y|0)=3 (8.37)

where the zero mode is excluded from the sum, we get, after some algebra,

2
S b3/4e) =L 260, 0+ 26(x, )
- 2if dz"Vg €,,8"° 35(G(x, z) + G(y, 2))
y

- f dz"Vg €,,8*" & f dz'"'Vg' €, 8" af,’.G(z,z')] (8.38)
y y
We have used (and shall use hereafter) the shorthand notation G(x, y) for

G(x,y | 0), and g’ denotes the metric tensor in z' coordinates.
Consider a typical integral in the above expression;

I =I dz"Vg €,,8"" 9;G(x, z) (8.39)
y
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To evaluate this integral, let us choose the path x—y to be a geodesic on the
sphere. Then z lies always on the same geodesic, as we are evaluating the line
integral along the path x — y on the geodesic. Furthermore, we can fix one of the
points x and y on the sphere. Let us fix x to be the north pole. It is convenient to
use spherical polar coordinates for the explicit calculation.

x (0, @) (8.40)
2 (6, @) (8.41)

Then G(x, z) depends only on 6, so we write

it 2/ + 1)R?
GO =G, z)=D, ( ) —— Py(cos 6) (8.42)
=Loml(l + 1){1(1 +1)+ qn }
For I, in polar coordinates we now have,
o d
sz doVg Eg(pg(w%G(B)zo (8.43)
y

Similarly, the integral containing G(y, z) is also zero. Recalling that both points z
and z' have to lie on the x — y geodesic, we immediately see that the last double
integral also gives zero.

Now we can give the final result for a,:

a. =R exp (% = ZanRz —~ iqlc)ica(x)xﬁ(y) exp (92_ (G(0, 0) + G(x, y)))

(8.44)

It is easy to see that the path integral in a_ gives the same result as the path
integral in a, which we have just calculated. Since - is also zero, we can directly
write

a=Rexp (5 =375~ iale ) 7ama() exo ($(G0, 0+ G, )
(8.45)

Thus the contribution from the sectors k = +1 is given by

(’J’a(x)U(x: y)"l’ﬁ()’)) |1k|=1

=a, +a_
1 i1 _ _
=R exp (5 - W)(Xa(x)xﬁ()’)e i

- e (e ) exp (L (G0, 0)+ G, ) (5.46)



664 Camillus Jayewardena H. P. A.

From the definition (8.23) it follows that, for the sectors k = £1,

{ww) =lim (y()U(x, Y)Y(»))
e
2 2q°R?
where we have used the fact that lim,_,, I = 0. The explicit expressions for y(x)
and @(x) (see equations (7.8), (7.9)) give

~Rexp )G @) + RGN (5.47)

@)1= P)P(x) = oo (8.48)
Hence we get
1 /4
€Xp (5~ 5 7p2
(YY) =1 = (2 = )e”"”2 (8.49)

2Rm

where G(0, 0) has been replaced by F(0) according to the definition G(x, y) =
F (_a))/2q2 (see equation (8.17)). Note that this is just twice the value we had for
(Yry.). In the limit as R — % one thus gets

- eY q
(Uﬂp)lm:l:ﬁﬁ (8.50)
What now remains to be calculated is «.

8.1.2. Evaluation of a,. In order to complete the calculation of (ypUy ) we stil:
have to find a,. To this end, we first obtain an expression for 9,(y, x | D) and
then substituting this we evaluate the path integral.

The Green’s function 4§ of D
Recall that

D=RD (8.51)
where
D =T*(3, +igA,) + é— (8.52)

We also have
i
A,=kC,+Vge,g"o,¢+ ah o,h7! (8.53)

It is possible to find 9(x, y | D) explicitly for any given k, ¢ and h. This is done in
Appendix C using the stereographic coordinates on the sphere. Here we merely
state the result for k =0:

Lhx)

Gx, y | D)th(y)

u~(x)e"IPNS(x, y)e 1Py y) (8.54)
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Here S(x, y) is the Green’s function of the operator D of the general formalism,
in the absence of any gauge field:

- 1 _ua %X —y)
S — 14 Ya
(x, y) = 5~ (£.2,) - (8.55)

where Q is the conformal factor defined by g,.(x)=Q(x)4,, in stereographic
coordinates and u(x) the unitary matrix which relates the operator [ in
SU(2)-invariant formalism to the Dirac operator D in the general formalism. It is
also calculated in Appendix C:

u'x)=ay(x)(1+ia(x)o") (8.56)
with

a =~—-—-—£——~m~ PO bk o _Fit X a; =1 (8.57)

V2R +x9) ' R > R ’ '

Calculation of «

_In fact, what we are interested in is the trace of the matrix
(Yo (x)U(x, y)yp(y)). Therefore, we only need tr 4(y, x | D) = % (y, x | D).
Since the traces of the Pauli matrices are zero, the only contribution comes from
that term of % which is proportional to the unit matrix. A straight forward
calculation yields

9ual % | D) = — 2 1 QIR an(a) Tgeosh b, (859

where 6,, = g(¢(x) — ¢(y)). The explicit use of Q and a, also gives the relation
Q~"(x)ay(x) = 1/2 so that we have

i h
Goaly, x | D) = -3 Rzﬁ_((—:{—; cosh 8, (8.59)
For tr ay, we thus obtain
tr og = ﬁ LA I[Dh][Dcp] ~(e. 09 —iallx¥l cosh B,
2 R —— P27 J[Dh][qu]e_(“’ O@)—iglylx.y|+q(P(y)—P(x) (8.60)

Proceeding exactly the same was as was done for «, we can evaluate the path
integral to get

2

T z—iiexp (92— (G(0,0) - G(x, y)]) (8.61)

where G(x, y) is again the Green’s function of the operator 0. Denoting the
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geodesic distance between the two points x and y by s we can write for large R,
G(0,0) = G(x, y)=G(0) - G(6)

=-q12-[1n2—y—1n%] KO(\C;:—I) (8.62)
Thus
v ((5) oo (15172
=————e"?| = 1K == 8.63
=R V2E (\/E exp (2Kl 12 (8.63)
and as s — 0,
_l_ y/2 —v2 _ ‘
%o 3 R\/ﬁe V2e ZJrR' (8.64)

For finite R we obviously have a non-zero value for @, However, it is
proportional to 1/R so that for () we do not get any contribution in the
flat-space limit.

Now that we have calculated all three terms «,, ., and a_ of 8.29 we can
write down the final result for (¢ ) in the flat space limit:

(py) = lim lim (y,(x)U(x, y)¥s(y))

R—x x—y

= lim lim (ag+ a, + a_)
R—o x—y
eY

= \f (8.65)

This completes the rigorous calculation of {1y ), giving no different result
than in the previous formal one in the R — o limit. The non-zero value of {yy )
indicates the breakdown of chiral symmetry. It is known that this is due to a U(1)
anomaly present in the theory.

9. (Fy(x)Fy(y)): Interpretation as a meson theory

Another interesting quantity with direct physical significance is the two point
function of the field strength operator F,,. The path integral remains Gaussian in
the presence of Fy(x)F,(y) so we can again evaluate the expectation value
explicitly. Recall that (see equation (3.19))

Fn=kz—25—-VgA¢ 9.1)

2q R2
Instead of F,,, we will use the more convenient quantity

Fulx) &
M=V 24

—Ap(x) (9.2)
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The expectation value of x(x)x(y) is given by

S [[DRIID®] exp (T&lg] - SOLHDA ()
(x@x(y)) = (9.3)
[1DR1D$] exp &) - SPMPD]uco

In fact, only k = 0 sector contributes, as our operator does not contain any Fermi
fields (see equation (4.7)). Thus

[ (DRIDS] exp ATEIg] - SPLHDAB)A,B(7)

(x@x)x(y)) =

Il
[=}

[iDrIDg exp ArBlg) - S¥L0D

[iDsle P9 0)p(y)

=AA, =
J[qu]e‘(‘f”w’)

y

Here O=3(A*—(g*/m)A) as before. We can perform the path integral by
expanding ¢ in a complete set of real eigenfunctions of the Laplace operator A.

P(x) =2 a, 9, (9.4)

The path integral is now defined over the expansion coefficients a,:
[ Dol 60100 [ TTdase™ 3, 991y
n L]

=3 600,00 [ T] dase™ag, 9.5)

Here €, is given by 0¢, = €,¢,. If i #j we have in the product two odd-integrals
of the form [, dxe *’x and the whole product becomes zero. If i =j, all the
integrals are simple Gaussian integrals, except the one

i 2
J dae™ a7

which gives (1/2¢€;)V/€;. Thus

N/I2

€na; 1 T
fl:[ da,,e "raa; = (SUEEIW (96)

where N denotes the number of eigen modes, and det O is the product of all
eigenvalues. However, the factor #V?/(det 0)"* is exactly cancelled by a similar
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factor coming from the path integral in the denominator. We thus have

di(x) @iy

(x()x()) = AA, 2, ( 2)6 L,
The real eigenfunctions of A, written here rather symbolically as ¢, have in fact
two indices, like in %,,(0, @). Let us denote them by f,,(x). They are obtained
from %, by making linear combinations. More precisely, for a given [/, the

(9.7)

functions f;, (r=1, ..., 2l + 1) are obtained by linearly combining %, _,, ..., %,,
which span a subspace %,. Thus we have
[ l +1
ASfr(x)= — ( )f,,( ) r=1,...,2l+1 (9.8)

Expressed in terms of f,,, the above two point function is given by

i (y)

(x(x)x(y)) = AA, 21 2, (B.5)
where
HUI+1) (I0+1) | g
“T3TR { R? n} (8.10)

Notice also that, since A is a hermitian operator the change of basis between {f;, }
and {%,,}, is achieved by a constant unitary matrix in each subspace %,. Hence,

21+1

zflr(x)ﬁr(y)— 2 O'ylm(x)@[m(y)

m=—|

2 Y i)Yol y)

m——l

_y+1
~ 47R?

Py(cos w) (9.11)

where w is the angle between r(x) and r(y). Here we have identified the points x
and y with (68, @) and (6', y') respectively.
Letting A, in (9.9) act on the argument, we get

x [ l 21+1
GOy =8, 3 - DS e ot ()

=1 2R2 € ,=1
((+1)20+1
==, 9.12
Z 2R2 [4 R2 ’(COS ﬂ)) ( )
Let us also fix y to be the north pole so that cos w = cos 6. It follows that
(x(x)x(0)) = —A,S,(6) | (9.13)
where
1 &« 21+1
Sp(0)=— P, :
10)= 32 2 s nypRe o ) 9.14)
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with b = ¢*/x. Properties of S,(6) are studied in detail in Appendix D. Here we
only use the results obtained there. Since in polar coordinates

111 3 3 1 &
U S AP A L -
Rz{smﬂaﬂ MMY350) " sin? 0 397 1
we can write
1 1 28 c
0)) = ——-— —( 6—S, 9). 9.16

The flat-space limit is obtained by letting R— « as s = R0 is held fixed, s being
the geodesic distance between the point x and the north pole. This yields

R—ax b
(x@)x(0) = - Ko(Vbs) (9.17)
The function K, is actually proportional to the free Green’s function, i.e.,
% d2p eipx
) ) == 9.18

where m = b =¢q/Vm, and x* are flat space coordinates such that x*>=s. When
continued back to Minkowski space, one gets

c_d —ippx+ipx!
(0| Fou(x)Fu(0) | 0) = +m_Lc 231_5[)0 g~ iPwtip (9.19)
where po=Vm*+ p*. Thus, F,, is a free field describing a massive pseudoscalar
particle. In particular, this particle has no interactions with itself or with any
other particle which could be in the theory.

10. The cluster property

The cluster property states that the vacuum matrix element of a product of
local operators factorizes when their space-like separations become large. This
property has been well established for massive theories. In this section we show
that also for the Schwinger model, where we have a massless fermion interacting
with a gauge field, this property holds.

We start by calculating the four-point function (v (x)y(x)y(y)y(y)). This
poses no big complications; the techniques we have developed so far can be
applied in a straightforward way. Nevertheless, the results turn out to be quite
illuminating. The necessity of considering all topological sectors, not just the one
with topological charge zero, becomes clear. In fact, it will be proven that the
sector k =0 gives only one half of the value expected. The sector |k| =2 provide
the other half whereas |k| = 1 sectors give no contribution in the R — % limit.

Notice that the expectation value of y(x)y(x)y(y)y(y) is given by [cf.
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equation (4.3)]
(Y)Y w()Y(y)) =R’Z™ > | [D7][Dn][DA,]

k=—oJsf

XeXp(—S[AM]—dezx gﬁDn)ﬁ(x)n(x)ﬁ(y)n(y) (10.1)

In fact, we must be considering an operator like Y(x)U(x, 2)y(2)p (V) U(y, )y (t)
which is the product of two gauge invariant operators and take the limit x — z,
y—t. However, the experience with the calculation of the two point function tells
us that the result we get will be the same. Thus we directly calculate
(Y)Y (x)yp(y)w(y)). As explained in detail in the Appendix B, we have to
consider each topological sector separately since, depending on the number of
zero modes of D (which is equal to the absolute value of the topological charge),
the fermionic integral takes a different shape.

10.1 Contribution from the k = 0 sector

The fermionic part of the path integral in this case is given by (see equation
(B-38))

= [IDADle V5@ A(In()

= det D{%**(x, x)9"(y, y) — 4*P(x, ) 9"*(y, x)} (10.2)

For the sake of simplicity, let us consider the two terms separately. Define

P=RZ" f [DR][D@] det De% tr %(x, x) tr 4(y, y) (10.3)

Q= RZZ‘II[Dh][qu] det DG*P(x, y)9P“(y, x) (10.4)
Then we have the contribution for the 4-point function from the sector k = 0 as

(YEOY@YY()) e=o=P -~ Q (10.5)
Recall that

det D = exp (3I'%?) (10.6)

2
rit =L | exvgpas+ s, R) (10.7)
1 ,
S[8lle-o=3 | Vg pa% (10.8)

Z= f [DR][D¢] exp BT — S[4])

= b2 f [DR][D¢le~0® (10.9)
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where

2

0=% (Az—%A) (10.10)

Also recall that (equation (C-40))

Y(x,y)= % u” (xX)h(x)e 9P ES (x, y)e 1PN (y)u(y) (10.11)
where
56, 9) = o (@)R(y) s 2 =YD (10.12)
T T ey |

Using the explcit expression for u we find
Ry*(x —yT)e™® —R(x"—y7)e™®
; h(x) ) —_Rx‘(x* _y+)e+<b _x—y—(x+ _y+)e+t1>
47R* h(y) [x —y|?

Yx, y)=
xtytxT—y)e ® —Rxt(x " —yT)e ®
+R2(x+ __y+)e+d) +Ry—(x+ __y+)e+¢>

(10.13)
where ® stands for g(¢, — ¢,). Thus
i h(x)  _4 +
— ik 4 + 10.14
tr g('xJ y) 4.7TR2h(y) (e € ) ( )
Hence we have
I
tr 9(x, x)=tr 4y, y)= — SAR? (10.15)
Furthermore,
o ” i\ 1 B
4*F(x, y)¢"*(y, x) = (4JrR3) —— (RZ+ x*)(R*+ y)(e**® + e7°%)
(10.16)
It follows that
N2
P=RZ7(5) [[DR)Dg] exp (T - 54~[p)
2nR
R (10.17)

 47°R?
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and

i )2 (R*+x)(R*+y?)
47R> Ix —y/|*

x [[DRIIDS] exp AT - S“=[4]) exp 24(0(x) ~ (1))

_ 1 (RP+X)(R*+Y)
~ 8x°R* Ix —y|?

0 =2RZZ*‘(

exp (°{G(x, x) + G(y, y) —2G(x, y)})
(10.18)

Here G stands for the Green’s function of the operator 0. Let us fix the point y to
be the north pole; i.e., y* =0, and let s be the geodesic distance between x and y.
If s = RO we can use the notation in the Appendix D to write

1 R*+x

Q=_8n2R2 e e (F(O)=F(8)) (10.19)

Now let us fix s and let R — «. (6 will also go to zero, however, s = R remaining
fixed). In this limit, we also have

x| =§+ O(é) (10.20)

The contribution from P is clearly zero whereas, using the results of Appendix D.
for Q we get

0" - Lz be2v+2Ko(VEs) (10.21)
81

where b = ¢g°/z. Thus the sole contribution to the 4-point function from the k =0
sector in the flat-space limit is given by

(GOPETDIED) lico = = be?r 2KV (10.22)

o

As the distance between the two points x and y is now made large, i.e., s — x,
Ko(Vb s) goes to zero and we have

eZy qz
im 1m0} = -5 (%) iz

Thus finally,

tim { lim (B @POIPOD o) =2 (L) (1024

87 \ 7
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10.2. Contribution from the k = £1 sectors

The contribution from the sectors kK = %1 is given by

(VY Y@ YO k=1 =R’Z" >, | [DAI[D[n]DA,]

k=1 Js¢
x exp (=S[A4,] - |_dxVg iDn )i()n(»a()n0) (10.25)

In each sector, the operator D has one zero mode. The fermionic integral gives
(see equation (B-39)) in each sector,

[1oaDme o aen a0
= det’ I(det N) (" ()Z"(1) 6" (6 2) + 9 (3, D (D20
- P29 x) — Py, DFRW) (10.26)

where ¥ and ¥ are the corresponding zero mode and the Green’s function of the
operator [, respectively.
For k = +1, these two quantities are given by (see Appendix C)

FHD(x) = et Oh(x)x(x) (10.27)
Z5 —X
— 10.28
x(x) = 2R\/_( zl) 2R\/_\/R2+x ( R ) ( )
Gx y) =4 u“(x)h(x)e“"”"’“)
1 R>+x~ _
. yly 0" = y)e I OR I (y)u(y) (10.29)
whereas for k = —1 we have
-V = e“’"’(")h(x)(p(x) (10.30)
Z; 1 (R)
10.31
P(x)= 2R\/_ (22) RV VRT+ % \x* (10.31)
Gx, ) = h(x)e 0
1 R*+x‘ty” o _
X R gl O YT ()u(y) (1032)

Consider a typical term in (10.25) after the fermionic integration:

[543y X5, X3, X) = RPZ™! f [Dh][D¢] det’ D(det N)™'

X X %1(x1) 972 (x, x3)% "4 (xg)e 510 (10.33)
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[n terms of I, we can write

(P OV P @Y 1= 2 (TP, 1,2, y) +I7P(z, y, %, 1)

k=+1

— 1%z, ¢, x, y) — I**"(x, y, z, )}  (10.34)
Recall that,

det’ D = exp (3T'%) (10.35)

det N\ k=D )

so that

1
I¥192%3%(x Xy, X3, X4) = —R*Z ' exp (

+B_
2 2 2¢°R?

(10.37)

s ) W) W)

< [(R)Dg) 7Y

where + sign in front of g¢ corresponds to the cases W=y and W= g,
respectively.
For k = +1 we thus have

I*192%3% (1, X5, X3, Xa)
1 B b1 o »
= Rz exp (545 5 T 10w

x [10A[Dg)ED I ot o000

1 _, _ 1 R*+x;x3
X q01¢'
{R (x2)e 4R |x, — X5

0,(x5— x?,)e“"’-’"’*;u(xg,)} (10.38)

and for k= —1,

Imaza}a‘(xl, X2, X3, x4)

1 B B
=Rz exp (5 + 5 = 5 ) 7 ()9 (k)

h(xy) h(x,
< [onDg1 S D exp (<q(0.,+ 90~ (6, 09))

1 R*+xix3
4.7TR2 |X2 X3|2

X {l “(x,)e 993,

R o, (x5— x§)e"qo3¢-'su(x3)} (10.39)
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Using the explicit expression for u (see Appendix C) we obtain
u"(x,)e 990, (x5 — x3)e "1 P5u(x;)
Rxi(x3 —x3)e™® —R*x; —x3)e”®
—Rxy(x3 —x3)e™® —x3x3(x3 —x3)e*?
2R2 (QJCZQJC3)1/4 i
x3x3(xz —x3)e” " —Rxz(xz —x3)e
+R* (x5 —x)e™ —Rx;(x3 —x3)e*®

= ﬁ (Q,.Q.)"A (10.40)

where @ stands for g(¢,, — ¢,,) and the matrix A is defined via the last step.
In fact, we are interested in the quantity (y(x)y(y)y(z)y(t)); i.e., we can
set « = B, y = 6. From the equation (10.34) we thus have

(YYD P@ YO k== 2 T, 8,2, y) +17*Y(z, y, %, 1)

k=+1
-z, t, x, y) —1*"(x, y, z, 1)} (10.41)
For k = +1,

I%77%(xq, X3, X3, X4)

_ p27-1 1 g o h(xs) h(x2)
=Gy (2+2 2¢°R? )I[Dh[w’]h( ) A(xs)

1 R*+x;x37 i
X exp (+q(9n, + 9.) = (9, 00) 525 573 (Que)™

X (Zl(xl)xl(h) T ?_Cz(xz)xz(-’%))(An + Ay) (10.42)

Noteice that

Anp+Ayp=-R |X2_"3|2 (e_q>+e+q)) (10.43)

R ) () = oy 2123 () (10.44)

P)Pc) = oz 2 (1) (x) (10.45)
Thus

197" (xq, X2, X3, X4)

_ 1 6 T h(x4) h(xz)

~Z " exp (2 2 24°R? )f[Dh][D‘“ h( ) h(xs)

(R?+ x5 +x1)(Q, Q)"

XS.TERZ 4JIR2 (z2(x1)z3 (x4) + 21(21)27(x4))

x exp (—=(¢, 09) +q(¢., + ¢.))e " +e™%) (10.46)
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Similarly,

IO'W'Y‘Y(xl’ X2, X3, -x4)

 kezeen(Li P rn)
= — R%7 exp (2 + > zquz)f[Dh][D(P] h(xl) h(JC3)
1 R? +x2x3

X exp (+q(¢xz + ¢x4) - (¢, @¢)) 4JTR2 ‘xz ‘5|2 2R2 (szgxg)lm
X {7 ) ) Ay + 1)) (xa) A + 770e)x (xa) Ay + 17001 (x4) Az}
(10.47)

Analogous results are obtained for kK = —1 also. Knowing that there is no
singularity of I*""*(x,, x,, x5, x4) for x,=1x,, as seen from (10.46), we can
furthermore set x =y, z =t in (10.41):

(PP @)Y W()) |k1=1 = k;ﬂ {177%(x, 1, £, x) + "1, x, %, 1)

+ 17Nt 1, x, x) + 15 (x, x, 8, 1)) (L:98)

Let us again concentrate on the case kK = +1. Let us also fix the point ¢ to be the
north pole; i.e., t*=0. Using the explicit form for x (equation (10.28)), and
performing the Gaussian integral over ¢, we now obtain

] 1
I7"%(x, 0,0, x) = le exp (2 quR ) exp (3F(0)) = 1"**7(0, x, x, 0)
(10.49)
Similarly, using (10.47) one obtains,
1997 (x, x, 0, 0) = 0 = I""*%(0, 0, x, x) (10.50)

Analogous calculations for the case k = —1 yield

] 1
"*(x, 0,0, x) = ;Rze p( id )exp (3F(0)) = 17*"(0, x, x, 0)

2 2q2R
(10.51)
1""(x, x,0,0)=0=1""(0, 0, x, x) (10.52)
Putting all these results together, from the equation (10.48) we thus get
s s 1 1 b4
(Y)Y E)POPE)) |- =322 €XP (2 2R )exP (3F(0)) (10.53)

Since for large R, F(0)=2In((q/Vm)R)+2y -1+ O(1/R?), in the flat-space
limit we have

i

(PP @) Y@Y () k=1 ~ 3

= (10.54)

i.e., the conttibution from the sectors k = £1 is zero.
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10.3. Contribution from the k = x2 sectors

In this case, we have

k==+2

GEWWIEVO)=RZ™ 3 [ [DAIDT)DA,]
<exp (-S[481 - | Vg iDn)mmAENE© (1059)

For |k| =2, the operator [) has two zero modes in each of the sectors kK = +2 and

k = —2. Performing the Gaussian integral over fields # and 7 (see equation
(B-42)) we get,

[apme T a@n(AEN O -

= det D*="*(det N) " {1 (x)2°(»)x'(2)7'(¢)
+ 1O DM @O - 20 (X (2)F° (@)
A A AEAGY (10.56)

where %° and %' are two independent zero modes of D) for kK = —2. As mentioned
in Appendix A they have the form

F(x)=e Dn(x)y'(x); i=0,1 (10.57)

where x' (i =0, 1) denote two independent zero modes of Dy. Two orthonormal
zero modes of D), are explicitly found to be

1 A%

20 =gy () (10.58)
1 zZ(x

X0 == mzz(x)(zzgx;) (10.59)

Similarly for £ = +2 we have

[pmDne e M)Ak

= det D*="*(det N)"{9°(x)@°(»)§'(2) @' (1)
+ @'Y (NP ()¢ () — )@ (») @' (2)§°(0)
- @' ()P’ (»E(2)9'())} (10.60)

where ¢° and @' are two indeperident zero modes of D for k = +2. Now we have

¢'(x) =e™*Oh(x)p'(x); i=0,1 (10.61)
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where two orthonormal zero modes of [, are given by

0 1 * (-Z;(JC))
- 10.
@ (x) R\/Z_JT z5(x) 2,(x) (10.62)
1 _ 1 (—Z;(x))
(p (.X) _R\/Z_J'[ Z](x) Zl(x) (10.63)
Recall that
det D™ = exp (3T (10.64)
det N\ g*
e — q 5
lag=21n (det NO) * 14 de xVg 9Ap

|k|
+2mi k| + kP +2 k| InT(1+ k)= > nlnn+B(M,R)  (10.65)

n=1

Here, N is the zero mode matrix; Ny = N|4—o. Thus

det N\*=*2) IS B
etD T exp (5~ dx\[ ¢LO+2-2In2+7

(10.66)

When these values are substituted in the above expressions for the path integrals,
the factor det N drops out. Notice also that in each case det Ny=1, since the
entries of N, are scalar products of orthonormal functions. Replacing [DA,] by
[DR][D¢], and inserting the explicit expressions for the zero modes, we thus get

(@) Y@YW YOI k=2 = % f[Dh][Dfﬁ]e”S("‘"z’[‘Pl

2

X exp (2” d*x\Vg ¢A¢p +2—21In2 + ﬁ)[e—zqw(x)w(y)) + e+2(6@+o()
x {(z1z)(x)(z222)(y) + (2222)(x)(2721)(¥)
= (z122)(x)(z220)(y) — (z22)(x)(z72)(¥)} (10.67)

Substituting ¢ — —¢, we also see that the contribution from the two terms are
equal. Thus we obtain, after dropping the h-integral

(EVEHOIWO)) = ggaexp (- pa+2-21n2)

X {(zTz)(x)(z32)(y) + (22 22) (x)(z1z)(¥)
— (21 ) (x)(z22)(y) — (z2u) (X)(z722)(y) }
f[D(p]e—(%0¢)—2q(¢(x)+¢(y))

3 (10.68)
J[D¢]e—(¢,0¢)
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The result of the path integral is given by

I =

J[D¢]e—(¢:@¢)

=exp (¢*{G(x, x) + G(y, y) +2G(x, y)})
=exp ([F(8) + F(0)]) (10.69)

where we have identified x <> (8, @) and y with the north pole. We are also using
the notation of Appendix D.

If we now fix the geodesic distance between the two points to be s = R6 and
let R— « (and 60— 0), using the results of Appendix D we obtain

I= ((\\//_%f))z exp (2In2 42y — 2 —2Ko(Vb 5)) (10.70)

where b = g*/2n. Using the explicit form of z; and z, we can also easily find that
{(z72)(x)(232)(y) + (22 22(x)(z72:)(¥)
., 0
~ (i 2)(®)(232)(y) — (232) (x)(212)(y)} = sin® 5 (10.71)

which is equal to s*/4R? in the above limit.

Putting these results together, and neglecting terms which go to zero as
R—x, we get

(BEIPEIPOPO) 12 "= 5 exp (2y = 2Ko(VE ) (10.72)

As the distance s between the two points is now made large, we get an analogous
equation to equation (10.24)

tim {lim (9P R)POWO) u1-a) = o5 (L) (10.73)

This is the contribution to the above 4-point function from the topological sectors
k=42 and k= -2, in the limit s — .

Adding contributions from all sectors (in fact only £ =0 and k£ = £2 sectors
contribute), we finally get

im { lim (3 @HOWO) =<5 (L) (10.74)

S—>0 I

Comparing with the value obtained (8.65) for the two-point function (¥ ), we
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now see that in the flat space limit the cluster property is indeed satisfied, i.e.,

(PP E)PO)Y(0)) = (py)? (10.75)

11. Summary and conclusions

In this work we have shown how to use the functional integral method to
solve the Euclidean Schwinger model on S%. Apart from being a generalization to
the ordinary model, the compact manifold S* also enables one to proceed in a
mathematically more satisfactory way. Since the relevant differential operators
have discrete spectra, one can use their eigenfunctions to define the path integrals
properly. The radius R of the sphere plays the role of an infrared cutoff; we use
Pauli—Villars regulators to remove the ultraviolet divergences occurring in the
fermionic path integral. On S?, the model is still exactly solvable. It is, of course,
essential that the mass of the fermion is zero and the Pauli-Villars regulator
masses are sent to infinity. We have obtained all the results for finite R, before
taking the R— oc limit.

The model nicely illustrates the relevance of the notion of topology in field
theory. Abelian gauge fields on S* can be classified according to their topological
charge. The path integral decomposes into a sum of path integrals involving
gauge fields of fixed topological charge k =0, £1, £2,.... On the other hand,
the non-trivial gauge field topology implies the occurrence of fermionic zero
modes. For gauge fields of topological charge k, the massless Dirac operator
possesses exactly |k| zero modes which require special treatment. We haio
obtained explicit expressions for the propagator and the fermionic effective action
in the presence of an external gauge field of topological charge k.

Since the effective fermionic action turns out to be quadratic in the gauge
field, the functional integral over this field does not present any problem. We
have explicitly calculated several expectation values of physical interest. As it is
seen in these examples, only a limited number of topological sectors contribute to
a given expectation value. Thus, for the two-point function of the field strength
(Fo1(x)Fy(0)), the only contribution comes from the k =0 sector. For the two-
and four-point functions of fermion fields, however, all the sectors with |k| =<1
and |k| =2, respectively, contribute. In general, one can say that if the operator
under consideration contains a product of n pairs of (v, ¥), then the contribu-
tions come from the sectors with |k| <n. Some of these contributions vanish in
the flat-space limit.

In contrast to the earlier calculations using the path integral method, where
the presence of the zero modes were not properly accounted for, we get the
non-zero value (e?/27)(q/Vr) for {(yy). This agrees with the value obtained by
operator methods. After calculating the two-point function of the field strength,
we have finally calculated, the four-point function {1y (x)yy(0)) in Section 10.
The cluster property, which has been always assumed in earlier works to obtain
(yy), is directly verified here.
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Part 111
A. Properties of the operators D and D,

In this Appendix we study the general features of the operators D and D,.
Recall that

[D:R(QB +é) (A-1)

where 9 =T*%, =T*(8, +igA,). We will also use the representation
1
A, =kC,+Vge,g"”a,p+ P ho,h™! (A-2)
i

for the gauge field A,. The operator D), is obtained from D by setting ¢ =0,
h=1. For the operator [),, one can obtain the spectrum, zero-modes, etc.
Although the spectrum of D cannot be given explicitly, the zero modes of D may
be given in terms of the zero modes of D,

A.1. The spectrum of the operator D

Notice that /D) is a hermitean operator with respect to the scalar product

(v 0)= | dxVe ) (A3)
where y and y are 2-component spinors. If
v=(") (A)
11)2

y denotes the row vector (y'*, ¥>*). Furthermore, since the elliptic operator iD
is defined on the compact manifold S?, its eigenvalues are discrete.

Let {n,} (v=1,2,...) be a set of independent eigenfunctions of /D with
positive eigenvalues E,. Since [) anticommutes (see equation (4.9)) with I's it
follows that I'sn, are also independent eigenfunctions with eigenvalues —E,. Let
us denote n_, =Tsn,, E_, = —E,. Together with the zero modes, the set {n,},
v=1=1, £2, ... forms a complete set of eigenfunctions of i[D.

In other words, the anti-hermitean operator D has the independent eigen-
functions n, (v=+1, £2,...) with corresponding non-zero eigenvalues iE,,
where n_, =I'sn, and E_, = —E,, and the same zero modes as i[.

Zero-modes of D
Since [ anti-commutes with I's we can choose the zero modes to have

definite chirality. Suppose we have chosen such a basis in the zero-mode
subspace. Define

T=D|gg+ T*:_{Dlyg_ (A_S)
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where #, and #_ represent the positive and negative chirality subspaces,
respectively. Thus the zero mode equations become

Tx=0 or T'y=0 (A-6)

depending on whether x belongs to #, or #_. Now, if ¢ is varied, and y is also
varied according to

oy =—qd¢py or Oy=+qdépyx (A-7)

respectively, the zero mode equations (A-6) remain invariant. It follows that the
numbers of zero modes n, and n_ in #, and #_ are independent of ¢, and may
hence be determined at ¢ = 0. This is done explicitly in the next section, and the
result is,

n,=0 n_=|k| if k=0
n, = k| n_=0 if k=0 (A-8)
The form of the zero modes may also be easily found. If x; are the zero modes of
Dy=D(¢ =0, h =1), then the zero modes of D are given by
Ri(x) = e OO (x)xi(x)
= e~ h(x)x;(x) (A-9)

where o = t1 is the chirality of y;.

A.2. The spectrum and the zero-modes of D

The eigenvalue equation for D, can be solved for any k, because of the
rotation invariance, which allows to reduce D), to angular momentum operators.
To achieve this we make use of a manifestly covariant formalism [21].

Let ¥, k € Z, be the space of square integrable two-component spinor fields
¥(g), g € SU(2), which are homogeneous:

P(ge™™) = e *“9(g) (A-10)

A complete set of such spinors is given by

Pan(8) = "5, —m RO k, = 5) (A1)
where

§s==+3

[=4 1kl Sk +1, .. (A-12)

m=—1[,...,1

and

X12= ((1)) X-12= ((1)) (A-13)
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Here, R® denotes the representation with angular momentum / and |/, m) are
the usual basis vectors in that representation.

‘Angular momentum’ operators acting on the functions in #, may be defined
through

Iw(g)———w(e gy, s a=1,2,3 (A-14)

These operators I, have algebraic properties that are completely analogous to the
properties of the angular momentum operators I’ which are the generators of
the Lie algebra of SU(2), or of rotation group defined by

R(l)( eiwda) - ezing’) (A-IS)
Namely, we have
(1) [Ia: Ib] J:":-a!fw: .
(11) Iz?slm = ZaAIaIaw.rlm = l(l + 1)w.slm
(lll) I3l/islm = mwslm . R
(lV) Iiwslm = (Il + iIZ)UJslm = \/l(l £ 1) - m(m i 1) wsl(m:tl)
Our next step is to show that the operator i), may be mapped to an operator

acting on the functions in #,.
Choose coordinates x* on §* and define z(x) as in Section 3. Set

_(akx) —z3(x)
u(x)= (zz(x) zi"(x)) eSU(2) (A-16)
and, for any 9 € %,, .
Y(x) = P(ux) (A-17)

Because of homogeneity, 1 and 9 contain the same information. Noting that any
g € SU(2) can be written uniquely as,

g=u(x)e"™»  xeR?* 2ax=1=21 (A18)

and also making use of the homogeneity property it is straightforward, though
tedious, to verify that

k e
Doy(x) =~ {oul, — 5 o, + 1} () (A-19)

where r € $* corresponds to the point x. Thus the eigenvalue equation iDyy = Ey
translates to

My =—Ey (A-20)
where M = 0,1, — (k/2R)0o,r, + 1. Because I's anticommutes with M, we have
MT sy = ETsy (A-21)

Suppose {V,, i}, v=%1,42,...; i=1,...,n is a complete set of
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eigenfunctions of M in %,, where v, are eigenfunctions with non-zero eigen-
values and %, are the zero modes. Furthermore, we have identified y_, = sy,.
Now define the positive and negative chirality wave functions,

E=y, 29, v=12,... (A-22)

Although %7 are not eigenfunctions of M, the set {¥3, %}, v=1,2,... still
forms a basis in #,. In fact,

Mz, =—-E.%; (A-23)

M3z, =—E.Tx, (A-24)
However, we see that

M35 =EZ (A-25)

so 3% are eigenfunctions of M* with eigenvalues E2. In face of the fact that the
zero modes ¥; can always be chosen to have a definite chirality (because
{M, Ts} =0), what we have done here is to construct a complete set of
eigenfunctions of M? with definite chirality. This was, of course, possible because
M? commutes with Ts.

Recalling that I's = (1/R)o,r,, we see that all these eigenfunctions satisfy,

{(0ul, +1)° — 3k%} 1 = E*, (A-26)

This eigenvalue problem can be solved using the method of adding angular
momenta. Define the ‘total angular momentum’

L.=1,+30, (A-27)
Then we have
o, =JJ,— LIl —3 (A-28)

The eigenfunctions of J, are readily obtained by taking linear combinations of
ﬁ)s,m’s (which are the eigenfunctions of I, and 30,) in such a way as to obtain
eigenfunctions of J?, J; and I°. According to the rules of adding angular
momenta, the simultaneous eigenvalues of these operators are j(j + 1), m; and
(I +1), respectively, where

I=%kl+n; n=012,... (A-29)
j=l+1 if 1#£0 (A-30)
j=1 if 1=0 (A-31)
mo=—j, —j+1,...,] (A-32)

The corresponding eigenfunctions can be labelled by j,,,. It follows that
E?={j(j+ 1) =1+ 1)+ - 12
= {2 +1)" - k% (A-33)
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The following table shows the values taken by / and j, and the corresponding
multiplicity of the eigenvalue.

multiplicity
J (Zj+1)
3 k| 3kl =3 k|

3|kl +3 k| +2

3kl +1 3 k| +3 k| +2
3 Ikl +3 k| + 4

3kl +2 3kl +3 k| + 4
3 |k|+3 k| +6

For /=0, which is only possible if k=0, j only takes the value 3
corresponding to 3 |k| + 3. Thus we come to the following conclusions:

1. There are |k| zero modes which correspond to [ = |k|/2, j=|k|/2—1/2
and m;=—j, ..., .

2. The non-zero eigenvalues may be labelled by the values taken by (27 + 1).
Indeed, introduce

(2j +1)=|k|+2v; v
then

Ei=v(v+lk]); v=12,..
with multiplicity 2(|k| + 2v).

;2. ..

The above is a statement on the eigenvalues of the operator M? which,
translated back to operators acting on spinors y(x), holds for the operator
Q)= _(DO)Z-

Let us denote the subspace of %, spanned by the eigenfunctions of M?
corresponding to the eigenvalues E2 by ®,. The functions f;m; (j = (|k|/2) +
EENESE TR m;=—j,...,j) may not have definite chirality. However, it
1s possible to make a basis with definite chirality by taking linear combinations
of them. It is also easy to show that any such basis contains equal numbers
of positive and negative chirality elements. This enables us to construct the
eigenfunctions of M. Suppose, for instance, we have found a set of positive
chirality basis elements 7. To each of them we can assign a negative chirality
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vector %, = —(1/E,)M%}, where E, =Vv(v + |k|). Then the functions 9., =
33 £47), v=1,2,... are the eigenfunctions of M.

va = _va.vt (A'34)
My_,=+E_, (A-35)

Furthermore, all the zero modes of M? are also the zero modes of M itself. Thus
we have shown that, given the functions v, we can completely find out the
spectrum of M, and hence of i[),,.

There is an interesting thing about the zero modes; for a given & they all
have the same chirality. To prove this, consider the zero modes 7j,,; | = 3 k|,
j=3lkl=3 m=—j,...,jJ

Mw =0 (A-36)
or

{0.,+1—3kTs}7=0 (A-37)
or

GG+ =1 +1)—3+1—1kT}7 =0 (A-38)

After substituting j =13 |k| — 3, [ =1|k|, this gives T'sy = —(|k|/k)%, or in other
words, depending on whether k is positive or negative, all the zero modes ﬁlb-mi
have either negative or positive chirality. Denote the number of positive and
negative chirality zero modes by n, and n_, respectively. Then, for any k,
positive or negative, we have

n,—n_=-—k (A-39)

This is in accordance with the Atiyah-Singer index theorem [25].
B. Evaluation of Grassmann integrals

Evaluation of Grassmann integrals with a Gaussian integrand exp (a, Aa) is
quite familiar in the case when A has no zero modes. When A has zero modes, a
little more care must be taken although the basic principles are precisely the
same. In this Appendix we derive some related results, and illustrate their
application to our main calculation. (For a nice account on the basic concepts of
Grassmann integrals see the book by Berézin [22]). The contents will be the
following:

* Evaluation of the Grassmann integrals
1. Iy=[1I}L, da} daa;a} - - - a,a};

iN%jn
2. I=[[Dy][Dyle™“*¥p(x)p(y:) - - - Y(x,)P(y,) where A is a self-
adjoint operator with respect to the scalar product (¢, x), for the cases
when
(a) A has precisely n zero modes.
(b) A has k(<n) zero modes.
* [llustration of the results in special cases.
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B.1. Ewvaluation of I,

Consider the Grassmann algebra generated by the Grassmann variables
(ay, ..., an,af,...,ax). We wish to evaluate the following integral:

N
L= f [] da} da;a;a}, - - - a,a;, (B-1)
i=1

According to the rules of Grassmann integration it is clear that the value of I, is
either + 1 or —1 for given sets of distinct indices (iy, . .., iy) and (j,, ..., jn). If
they are not distinct, [, is of course identically zero. Furthermore, notice that I, is
totally antisymmetric with respect to the indices (iy, ..., iy) and (j;, ..., jn)
separately, i.e., if we exchange i, and i;,, the value of I, changes the sign. The
same is true with the indices (j,, . .., jn).

Thus, if €,,...,, denotes the totally anti-symmetric Levi—Civita symbol of nth

rank, I, has to be proportional to ¢;,...,, as well as to ¢;,..;,. This implies that

il'lNej].]N (B-Z)
By setting (i;, ..., iy)=(1,...,jx)=(1,..., N) we find that c = 1. Hence,

10N

Iy=ce

N
s * * I
I() = f I—[ da,' da,-ailajl QA= eil“'iNejl"‘fN (B'3)
=1

B.2. Evaluation of 1

I= f [DVIDYIe 4Dy () P(3) - - W(x)P(5) (B-4)
Let {v;} be a complete set of orthonormal eigenfunctions of the operator A:

AY; = €Y, (B-5)
and for any v and v,

y(x) = ayix) (B-6)

b) =S ali(x) (B-7)

where ¥, = (y})". The set {a;, a}} may be considered as an orthonormal basis
for the Grassmann algebra generated by them. The scalar product (, ) is defined
by

@, v) =3 ala, (B-8)

We define the measure [Dy][Dv] so that,

1= [ TTda dae™>5i% 3 a,at - a,al e B(0) - i) B0

i1vin

1+ (B-9)
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where Y’ denotes the sum over only those i’s which corresponds to non-zero
modes. Suppose there are k zero modes. If kK >n, [ is identically zero since the
product g; - --a; cannot produce all k variables corresponding to the missing
zero modes in the exponent. Thus we only have to consider the two cases k =n
and k <n.

Case (i): k=n
In this case, in order to get a non-zero value for /, all the indices (i, ..., i,),
(ji, - - -, J») must correspond to zero modes. This is so, because exp (X’ €,a,a])

could not provide for any of the n pairs (a;, a;') which correspond to zero modes.
Thus the integral decomposes into two parts.

I= 1—11 da} da; E aila;: e 'af,,a;twil(xl)"]’n()ﬁ) cU wi,,(xn)q_}j,,(yn)

X f [T da* dae*%'<=e (B-10)

where the sum in the first factor is over the zero modes only. The second factor,
on the other hand, contains only non-zero modes, and gives the result
det’ A =[I’ ¢; where [I' denotes the product over non-zero modes. Thus,

I=det' A 2 I()Wi}(xl)’q-)h(yl) e wl}.(xn)ﬁ}fn(yn) (B_ll)

iy-eeip
Jiin

where I, is the integral (B-1) considered in the previous section.

IO = €F adf, € ousf, (B'12)
Thus
I = det’ Aeil---i,,ejr--j,,wil(x1)¢j|(y1) s wi"(xn)ﬁ/f,,(yn) (B-13)

where the repeated indices are summed over zero modes. Recall that the y’s
appearing here are all orthonormal zero modes.

Suppose instead of orthonormal zero modes, we are provided with a set of
only linearly independent zero modes, i.e., instead of an orthonormal basis in the
zero mode subspace, we only have an independent basis {y;}.

To construct orthonormal zero modes out of them we could, for instance, use
the Gram-Schmidt procedure. However, this method is not very practical when
the number of basis elements is large. Therefore we rather resort to general
arguments. It will be proven that for the special combination of basis elements we
have above, there exists a nice expression in terms of independent zero modes.

Expand y; in terms of orthonormal basis elements:

Xi = Si¥; (B-14)
It follows that

oo %) = SESu{ e, 1)
= Siﬂ;(S}'l(Sk[ (B'lS)
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Define the ‘zero-mode matrix’ by N; = (x;, x;). Thus

N; =SSk or NT=5S" (B-16)

It follows that

det N =det S det S” (B-17)
Expressing x’s in the product

€iyenni €y s DX (1) * X0 (X)X, (Vi) (B-18)
in terms of y’s and also making use of the identity

L1 iy det B Bilii e Bt,,t 611 “in (8-19)

which is valid for any matrix B, it is easy to prove that

I=det’ A(det N) '€ .. €, 00 (X)X (Y1) -~ X0, (%) X5, (V) (B-20)
Case (ii): k<n
Let us denote the integral / by 15, in order to remind us that n and k are different
in this case; we are calculating the 2n-point function in the presence of k zero
modes of the operator A.

Like in the Case (i), using an orthonormal set of eigenfunctions of A we can
write the above integral as

= | [ da* dae Z<* > q.a*---a;,a*
N In ™ In

Tl
Juvtin

X wu(xl)l/)]](yl ’l/’:,,(x )ipj,(yn) (B 21)

The primed indices here correspond to the non-zero eigenmodes. Consider the
following facts:

* The expansion of the exponential always gives terms with pairs a;a;".

* The above expansion does not give any one of the k pairs a;a; that
correspond to the zero modes.

* Therefore, the rest of the integrand should provide for the product
a,af - - - aga; corresponding to the zero modes.

* Since there remain (n — k) pairs that correspond to non-zero modes, we
have to consider only those terms in the expansion of the exponent, where
just these modes are lacking

* The terms in the expans10n of exp (XY, €a;a]) which contain N —1
products of distinct a;a;" pairs and lack the remaining / pairs are given by

Z H €:a,a;

{o} ieq

where, g; denote sets of [ distinct indices (which are missing in the product)
and 0, 1s the complement of o;: it contains all the other N — [ indices.
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Thus we have, setting [ =n —k,

zg,,zjnda*da S [l eawat S aal---aal

{On—k} i'€0,—4 i1°-Ip
J1*"Jn
X Wil(xl)‘pjl()ﬁ) Ll ‘Pi,,(xn)"z’j,,(yn) (B-22)

The indices iy, ..., i,, ji, ..., J. take values in the set
S={1,...,k}U0n_k

where the indices 1, ..., k label zero modes. Indices in o and & correspond to
non-zero modes. Since the sum over o means the sum over all dinstant indices, we
can rewrite it as a sum over all the indices ii,...,i,_r€o0U 0, i.e., over all
non-zero modes which satisfy the condition i; < - - <i,_,. Thus

I’;,f,,zjnda*da 2 [] eaya

in —k i 60’,, k
l1< <[n k

X Z ar!a,, g ai,,ajtll’il(xl)‘z’j,(}ﬁ) ce Wi,,(xn)";’j,,(yn) (B-23)
f] ..... i,,ES
FARERE jnes

The set S is now given by S={1,...,k,i;,...,1,_«}. Notice also that the
product a; a} - - - a;,a; is anti-symmetric with respect to exchange of two indices

in (i, ...,i,) and (j,, ..., Jj,) separately. Hence we can write this product as
* ) * * « s . * -
€€, 0101 Apar a;a; a,‘('n_k)a,';hk (B 24)

where ¢; .., is again the totally antisymmetric Levi-Civita symbol with
ki i{n—k) = 1 (B‘25)
Thus we finally have

L = E JHda da 1_[ €.a.al D, €€

€;..

S S i'eoc [ R—— i,eS
’]< <£n k jl ..... j,,,ES
Xaai--- aka;:ai’,a?; s a,-(,,_,naff,,,k)w,-.(x1)%—1()’1) T "Pf,,(xn)wj,,(Yn)
= 2 2 det’ A - “ L 1!’:.( 1)"4’;,()’1) w:'n(xn)d}j,.(yn)
edn—k Iygeens ineS 11 i(n—1)
<-<ip_g Jis---Jn €S

(B-26)
where det’ A is the product of all non-zero eigenvalues, and iy, . . ., i(,_«) take
values corresponding to the non-zero modes.

Notice that the expression in the square brackets is symmetric with respect to
the indices (iy, . . ., i(,_x)). Also notice that we can allow the possibility that any
two indices be equal, since the e-symbols take care that such a contribution gives
zero. Both of these considerations result in the identities:

2= 2 [l=t-kr > [] (B-27)
r{---i(’,,uk) l{nol'(::;_(:) ji<"'<i('rrmk)

indices equal
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where [ ] denotes the square bracket in the above equation. Thus

1
It, =
= (n—k)!
' €iro i€ o 7
x . 2 E det’ A €. — wil(xl)wh(yl) e win(xn)w,fn(yn) (B’ZS)
eesl(n-k) | E1°"in i i{n—k)

Jvein

In this expression, the unprimed indices take values corresponding to all the
eigenmodes while the primed indices take only values that correspond to
non-zero modes.

B.3. Hlustration

Here we shall illustrate the results of the previous subsection for the cases of
2- and 4-point functions.

B.3.1. The 2-point function.

L= [[DFIDYle ¥4y (e)i(y) (B-29)

When the operator A has no zero modes we get from equation (B-28)

B=3 3 detA =y, (x)p; () (B-30)

1 Iuh i

where i,, j; € {i;}, which in this case means, that i;=j,=i;€{1,2,...}. It
follows that

13 _ 2 det A Y ()i (y1)

€;
= det A(g(xl, )’1) (B'31)
where B
oz y)= 3 P (832

When A has one zero mode, equation (B-28) gives

L= 2 det’ AE:‘ﬁiﬁ’n(ﬁ)‘Z’h(h) (B-33)

L
where i,, j, € {1} or i; =j, = 1. Thus we have
I =det’ Ay, (x )y, (1) (B-34)

where 1, is the normalized zero mode of A. Notice that the same result may be
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obtained via equation (B-20) which gives

x(zc;);‘;(;u) (B-35)

where y is any (i.e., not necessarily a normalized) zero mode.

IL=det' A

B.3.2. The 4-point function

L= [[DBIADIe APy () (50 w7 (02) () (B-36)

In this case equation (B-28) gives
1 €iin€jiin o = <8
I;= o 2 2 det A E—e” w,-,(xl)w,’-f(y:)w?;(xz)w}l(yz) (B-37)
" vk e

where iy, i5, Ji, > € {i}, i3} while ij, i; take all values 1,2, . ... Simplifying this
one gets

3= det A{9*P(x,, y)9"°(x2, y2) — 4°°(x1, y2) 9P (x2, 1)} (B-38)

Similarly, when A has one zero mode the result is

I = det’ A{Wf(xl)lp{j(%)(gyb(xzj y2) + @yﬁ(xl ) )’1)1/1%'(162)‘1-’?()’2)

- w?’(xl)@?(yz)‘g"”(xz, Y1) — %ab(xl , )’2)7#{()52)']}?()’1)} (B-39)
where
()P
(gaﬁ(x, y) — 2 Y, (XZIPI (y) (B-40)
i'=23,... 7

and v, 1s the normalized zero mode of A. In the case when there are 2 zero
modes, we obtain

I =det’ A{y,(x) 9 (3)¥a(x2)Wa(3a) + Ya(x ) Yo y) Wi (x2) Y1 (32)
— Y1) YY) W) W1 (1) — Ya(x DY (y) W (x2) W 12) ) (B-41)

where v, and vy, are two orthonormal zero modes. Using equation (B-20) we can
give the answer in terms of any two independent zero modes x, and y»:

I3 =det’ A(det N) ™ {x,(x )1 (y)x2(x2)2(y2)
+ 22 0)X2(y0)x1(x2)X1(v2) — X1 () X2y x2(x2)%1(y2)
— x2(x )X ()X (x2)x2(y2) } (B-42)

where N; = (y;, x;) is the zero mode matrix.

C. Certain operators and their Green’s functions

Here we investigate how certain operators mentioned in the main calculation
are related to each other and how the corresponding Green’s functions reflect
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these relations. This will make clear why different formalisms are equivalent.
Expressing the Green’s functions of complicated operators in terms of those of
simple operators will also facilitate the explicit calculation.

C.1. Equivalence of the operators D and D

As mentioned in the Section 1, the Dirac operator in the general formalism is
given by

D = y“el(x)D, = y"D, (C-1)

where D, =3, + A, + 4y"y,... y* are globally defined y-matrices. Multiplying y°
with the d-bein e/(x) (assuming we have a d-dimensional manifold) we obtain the
position-dependent y-matrices: y*(x) = y“ek(x). If g,, is the metric tensor we
define y,(x) =g,,y" and ““;” denotes the covariant derivative with respect to the
index that follows it. The quantity 4y"y,., is the so-called spin-connection. Finally
A, 1s the gauge field, which takes values of the Lie algebra of the gauge group G.

On conformally flat spaces like the d-sphere, the metric tensor may be
written as

guv(x) = Q(x)4,, Q>0 (C-2)
by choosing suitable coordinates. In this case, the natural choice for the d-bein is

eau(x) = gveli(x) = Q26,, (C-3)
or

el =Q71?%4,, (C-4)
Hence, in these specific coordinates, we get

D = Q@-Q 12y (3, + igA,)} QU1 ()

where we have writeen A, = A, for these specific coordinates.

On the 2-sphere S?, of radius R, the sterographic coordinates (x', x*) defined
by

r,=2R*"(R*+x%)! -~ (C-6)
r,=2R%*(R*+ %)™ (C-7)
r;=R(R*—x*)(R*+x?)"! (C-8)

provide such a coordinate system. Here (r;, r», ;) denotes the point (x', x*) on
the sphere in terms of the coordinates of the flat 3-dimensional space in which $*
is embedded. Indeed, for the metric tensor we have

gu(x)=3,r-3,r=2(x)4,, (C-9)
where
4
Qx) = il (C-10)
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Hence

D =Q ¥y, (8, +iqA,)Q" (C-11)
Now let us take the operator defined in the SU (2)-invariant formalism:

" i

b= (@ 1 _) C-12
with &9 =T'*%, where I, and &, are defined by

1
L, =z¢ (rXd,r) and 9%,=9,+iqA, (C-13)

respectively. It is easy to see that in stereographic coordinates defined above

=60 Ib=—-06-0r (C-14)
and

D =Q"*%,(3, +igA,) +—I% (C-15)
where

71(x)=Q -9,  P,(x)=—-Q "¢ 0rx (C-16)

These 2 X 2 y-matrices satisfy the Clifford algebra
{?a: ?b} = 26&1) (C-17)

Since any two irreducible representations of this Clifford algebra are unitarily
equivalent to one another, there must be a matrix u(x) € SU(2) which relates the
matrices ¥,, ¥, to y; = 0y, Y, = 0, which also satisfy the same Clifford algebra:
i.e., there exists u € SU(2) such that

Yo = u?au_l (C'18)

Now we can prove that the operators D, in the general formalism and D, in the
SU(2)-invariant formalism are unitarily equivalent.

The proof of the above equivalence goes as follows: The matrices 1, ¥, 7>
and ¥,¥, for any given x are linearly independent and hence form a basis for 2 X 2
matrices. This can be used to expand 9,¥,, 3,7, in this basis. For example, we get

¥ = _%Q—l 0,2%> (C-19)
1
017, =3Q7" 3,Q%, + ‘R Q9. 7, (C-20)
for 3,7,. Inserting ¥, = u~'y,u we obtain
o™, vi]=—-3Q7" 8,Qy, (C-21)

1
[udiu™, v,]=3Q7'18,Qy, + = £, (C-22)
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where we have used the fact that [y, y,] =[01, 02] =2i0;. Since u € SU(2) it
follows that u 8,u”"! is an element of the Lie algebra of SU(2). The above

equations may be used to find the coefficients of the expansion u 8,u~"' = &;0;.
This gives
ud u_1=l{—19“18 Qo +ls2“20} (C-23)
1 2 2 2 3 R 1
or

1 (i 1
v1(u 81u'1)=—,{i Q! 82902+EQI’21J} (C-24)

2i (2
Proceeding in the same way one can prove that

1¢(: 1
Yz(u azu_l)=§'£{é" Q-l 31901+§Ql/2ﬂ} (C"25)

Thus we finally have
uDu™'y = u{Q“lIz?a(aa +igA,) + é}u_lw

=Q0,(8, +igA,)Q"y (C-26)
i.e., uDu™l=D.

Explicit form of the matrix u(x)
We can find u(x) explicitly using stereographic coordinates. Writing

u=ayl +ia;o; (C-27)
with a,, a; all real and a3+ a*=1 and using the relations

UP U™ =Y, O UY, =Y, (C-28)
where v, =0y, y,=0,, 7, =Q ¥0-3,r, 7,=—-Q "6 3;r, one can solve a set
of linear equations to obtain

ag R dg R ao
where a, = R/V2(R?+ x°). In obtaining these results it is helpful to notice that r,
oir, d,r form an orthogonal set of axes at every point r on the sphere, and from
8u(x) = 3,1+ 8,1 = Q(x)4,, it follows that |3r|* = |3,r|> = Q(x).

Thus u(x) in stereographic coordinates becomes

1 R(1 +i) (x; — ixs)(1 + )
Y = R D) (—(x1+ix2)(1—i) R(1—1i) ) (C-30)

whereas

T " R(1-1) —(x1 —ixy)(1 +1i)
@) =)= \/2_(”RZT ((x1+1x2)(1—l) R(1+1) ) (C31)
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C.2. Green’s functions

The Green’s function of a differential operator &/ on a Riemann manifold is
defined by

AG(x, y | ) =g ?o(x — y) (C-32)

when o has no zero modes. In this case, the following representation for the
Green’s function may be given:
wi(x) ’[I}r(y)

Gx,y|sl)=2 — g (C-33)
Here {y;} form a complete set of orthonormal eigenfunctions of the operator &
with the corresponding eigenvalues E;. However, when & has zero modes this
definition loses its meaning. In this case one may still define the Green’s function
as

Gy | sy = 3, YY) (C-34)
(E#0)
The Green’s function so defined satisfies the differential equation
AG(x,y | ) =g "6(x —y) = P(x, y | ) (C-35)
where P(x, y) is the projector onto the zero-mode subspace:
P((x, y ‘ A) = 2 Xi(x)xi(y) (C-36)

1
(E;=0)

The functions {y;} here form a complete set of orthonormal zero modes of «.
As shown in Appendix A, the operator [, defined as

D= R(@ - flé) (C-37)

where 9 =T*(3, +iqA,), A,=kC, + Vg €,8"° 3,0 + (1/ig)h 3,h~" has pre-
cisely |k| zero modes for a given k. Recall the foregoing discussion where the
equivalence of the operators D = D/R and D was proven:

D=uDu™! or D=u"'Du (C-38)

If {y;} is a complete set of orthonormal eigenfunctions of the operator D with
corresponding eigenvalues iE;, {u~'y;} form a complete orthonormal set of
eigenfunctions of the operator D with the same eigenvalues. It follows that the
Green’s functions of the two operators are related by

G(x,y [ D)=u"'(x)G(x, y | D)u(y) (C-39)

Since D = RD, we also have

9x,y | D)= Glx, y | D) =2 u™'Glx, y | D) (C-40)
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In the following we construct the Green’s function G(x, y | D) of the operator D

explicitly for any given k, using stereographic coordinates. Recall that in these
coordinates,

R
= (2Rx', 2Rx*, R* — x%), (C-41)

the operator D is given by (equation (1.32))

D=Qq,(3, +igA,)Q"* (C-42)
where
1
Aa = kCa + Eab ab¢ + _q h aah_l (C'43)
[
and
4R*
Qx)=————= C-44
®) = R 7 (C-44)

Denote the Green’s function of D for ¢ =0, A =1 by S(x, y). Then it is easy to
show that the Green’s function in the general case is given by

G(x,y,D)=h(x)e %NS (x, y)e **Ph~!(y) (C-45)

Thus the problem of finding the Green’s function of D is further reduced to
finding it for a special gauge field kC, which has constant field strength. Denoting
the operator D for ¢ =0, h =1 by D,, we have

Dy=Q *g,(3, +igkC,)Q"* (C-46)
1 1 b=
C =—z9 = — = = b C-47
=l Z9,z P €. 9 In Q 2R €,6X ( )

After some algebra one can write D, in the form

172

Q
Dy= Q""”zou(aa -— 1+ k03)x“) (C-48)
2R
which, in turn, may be put in to the form
k k
Dy=Q " exp (Z o5 1In Q)oa 3,2 exp (Z 05 1n Q) (C-49)

Because of the equivalence of the operators in the general and SU(2)-
invariant formalisms, the eigenfunctions and the eigenvalues of the two operators
are in one-to-one correspondence. Thus, if ¥ is an eigenfunction of D with
eigenvalue (E, it follows that

D(uy) =iE(uyp) (C-50)

i.e., uy is an eigenfunction of D with the same eigenvalue iE. Furthermore, the
chirality operator I's of the SU(2)-invariant formalism turns out to be equivalent to
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the Pauli matrix o;:
Ul =g, (C-51)

In other words, if ¥ is a spinor with chirality 7 with respect to I's, then u® is a
spinor with the same chirality 7 with respect to o0;. From the discussion in
Appendix A it then follows that

1. the non-zero eigenfunctions of the anti-hermitean operator D may be
labelled as n,; v= %1, £2, ... where n_, = 031,

2. if n, i1s an eigenfunction of iD with eigenvalue iE,, the eigenvalue
corresponding to n_, is —iE,

3. there are precisely |k| zero modes of D for a given k; they all have either
positive or negative chirality depending on whether £ <0 or k>0,
respectively.

Now it is easy to see that the Green’s function of D, defined as in (C-34) has the
form

0 S.(x, y))

S(x’y)z(s_(x,y) 0

(C-52)

and satisfies
S'(x, y)=—5(y, x) (C-53)

Furthermore, if y, is any zero mode of D, we have the relations

| Ve m()S(x 1) =0 (C-54)

J. S Ve dy =0 (C-55)

All these statements about D are, in particular, true for D, which is obtained by
setting ¢ =0, =1 in D. The zero mode equation for D, thus becomes

o, aa(QI/4e(k/4)03 In an) =0 (C_56)
Xn

= (%)
An ( )

whereby either x, or yx, is identically zero depending on whether £ >0 or k <0,
respectively. Hence, the zero-mode equation for the two cases may be written as

3. (QUT ) =0 (C-58)

3_(QUH =0 (C-59)
respectively, where we have defined

dy = %(81 Fi3,) (C-60)

% = it 1 (C-61)
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Case (i): k>0
Let us concentrate on the case k >(0. An independent set of solutions to the
equation (C-58) is given by

X = a,(x7)" QU x) (C-62)

The condition that these zero modes must be normalizable
| Ve zaz =1 (C-63)
SZ

restricts the values » can take. It is easy to show that

n=01,...,k—1 (C-64)
k(k—-l

|an'2=—

)zl-kR—(zn-H) (C-65)
n

This is in agreement with the fact that D has precisely |k| zero modes for a given
k. Let us set R =1 for simplicity; at the end we can restore the R factors.
The projection operator onto the zero-mode subspace is thus given by

P(x,y)=2, (x‘(zx))(o Xn (X)) (C-66)
=3(1-03) % {A+x) A+ 21 +x7y ) (C-67)

Thus the differential equation (C-35) satisfied by the Green’s function reduces to
the two equations

Qk—3)/4 a+(g(1—k)/4s_) — %Qx—l (3()6 _y) (C-68)

Q—(k+3)4 a_(Q(k+1)/4S+) — %9;1 (3(x _y) (C_69)
k . _ _ .

—521 F(RQ) 1+ x yH)! (C-70)

where, for simplicity, we have used the notation Q,=Q(x), Q,=Q(y). To
simplify them further, define

S__(X, y) — chk_l)MT_(x, y)Qy—(k+1)/4 (C-71)
S.(x, y) = Qr VAT, (x, y)Qu- (C-72)

Thus we obtain the differential equations for 7_ and T,:

ST (x,y)=30(x—y) (C-73)

k
F T (x,y)=206(x—y)— p R DQURDR(] 4 xmy )Rt (C-74)
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Furthermore, the properties (C-54), (C-55) lead to the conditions

[ x0T (3, y) =0 (c-75)
|z, 3 =0 (C-76)

forn=0,1, ..., k—1. Finally, from

S(x, y)'= = 5(y, x) (C-77)
follows the relation
T.(x,y)=—T.(y, x)* (C-78)
Thus we can write two further differential equations for 7_ and T,
k
a};T_(x’ y) — 1 6(x y) + 21 kQ(k+l)/2(1 +x” y )k 1 (C-79)
FT.(x,y)=—26(x—y) (C-80)

The differential equations (C-73) and (C-79) determine 7_(x, y) up to an additive
function of x~ and y . The solution is

T y) =30 e (1Y) sy G, y) (C-81)
The condition (C-75) leads to

t_(x",y )=0 (C-82)
We prove that t_(x~, y7) =0 by showing that the function

T(x,y) =5 ——— (4 y 7y ) *(1 42y ) (C8)

alone satisfies the condition (C-75) for 0 =n =k — 1. Uniqueness of the Green’s

function then implies that T(x, y) = T(x, y) or t_(x~, y~) =0. The proof goes as
follows: Define

_ (., G)A+xTyT)
() = [ P (C84)

This contains all the relevant factors in the integrand (C-75). The substitution

x'=rcosgp x*=rsing
yields

rn+l k k ‘ C 85
Sk drm > (q)(YJ) Lia (C-85)

qg=0
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where
2n
- ipe _
by 0 aye re”'% —y_
P — —
(y-y*' L 6(r—|y-) for p<0
Setting r* = p, |y_|*> = z one obtains
J.r JT k z pn
romien (- e
T (ot qgﬂ q 0 p(1+P)k :
k k o pn
r 3 (e o) o
qgﬂ q z 1+ p)kﬂ
Using [23, Eq. 3.194.3]
rdp—-in—r=3(n +1,k—n)
o (1+p)!
n!(k—n-1)!
_ni( . ) (C-88)

one can write this as

gt {—in!(k_n—l)!z"+(l+z)k_£cdp—pn—} (C-89)

ot S gl k-9)! (1+p)*!
To evaluate the remaining integral, make the substitution
(1+p)=(1+2)w (C-90)
Then |
1+ z)"fx‘:'lpp—n,ﬁr1 = i (n)z"fcdw(w —1)" e ! (C-91)
z (1+p) g=0 \q 1

Using [23, Eq. 3.191.2]

J dow? * Y w-1)""=Bk-nn—q—1)
1

=(k—n—1)!(n—q)!

(C-92)
(k —q)!
one sees that the two terms in (C-89) precisely cancel each other thus giving
Jox=0 (C-93)

for all 0=n =k — 1. As mentioned above, this implies that ¢+ (x~, y7) =0. Then
Ty (x, y) is given by (C-78):

1 1

T+(x’ y) = gx_;. _y+

(1+x*x) A +xy*)* (C-94)
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Thus the Green’s function of D, is given by

. 21 1+ x Ty - (Qny)(k_l)m( 0 X —y‘)

4 |x—y? xt—y~ 0
or, restoring R #1,
21—kR—2k R2+ -, Tk
S(x, y) = EIXI ) (.0, D0, (xo —y) (C-95)

4 Ix —y|?

Case (ii): k<0
Zero modes are now given by (see equation (C-59))

§_(QU KAy Y =0 (C-96)
An independent set of normalizable zero modes may thus be given as
X (X) = b, (x )" QUI™R(x) (C-97)
where n =0, 1, ..., |k| — 1. The normalization condition leads to
k| (Ik | = 1) _
bn 2_ 1" 21 k| ¥
bal?= (7 (C98)

The projection operator on to the zero-mode subspace is
Xn (x
P=3(* ey o
k
=11+ 03) L (L +)(1+ )AL+ xR (C-99)

The two non-zero components S, , S_ of the Green’s function are now given by

Q;(|k|+3)/4 a)_c._(QQkHI)MS_) — %9;1 6(x _ y)
_I4

81

Q;(3—|kr)/4 a.x_(gil—lkl)/4S+) e %Qx_l (S(JC _ y) (C_l()l)

{(1+x3)(1 + y?) PO + x Ty )R- (C-100)

To simplify these equations further we use the same substitutions as before (see
C-71, C-72):.
S_(x, y) = Qy WITDAT (5, y)QUki-1)4 (C-102)
S4(x, y) = QUITVAT, (x, )@y 4+ (C-103)
Thus we obtain

BLT(x, y) = 4 8(x —y) — LD 21 QU1 4 xty YA (C-104)

FT.(x,y)=208(x—y) (C-105)
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Taking the complex conjugation of the two equations we get
k
FT(x,y)=306(x—y)- L;—lel_""ﬂi""“)’z(l +xTy Tk (C-106)
FTi(x, y)=306(x—y) (C-107)

Comparison of these equations with equations (C-73) and (C-74) in k >0 case
shows that the solutions T*(x, y) and T%(x, y) for k <0 are the same as T, (x, y)
and T_(x, y) in the previous case. Hence we find

1

T*(x, y) = = (1+xTx ) M +x"yH)™ (C-108)
T2 y) =57 e (7)™ 4y (C-109)
or
1 1 +.—\—k +,,—\ 1k
T, y) =5 e () M+ 2y )™ (C-110)
1
Tz, y)= T — (1+y*ty ) M +xty )™ (C-111)

The Green’s function for k£ <0 is thus given by

21—|k|R—2|k| (R2 +x+y—)ikf
4 Ix —y|?

Sx,y)= (Q,Q,) 1= Vg,(x* — y*) (C-112)

Case (III): k=0

In this case, there are no zero modes; the projector P is zero. The Green’s
function may be obtained by simply setting £ = 0 in either of (C-95) or (C-112).
Thus we get

1 _ya Ta(x =y
— o) N ASCI S C-113

Thus we have solved the problem of finding the Green’s function of the
operator [ for any given k. Namely, from equations (C-40) and (C-45) we have

Y(x,y | D)= % U (xX)h(x)e 99PN (x, y)e 1PN y)u(y) (C-114)

where S(x, y) is given by the equation (C-95), (C-112) or (C-113) depending on
whether £k >0, k<0, or kK =0.
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D. Various sums and their limits appearing in the main calculation

Most of the sums resulting in the ¢-integral of the path integrals can be
expressed through simple relations between sums of the form
1 & 21 +1

$(0)= 17 2 15 1) 3 o DS ©) (D-1)

Therefore we study the properties of §,(8) in detail so that all the other sums and
their limits may be obtained easily. All the relations among various special
functions used here may be found in [23] and [24].

D.1. S,(0) and the Green’s function of the Laplacian on S*

The Laplacian operator on a curved manifold is given by
1 .
=—3,Vgg" 3, D-2
\/é " 88 ( )

where g,, is the metric tensor of the manifold and g =det (g,,). If we choose
polar coordinates on S,

x=(6, )
we can write
A= - ;{z L’ (D-3)

where L? is the angular momentum operator and R is the radius of the sphere.
Now consider the Green’s function defined by

(A +b)Gylx, y | —A)=g7 " o(x —y)  (b>0) (D-4)

In polar coordinates x = (6, @), y =(0', ¢') we also have g(x)=R*sin* 0. If
Y;.(8, @) are the spherical harmonics, the functions %,,=Y,, /R form a
complete, orthogonal set of eigenfunctions of —A which are normalized to 1 on
$%. Hence we can write

@[m(e, (p)a‘y!ﬂ:n(gll (P')

Gy(x,y | —A)= D-5
b(x yl ) 120,21'..' l(l+1) ( )
m=—1,...,1 R +b
and using the ‘addition theorem’ for spherical harmonics
20+
Z Y6, ©)Y5.(0', @) = _4_P,(cos w) (D-6)
we get
1 & 2[+1
Gy(x,y| —-A)=— i
(6, y | —A) = n_g (l+1)+bR2P’(COS(u) (D-7)
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where  is the angle between r(x) and r(y). Let us choose the point y = (8', ¢’)
to be the north pole. This implies that cos @ = cos 6 so that G depends only on 6.
Let us denote it by G(6|—A). Comparison with the sum S,(6) gives the
following relation:

1
4xbR*

We wish to find a closed expression for §,(0), or for G,(8|—A). Since
G,(8 | —A) satisfies equation (D-4) written in polar coordinates

Gb(B | _A) = Sb(B) &

(D-8)

1 3 8
_ 2 (sing=>) + —A)=0 D-9
{ RZsin 6 30 (Sm g ae) b}G”(H | —4) (D-9)

for 6+#0. Thus G,(6|—A) satisfies the differential equation for associated
Legendre functions. Therefore, let us examine the associated Legendre functions
with the property that they are singular at x =cos 8 =1. These are usually
denoted by O, (x). Expand Q,(x) in Legendre polynomials:

0,(x) = 2 aPix). (D-10)

Using [L, dzP(z)P,.(z) =26,,/(2] + 1) we find that [23]

{1l —cosa(v—1)}

a=+D) a1+ )

(D-11)

If we require that the denominator here to be equal to the denominator in the
sum for G(6 | —A)

(I=v)I+1+v)=I(I+1)+ bR? | (D-12)
we get the two solutions

vi= —34+4VE-bBR?  v,= —1-VI-bR? (D-13)
for v, with v, + v, = —1. It is simple to see that

= 20+1

)+ 0¥) = 2 T TR

Fi(x) (D-14)

which is just 47G,(68 | —A). Thus we have S,(6) in terms of known functions:

1
47bR?’

$,(0) = 7 (20 (0) + Qo)) - (D-15)

D.2. Different limits of the Green’s function

We can now check if our Green’s function reproduces the known flat-space
limit. We can also see what happens as b— 0.
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Flat-space Green’s function of (—A + b)

To check the flat-space limit let us fix the geodesic distance s = R0 and let R— o,

So we have to let 86— 0 as well. Define A =VbR*—} which is real since R is
large. Now

1
G, (8| -A)= g {Q_12+ia(cos 8) + Q_y,_i3(cos 6)}

1

=mp_l/2+a(—cos 6) (D'16)

We can use the integral representation

2 (% cos(v+3)e
P 6)=— -
v(cos 8) 7T Jo V2(cos @ — cos 6) ¢ (D-17)

to find the behaviour of P_,,_,;(—cos 6) for large R and small 6. This leads to
the asymptotic expansion

P_ip.in(—cos 8) = " x (A0) + = 0(5)2 (D-18)
—1/2+iA T 0 R R &
where K is a Bessel function. Furthermore,
A0 =Vhs———L (D-19)
8Vb R*
and hence

Ko(A8) = K(,(\/E s _WE_R"E)

= Ko(Vbs) + K,(Vbs) é\—ﬁs)—ﬁ + o(%) (D-20)

The last step follows from a Taylor expansion and using the fact that
(d/dz)Ky(x) = —K,(z). Thus, for the Green’s function we have

1 s 1
G,(6 | -A)z'z‘;‘rK()(\/ES)+K1(\/ES)m+ O(F). (D-21)

In the limit R — o, this agrees with the flat-space Green’s function of (—A + b) in
two dimensions, which is

Glr—r) =5 Ky(VB It~ ') (D-22)

For S, we have

R—x

$,(0) =" Ky(VB.) + 0 5) (D-23)
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Green’s function of —A and its flat-space limit

Since [ =0 is a zero mode of —A we cannot represent the Green’s function of —A
as a sum over all eigen modes. In this case, a meaningful way to define the
Green’s function is through (cf. equation (C-35))

—AG(x,y | —A)=g""?6(x —y) — Rox, y | —A) (D-24)
where F, is the projector into the zero mode space. Then the following relation

holds.
1 & 20+1

GO(B l—A) = G P 2—(1—;1—) P[(COS 8) (D-25)

This is indentical with §,(6#). Notice that /=0 is excluded. This series is
convergent and the sum is given by ([23], Eqgs. 8.926)
1 6 1

S)(8) = Go(8 | —A) = ——lnsin_— (D-26)

We can also deduce this by noticing that

Go(®] ~2) = tim {G,(8 | ~2) ~ 7] (D-27)

Define v=v,= —1+V}—bR? then v,=—1—v. Expanding v for small b we
get

v=—bR?>—b?R*+ O(b>) (D-28)
which gives zero as b— 0. Therefore
.1 1
Gy(0 | —-A)= [len})E {Qv(cos 6)+ Q_,_,(cos §) — W} (D-29)
may be expanded for small v and we get
1 oP, 1 . 1 1 ]
-A)y=— - — — —_———— D-30
G(® ‘ A) 4 [ZQ” ov v:o] +4.‘/‘L’ zl>1—>n(1)[ v  bR? ( )

In the limit b— 0, [—1/v — 1/bR*]— —1. Furthermore,
1+x

) =11 D-31
Qu(x)=}In— (D-31)
oP, 1+%

v - D-32
8| T 2 (D-32)

where x = cos 6, so we get
N Tl 3000 (D-33)

4 2 4
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which is, in fact, the same result as before. This is the Green’s function of —A on
the sphere $°.

Now we can check for the flat-space limit. Again we fix s =R6 and let
R— o, 6—0.

1-x . 6 s
5 = sin 5 smﬁ—ﬁ+0( ) (D-34)
Hence
Go(6 | —A) = —ilni+const+0(l) (D-35)
2 " 27 R R

This is the familier result for the Laplacian in flat 2-dimensional space.

D.3. Various sums in the main calculation

i) While calculating (yy) we encountered the sum

K (2 + 1)bR?
8= Zl {1(1 T+ 1)+ bRZ} Fi(cos 6) (D-36)

where we had b = g*/n. Notice that

1
F(e)= E @+ 1){1(1 +1) I +1)+ bR
= 47 {5(6) = S»(6)} (D-37)

Using the results in the previous section now it is trivial to give the large R
behaviour of F(60):

}P,(cos 0)

F(8) =" =21n 2—;- —1-2Ky(Vbs) + 0(%) (D-38)

where s = R0 1s held fixed.
i1) We also had the sum

ol (2{ + 1)bR?

F(O

= ; I(I+ D){l(l+ 1)+ bR?

in the formal calculation of (). We give two ways to find this sum.
a) If we want to take F(0) and set 8 =0, we are alarmed by the fact that

S,(0) as well as S,(0) is singular for 6 = 0. Indeed,

(D-39)

1 1- 1
S(8) = — ;- ln— o - (D-40)
1 1
$,(0) = EL’ {OQ-in+a(x) + OQ_yp_ulx)} — 4bR2 (D-41)

where x =cos 6, and Q,(x) is singular for x =1. However, we expect the
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difference So(0) — S,(0) to be regular there. Using the properties of O,(x) we
indeed have (see [23, 24])

X2y~ +il)— y( - iA) + O —x)
(D-42)

where y(z) =T"(z)/T'(z) denotes the Riemann’s y-function. The singular piece
in this expression exactly cancels the singular term in Sy(6). Hence

1
Q_1p+a(x) + Q_1p-_u(x)=—In

FO=y@G+id)+y@E—id)+2y—-1+ b_;ei (D-43)

b) There is also a direct way to calculate F(0). Notice that

1
F(0 { |
)= 2 1(1+1) T+ 1)+ bR
1 1 }
_ D-44
2{ l+1 CI+i+id I+1-ia ( )
where A = Vb?R? -1 as before.
In the limit R—> ®, |3+ iA| =|3 —iA| = b?R? also tends to infinity. Hence we
can use the asymptotic expansion
1 1
=lnz-—+ o(—) D-45
y()=Inz =5 +0(; (D45)

We immediately get
e 1
F(0)"="2In VbR +2y—1+ o(ﬁ) (D-46)

ili) Another occasion where we encounter the sum S,(8) is in the calculation
of (x(x)x(0)) in Section 9. There we have

(x(x)x(0)) = —A,S,(0) (D-47)

where A, is the Laplacian. From the relation (D-8) we have
1
=Gy —— D-4

% =Co = bR (D-48)
where, for 68 #0, G, satisfies the equation

(—A+b)Gy=0 (D-49)
Hence

(—A+b)S, = — for 6+#0 (D-50)

47R?
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This implies that

1
(x(x)x(0)) = —bS, ey

R—
s fixed b 1
= Ko(Vbs) + 0( R_Z) (D-51)

When s 1s then also made large, we can use an asymptotic expansion for K:

Ko(Vb s) = \%exp ~Vb s(l + OG)) (D-52)

It follows that

im {fim (O] = ~5omszme ™ (1+0()) -5
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