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Macroscopic quantum mechanics experiments
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Gif-sur-Yvette Cedex, France

and John Clarke

Physics Department, University of California, Berkeley and Materials and
Chemical Sciences Division, Lawrence Berkeley Laboratory, Berkeley, CA
94720, USA

(22. II. 1988)

1. Introduction

Do the laws of Quantum Mechanics apply to macroscopic degrees of
freedom? Until very recently this had not been tested experimentally, even
though the words ‘macroscopic quantum effects’ are used in the literature to
describe phenomena like superfluidity or superconductivity. As Leggett has
emphasized [1], there are two classes of macroscopic quantum effects. In the first
class, to which belong superfluidity and superconductivity, are quantum phenom-
ena affecting only microscopic variables but that add coherently on a macroscopic
scale. In the second class are quantum effects displayed directly by a macroscopic
variable. A comparison involving a single crystal may help to clarify this point:
the discrete orientations of the faces of the crystal are manifestations of the
underlying quantum atomic structure revealed on a macroscopic scale by the
coherent stacking of atoms. This is an example belonging to the first class of
macroscopic quantum effects. On the other hand, an hypothetical observation of
the rotation of the crystal as a whole due to zero-point motion would be a
macroscopic quantum effect of the second class. The actual observation of
phenomena belonging to this second class is the subject of this lecture.

Because Planck’s constant is so small, the quantum behavior of a macro-
scopic degree of freedom is usually unobservable. The above single crystal, even
if of the size of a speck of dust, will normally move spontaneously only by
Brownian motion which is a purely classical phenomenon. However, electronic
systems have the potential for displaying genuine macroscopic quantum effects.
Let us consider the simple circuit consisting of an inductor L connected across a

'y  MHD and JMM were part of J. Clarke’s group in Berkeley at the time the experiments
presented in this paper were performed.
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capacitor C. Observations on this oscillator are made via leads which can be
modelled as an infinitely long transmission line of characteristic impedance Z..
The flux ¢ in the inductor is the macroscopic degree of freedom of the system, its
conjugate momentum being the charge g on the capacitor. The natural angular
frequency of oscillation is w,=(LC)™"* and the impedance on resonance is
Zy=(L/C)"?. The quality factor of the oscillator is Q = Z./Z,. To observe
quantum effects two criteria need to be satisfied: (i) The lifetimes of the quantum
states of the macroscopic degree of freedom must be long on its characteristic
time scale. This is equivalent to the condition Q > 1. (ii) The thermal energy
must be small compared with the separation of the quantized energy levels. This
is expressed by hwy << kzT where T is the temperature of the source of damping,
here the system of leads. These constraints are satisfied for L =350 pH and
C =15 pF provided that T =10 mK and Z.=50 €. The natural frequency of the
oscillator is then w,/27w =2 GHz. These conditions can nowadays be realized and
controlled routinely in the laboratory. Thus for this system one can hope to
challenge the smallness of #.

Unfortunately the harmonic oscillator is a system that does not display
quantum effects easily because it is always in the correspondance limit. The
average values of the position or the momentum follow classical equations of
motion. Quantum Mechanics is revealed in higher moments like the variances of
the basic variables but these higher moments are very hard to measure. For our
LC oscillator, we have for example {g*) =107 °C?=(20e)*. Also, there is a
more fundamental objection to the use of a linear system to look for macroscopic
quantum effects since in that case the distinction between effects resulting from
the coherent addition of microscopic variables and genuine macroscopic quantum
effects is harder to draw [1].

One is thus led to use a non-linear oscillator involving a Josephson tunnel
junction. This component is a sandwich of two superconductors separated by a
thin oxide layer. In contrast with other non-linear electronic devices, it remains
active at the very low temperatures required by the search for quantum effects.
The macroscopic variable that describes the state of the junction is the phase
difference 6 between the condensates of Cooper pairs in the superconductors on
either side of the tunnel barrier. Let us discuss in some detail the nature of the
variable ¢ since it is crucial to the meaning of the macroscopic quantum
mechanical experiments. -

At the low temperatures where the experiments are performed, all internal
electronic degrees of freedom of the superconductors are in their ground states
and, a priori, the variables of the junction are the phase differences of the Cooper
pairs that tunnel across the barrier. But the rigidity of the superconductive
ordering forces all the tunneling pairs to have the same phase 6. The variable 6
thus describes the collective motion of the tunneling pairs and is the single
remaining degree of freedom of the junction. Note that this rigidity of the
condensates and thereby the existence of & are themselves a macroscopic
quantum effect of the first class. Returning to the comparison with a crystal, it
appears that the rigidity of the condensates is similar to the interatomic forces
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that hold the crystal together and whose details are irrelevant to the predictions
of the motion of the crystal as a whole. For these predictions, only macroscopic
parameters like moments of inertia need to be known because all internal degrees
of freedom are, so to speak, ‘frozen out’.

The question is now whether the macroscopic variable & can itself behave
quantum-mechanically. We performed at Berkeley a series of experiments [2]
that demonstrate that indeed it does. Since the experiments have been described
in details elsewhere [2], we will sketch here only their general principles.

First, what do we mean when we say we observe experimentally the quantum
behavior of a system? For a microscopic system like an atom the situation is
simple. The properties of each particle (electrons and nucleus) are known
independently and the dynamical equations of the system can be obtained from
first principles. To make predictions one has to solve these equations within a
certain theoretical framework: classical, giaantum mechanical, etc. . . Of course,
for the atom the quantum predictions are the only ones that correspond to the
observations. As for a macroscopic system, whose complete description can never
be obtained in every detail, the situation is more complicted and involves a
two-step procedure. In the first step one measures the time evolution of the
system in a regime where thermal fluctuations are large compared with the
expected quantum fluctuations. One obtained thereby the parameters entering in
the classical equations of motion that characterize the macroscopic variables of
the system. In the second step, the thermal fluctuations are reduced well under
the level of the expected quantum fluctuations. Also, one makes sure that all
other parasitic noise that could mimick quantum fluctuations is eliminated. The
new time evolution is then measured. Finally one compares the results obtained
in the second step with the predictions of the quantum theory based on the
parameters measured ‘classically’ in the first step. If they agree, the quantum
behavior of the macroscopic system is said to have been observed.

In pioneering experiments [3, 4,5, 6] on macroscopic quantum tunneling (a
phenomenon that will be described later) involving Josephson junctions, the
temperature of the junctions was lowered to that quantum fluctuations were
expected to dominate. The results of these experiments were consistent with a
quantum mechanical interpretation of the behavior of the phase difference of the
junctions. Recently, more sophisticated experiments investigated the question of
the influence of dissipation on tunneling [7,8] which had been calculated
theoretically [1, 9].

However, a persistent difficulty in all these experiments has been the correct
determination of the parameters of the principal component of the macroscopic
system, namely the Josephson junction. Without a precise knowledge of these
parameters no quantitative comparison with quantum theories can be made. In
the early experiments, some of the important parameters were treated as
adjustable parameters in the predictions or were estimated from measurements of
properties not directly connected to the dynamical properties involved in the
tunnelling experiment. In the experiment of Schwartz et al. [8] separate
measurements of the relevant parameters are made but they are based partially
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on a quantum analysis of the raw experimental data. This is why we devised new
experimental techniques to ensure that all the parameters of the junction would
be measured in situ using classical phenomena, in particular under conditions that
guarantee that no spurious noise reaches the junction.

In the following the emphasis will be put on the particular procedures we
used to solve the two problems of noise shielding and parameter determination.
Before discussing these central issues, we begin with a short description of the
classical dynamics of our macroscopic system: a Josephson junction biased with a
constant current.

2. Classical dynamics of the current biased Josephson junction

As we have seen, for the purpose of understanding our experiment, the
underlying physics of the superconductors and their coupling through the oxide
barrier can be safely ignored and the junction can be thought of as an ideal
non-linear inductor in parallel with a capacitor (see Fig. 1). An ideal linear
inductor would be a simple coil made of superconducting wire and would be
characterized by an energy quadratic in the flux through the coil. Instead, the
ideal non-linear inductor that constitutes a Josephson junction has an energy
given by:

E = —I(¢o/2m) cos 6 | (1)

where ¢, is the flux quantum. The variable é is the phase difference across the
junction. The quantity @ = (¢/2x)d is analogous to the flux through the linear
inductor in the sense that the current and voltage for the non-linear element
satisfy also i = dE/dg and v = dg/dt. For small 6, the non-linear inductor of the
junction behaves as an effective inductor: @ = L.gi with L= ¢o/27l,.

- 1
. |
el I ) L .
—— i
E (o) E [ -%—)
. 5=2Xy
LC circuit Josephson junction °

Figure 1
Comparison between a Josephson junction, which consists of a non-linear inductor in parallel with a
capacitor, and a linear LC circuit.



626 Michel H. Devoret et al. H. P A.

U
()
s g
8
U
(b)
Figure 2
The two states of a Josephson junction biased with a S
current [<Il; a) (6)=0 (zero voltage state);

b) (8) #0 (voltage state)

The junction by is thus characterized by two parameters: the critical current
I, and the capacitance C. We will see that the coupling of the junction to the
measuring apparatus involves additional parameters.

When it is biased with a constant current /, the junction is equivalent to the
model of a particle moving in a tilted washboard potential (see Fig. 2). The mass
of the particle is the capacitance C. The tilt of the washboard is the ratio 1/I,.
When [ <, the potential has relative minima and the particle can be in two
states. In the so-called zero voltage state the particle is confined in one well (see
Fig. 2a). The average velocity and hence the average voltage across the junction
is zero. In the other state, called the voltage state, the particle runs down the
washboard at an average constant velocity determined by frictional forces (see
Fig. 2b). In our experiment the velocity is limited solely by the breaking of
Cooper pairs in the superconductors and corresponds to the gap voltage which is
of the order of 2mV.

The zero voltage state is metastable and eventually decays into the voltage
state. It is easy to determine the decay rate of the zero voltage state by
monitoring the voltage across the junction. The experiment is performed as
follows: initially / =0 and the particle representing the phase difference is in a
relative minimum of the washboard potential. We ramp the bias current from 0 to
I <I,, and wait until a voltage appears across the junction. This voltage is the
signature that the particle has escaped from the well and accelerated down the
washboard potential. It is worth noting that the acceleration of the particle
‘amplifies’ the very small voltage pulse associated with the escape event. This
built-in amplification process is a particularly attractive feature of the current
biased junction.

Because the acceleration process is so fast, the time at which the voltage is
measured across the junction can be taken as the time at which the particle
escapes. We repeat the experiment a large number of times to obtain the average
escape rate.

By measuring the escape rate as a function of the bias current which controls
the shape and the size of the potential well one gains access to some aspects of
the behavior of the particle inside the well. However, to obtain a complete
picture of the motion of the particle one needs extra ‘knobs’ on the experiment.
This 1s where our experiments differ fundamentally from all the others: we add to
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the current bias a weakly perturbing microwave current and measure the change
in the escape rate induced by this perturbation. The dependence of this change on
the frequency and bias current provide additional information that, when
combined with the first measurement, enable us to reconstruct the dynamics of
the particle in the well.

We have supposed up to now that the current source and the voltmeter are
ideal. In practice they have always some finite impedance in parallel with them, in
particular the impedance due to the electromagnetic coupling between the leads
connecting the instruments to the junction. Even though these impedances may
be negligible at low frequencies and may not affect a quasi-static measurement
such as an [-V characteristic, they become of prime importance at the
frequencies relevant for the motion of the particle in the well, which are in the
microwave range. The junction will thus see an effective admittance in parallel
with it.

As we will see in the next section, it is possible to arrange the circuit so that
this admittance behaves essentially like a resistor in parallel with a capacitor. This
picture is valid in a broad frequency range around the characteristic frequency of
the particle in the well. The effect of the external shunting capacitances is simply
to renormalize the capacitance of the junction. The effect of the resistance is
two-fold. One effect is to damp the motion of the particle in the well. The other is
to act as a thermal bath and to induce fluctuations in the motion of the particle.
Two additional parameters must then be introduced to take into account the
coupling of the junction with the measuring apparatus: the resistor R and its
temperature 7. The temperature of the junction itself is unimportant as long as its
intrinsic damping is negligible when compared with the damping provided by the
external resistor R — this is always the case in our experiment.

The above description of our current biased Josephson junction corresponds
to the circuit of Fig. 3 and leads to the following classical equation of motion:

C((¢o/27)*) 6 + R (po/27)* & + 35 U(0) = (¢o/27)In(1), (2)

where U(9) is the tilted cosine potential:

U(6) = (—Lpo/2m)[cos & + (I/L,)d], (3)
and where the current noise I satisfies:
T . 2kgT
j (IN(I)IN(O)>T6[2]IW dt = ;; 3 (4)
R f,:,
l | T | Figure 3
: _1_ Equivalent circuit for our junction coupled to its measurement
¥ ]@ In R X 0o — apparatus which has a finite impedance at microwave fre-
' , i . | quencies. The resistor R models the real part of this im-
L | e e T pedance. The capacitor C includes a contribution from the

o imaginary part of the impedance.
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Figure 4
Cubic potential from which the particle representing the
junction phase difference escapes.

In practice the bias current / is very close to the critical current and hence the
potential from which the particle escapes is very nearly cubic (see Fig. 4). The
barrier height AU and the oscillation frequency w,/2s at the bottom of the well
(plasma frequency) are two useful independent parameters that completely
describe the potential and are given, to a very good approximation, by:

AU = 2V2 Lypo/37)(1 — 1/1,)*> (5)

and:
w, = (V2 27ly/ o C)"*(1 — 1/ 1))"*. (6)

The damping due to the resistor is conveniently described by the dimensionless
quality factor of the small oscillations at the bottom of the well:

Q =RCw,. (7)

Before turning to the problem of determining the parameters /,, C, R and T,
we will describe some crucial features of our apparatus, namely the filters that
isolate the junction from unwanted noise from the measurement circuitry.

3. Decoupling the junction from ambient noise

It goes without saying that the junction must be completely shielded from
parasitic electromagnetic sources like radio stations. But this is far from being
sufficient. Thermal current noise from the measuring apparatus at room
temperature —i.e. the current source and the voltage amplifier — must also be
prevented from reaching the junction through its leads. This is achieved by
interposing a series of filters between the junction and the measuring apparatus.
These filters screen out all frequencies except a very narrow range near zero so
that we are still able to vary the bias current and detect the voltage rise as the
junction switches to the voltage state. The range is chosen to be sufficiently
narrow that noise in that frequency band is negligible and sufficiently wide that a
good time resolution of the lifetime of the zero voltage state is achieved.
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In practice such a low pass wideband filter can be made conveniently only
with filter elements having substantial dissipation. Because of this dissipation, the
filter itself will produce noise and each filter in the chain must be at a lower
temperature than the preceding one. In view of the stringent filtering require-
ments of the experiment, we developed a special type of filter. It consists of a
spiral coil of insulated wire inside a copper tube filled with copper powder with a
grain size of about 30 um. Since each grain is insulated from its neighbour by an
oxide layer, the effective area of the copper is enormous and thus provides
substantial skin effect losses even at the lowest temperatures. The lowest part of
the radio-frequency spectrum was dealt with by a classic RC network. The chain
of filters provided a total attenuation of more than 200 dB.

The last filter was carefully engineered since it imposes the damping and
hence the fluctuations of the phase difference of the junction. It consists of an
attenuating coaxial line that also relies on copper powder for the source of
damping. The copper powder is thermalized by epoxy which is injected between
the grains. The junction is mounted as closely as possible to the end of the line to
ensure that the impedance discontinuity between the junction and the line occurs
on a distance small compared with the wavelength at the plasma frequency. This
microwave engineering ensured that the impedance seen by the junction behaved
essentially as a parallel RC combination with no important spurious resonances.

4. Determination of junction parameters using classical phenomena

4.1. Capacitance and resistance

The parameters w, and Q were determined by resonant activation. This
phenomenon involves the enhancement of the escape by a microwave irradiation
of the junction. This enhancement is determined by taking the ratio of the escape
rate measured in the presence of microwave irradiation of power P and of the
escape rate measured under the same conditions but without microwaves. Below
the plasma frequency, the enhancement is a smoothly increasing function of the
microwave frequency. But when a frequency just slightly below the plasma
frequency is reached, the enhancement drops steeply to zero. As numerical
simulations [10,11] and analytical calculations [12,13,14] have shown, the
plasma frequency is given, apart from a small correction, by that frequency at
which the enhancement drops steeply, while Q is given by the range of frequency
over which the drop occurs. Experimentally, it is easier to keep the irradiation
frequency fixed and to vary the plasma frequency by varying the bias current (see
Eq. (6)). An example is shown in Fig. 5. At the resonant current I, the plasma
frequency is equal to the applied microwave frequency. From equation (6) we can
deduce the plasma frequency at other values of the bias current. The value of Q
can be inferred from the width in current of the rf roll-off of the enhancement.
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Figure 5

Microwave induced enhancement of the escape rate measured as a function of the bias current. /25
is the irradiation frequency.

4.2. Critical current and temperature

In the thermal regime the escape of the particle from the well occurs by
thermal activation. The rate is given by [15]:

I''=a/(w,/2m)exp (—AU/kgT), (8)
where the prefactor ;z, is given by:
a,=4/[(1+ QksT/1.8 AU)"* + 1]~ 9)

We determine [, and T from the dependence of the escape rate on the bias
current. As is evident from equation (5) and equation (8) a plot of the
experimentally determined quantity {In[w,(I)/22T(Z)]}** vs. I should, neglect-
ing departures of g, from unity, be a straight line with slope scaling as T~%> that
intersects the current axis at . Figure 6 shows the three examples of such plots.
As expected the dashed lines drawn through the data intersect the current axis at
very nearly the same point. Taking into account the correction due to the

O; T T T T T T iy
//’/
e
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(\Q'Il——ﬁ //// g I/
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[a¥] -
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g / // /
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Figure 6

Plot of the 2/3 power of the logarithm of the escape rate vs. bias current. On this plot, data should fall

on a straight line. Dashed lines are least-square fits to the data. The arrow indicates the value of the
critical current.
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departure of a, from unity we obtain a temperature independent value of the
critical current (arrow on Fig. 6). We find excellent agreement between the
temperature measured from the current dependence of the escape rate and the
temperature measured by our thermometers. The fact that the data indeed fall on
a straight line is also an additional check that the escape occurs through thermal
activation at a well defined temperature.

We have described how we obtain all the system parameters using the
properties of the escape in the classical regime. We will now describe the second
part of the experiment performed in the quantum regime obtained by reducing
the temperature and where the same properties are remeasured.

5. Measurements in the quantum regime

5.1. Quantized energy levels

At low temperatures, one has to decrease substantially the barrier height to
obtain a short enough lifetime of the zero voltage state. Thus, there are only a
few levels in the well. For temperatures 7 slightly greater than hw,/27ks [1, 9],
the escape in the absence of microwaves occurs essentially via thermal activation
through these discrete states to the continuum of states above the potential
barrier. In the presence of microwave power P however, the population of the
excited states at the top of the well increases. The particle then escapes at a rate
I'(P) which is greater than I'(P =0). Consequently, one expects a resonant
enhancement of the escape rate when the irradiation frequency matches a
transition frequency between two energy levels. As in the classical regime, we
keep the frequency fixed and vary the bias current I, thereby continuously
changing all the level spacings. One can in this way determine spectroscopically
the position of the energy levels in the well. Our results for a C =47 pF junction

are plotted in Fig. 7a.
These results can be compared with a quantum calculation of the energy

levels based on an in situ measurement of the parameters AU and w,. An
unambiguous agreement between the experimental value of the relative positions
of the resonances and their theoretical predictions is found (see Fig. 7b). The
relatively small shift in the absolute value of the position of the resonances is due
to the uncertainty in the determination of the critical current (the resulting
uncertainty in the 0— 1 transition frequency is shown by the dotted line).

In this experiment, the junction is only slightly damped with a Q factor
around 80. The relative width of the 0— 1 resonance in the quantum regime is
approximatively equal to 1/Q, as predicted by theory [16].

5.2. Quantum tunneling

In the absence of microwaves and for temperatures below fiw,/27kp, escape
from the well occurs via quantum tunneling through the potential barrier. This



632 Michel H. Devoret et al. H. P A.

. (o')ly%:']-'_'rrz
S Q/2m=2GHz| |t o \\/\1
L4 "
S |
o 2 v '
L‘ P
a . '
[ Ol s T g e g
— L = :l L
T 22r(b)
o |
e
g 1 SE——
>
C_ L
C
L 8¢ 307
3035 2046
[ (pA)

Figure 7

a) Microwave induced enhancement of the escape rate as function of bias current for kT /fiw, = 0.29.
Arrows indicate positions of resonances. Inset represents the corresponding transitions between
energy levels. b) Calculated energy level spacings. Dotted lines indicate uncertainties in E,, due to
errors in the determination of junction parameters. Arrows indicate values of bias current at which
resonances are predicted.

process has received the name of Macroscopic Quantum Tunneling (MQT) since
it affects the state of the junction as a whole and is unrelated to the tunneling o!
individual Copper pairs. MQT is analogous to the « decay of a heavy nucleus, the
detection of the a particle by a counter being replaced here by the detection of a
voltage across the junction. The predicted quantum tunneling rate is [1]:

By 7228 (O, ]

Fq—aqznexp[ 7'2ﬁwp 1+ 0 + , (10)
where:

a, =[1207(7.2 AU/hwp)]m. (11)

Equation (10) is written so that a direct comparison with equation (8) can be
made. The usual WKB result is obtained by letting Q — o in equation (10).

Our results are shown in Fig. 8 where the escape rate is plotted as an escape
temperature T, (defined through the relation I'=(w,/2m)exp (—AU/kT..))
versus temperature. This measurement was made on a C =6 pF junction which
could be placed more firmly in the quantum regime (at the expense of a
somewhat greater damping: Q = 30; however the damping was not strong enough
to affect the escape rate significantly). The open circles correspond to a
measurement with a magnetic field applied to the junction to lower its critical
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Figure 8

Escape temperature plotted against temperature for two values of the critical current. The solid
line is the classical prediction T, =0.95T (equation (8)). The arrow is the quantum prediction
(equation (10)).

current. With a reduced critical current, the plasma frequency is lower and the
junction should behave classically down to the lowest temperatures. Indeed the
escape rate followed the classical prediction (solid line) showing that no
significant amount of external noise was reaching the junction. When the critical
current was restored to its original value, we measured a higher value of the
escape rate (solid dots). The escape rate became temperature independent at low
temperatures, as expected if the escape mechanism is dominated by quantum
fluctuations. This interpretation is supported by the quantitative agreement
between this limiting value of the measured escape rate and its theoretical
prediction (arrow shows the prediction of Eq. (10); we have also indicated the
error bar of the prediction due to the uncertainties in the classical measurements
of the parameters). We note that in our experiment the predicted effect of
dissipation on tunneling is too small to be discernible.

In a recent experiment done on a junction shunted by a metallic thin film
resistor [17] and for which the damping factor Q was 18, a reduction of about 300
of the tunneling rate from its O = « value was measured. This result, well outside
the uncertainties of the experiment, shows that dissipation strongly suppresses
tunneling by a factor which is in very good quantitative agreement with the
predictions of the quantum theory [1, 9].

6. Conclusion

Our measurements of the lifetime of the zero voltage state of a current
biased Josephson junction agree quantitatively with predictions based on quan-
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tum theory, all the relevant parameters being measured in situ. They show that
the phase difference across a Josephson junction, a macroscopic variable, behaves
quantum-mechanically. The meaning of this result is two-fold.

First, the experimental range of validity of Quantum Mechanics has been
extended. We have shown that the property of Quantum Mechanics to treat all
degrees of freedom on the same footing whatever the complexity of the system
they describe remains valid even for a composite, macroscopic system like a
Josephson junction. We are aware that many physicists believe Quantum
Mechanics to be a fundamental theory that cannot ‘break down’. Nevertheless,
we hold the view that this should be checked as far as available technology
permits. A further challenge in the domain of macroscopic Quantum Mechanics
is, for example, the observation of Macroscopic Quantum Coherence [1].

Second, our experiment shows that it is indeed possible, given enough filters
and shields, to isolate an electronic degree of freedom like a voltage or a current
from its environment sufficiently well for its behavior to be entirely dominated by
quantum effects. This opens a new area of research on superconducting circuits
that would preform quantum signal processing such as squeezing [18] and perhaps
implement the so-called back action evasion amplifiers that are needed for the
detection of gravity waves [19]. Finally, the quantum electronician can dream of
building exotic macroscopic ‘atoms with wires’ that would display new quantum
phenomena with no equivalents in the microscopic world.
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