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Do metallic quasicrystals and associated Frank
and Kasper phases follow the Hume Rothery
rules?

By J. Friedel

Physique des Solides, Université Paris Sud, 91405 Orsay France and Institute for
Theoretical Physics, University of California, Santa Barbara, California 93106")

(14. XII. 1987)

In honor of Martin Peter’s 60th birthday.

Abstract. The electronic structure of metallic quasicrystals and associated Frank and Kasper
phases is discussed and the energetics of such phases are compared to those of simpler alloy phases.
Standard elementary models derived from the Hume Rothery rules are used for some elementary
remarks.

Introduction

The metallic quasicrystalline phases [1] and associated long period Frank and
Kasper phases [2] obviously arise from a frustration effect, or a compromise,
between opposite factors. The short range close packing of atoms favors
tetrahedral bonding which however cannot cover without distortions a large
volume in space, or a fortiori build a periodical crystal.

A detailed discussion of the stability of such phases thus requires a delicate
study of the interatomic interactions involved. This might possibly be done, case
by case, using the standard (local density) computer methods [3], at least for
Frank and Kasper phases with not too large periods. This is not the point of view
taken here. Inspired by the empirical observations by Hume Rothery [4],
approximate models have been developed for the study of various kinds of
metallic alloys and compounds. We just want to discuss here what such models
can tell us about the more complex phases involved here and about their stability.
We shall keep to fairly general remarks, leaving out most of the possible
applications to specific cases.

")  This research was supported in part by the National Science Foundation under grant no.
PHY82-17853, supplemented by funds from the National Aeronautics and Space
Administration.
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As first pointed out by Hume Rothery,

1. Metallic alloys, either in solid solutions or in compounds form, mix fairly
freely elements with comparable electronegativities and ‘suitable’ relative
sizes: comparable sizes for substitutional alloys, small sizes for interstitial
solute elements, specific size ratios for Laves phases [5] . . .

2. Alloys of this kind tend to form specific phases for definite average
valence electrons per atom ratio.

3. f-electrons of rare earth elements do not count in this ratio. When
appearing as minority solute components, transitional elements seem to
act as having zero or even negative valences, i.¢., the d shells do not take
part in the count and seem even to absorb valence electrons of the matrix.

This leads us to discuss three cases in turn which correspond to classical
families of metallic alloys and compounds.

—nearly free valence electrons, involving normal metals at the beginning of
the sp or sd series and also most rare earth metals. Here, the valence
electrons are but weakly scattered by the atoms [6].

— narrow bands, involving the d bands of transitional metals [7] or the 6d-5f
bands of heavy metals [8]. Here, the corresponding electrons can be
treated approximately in the limit of linear combination of atomic orbitals.

— mixtures of these two families which involve resonant (p, d or f) states.
The simplest and best known case is that of virtual bound d levels of
transitional solute elements in normal metals [9]. But other examples are
resonant p states of normal solute elements in transitional matrices [10] or
resonant f states of some rare earth [11] or of heavy metals dissolved in an
spd matrix [13].

What we have to say on these various cases in nothing especially new. It fits
with the general characteristics of the three families and mainly shows that the
detailed analysis of these structures do not necessarily involve the same sort of
interatomic forces. Indeed the mere possibility of using additive interatomic
forces is in question in most cases.

This paper concentrates on the Hume Rothery rules concerning the average
electron per atom ratio. It will therefore assume that the cases considered follow
the Hume Rothery rules concerning size and electronegativity.

A. Nearly free electrons in normal and rare earth alloys and compounds

In this family, the average number of valence electrons per atom ratio seems
to dominate the so-called Hume Rothery—Jones phases, when size and electrone-
gativity factors are favorable. It has indeed been argued repeatedly that
quasicrystals and Frank and Kasper phases of this family followed the Hume
Rothery—-Jones rule [13, 14].

According to Jones [15], a special stability of the alloy occurs when the Fermi
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sphere containing the valence electrons just touches strong Brilluoin zone
boundaries, with large gaps |V,| (Fig. 1). We first recall Blandin’s treatment of
the crystal case [16], before discussing its extension to solid solutions and
quasicrystals.

B. Blandin’s approach for metals and stoechiometric compounds

Blandin’s treatment of this problem is historically the first correct one, and
also is very transparent in the relation between the pictures in real and reciprocal
spaces, in the approximations made, in the exact consequences for stability
[17-19].

The treatment starts with the kinematic approximation, where one assumes
that every electron wave in the alloy can be analyzed as one plane wave |k) plus
small contributions from other plane waves:

lpk) = k) +§a}f k+K). (1)

The classical (iron degenerate) perturbation theory gives

ail < (k+ K| 2 Vi [k) = 2 Vige™™ )

where the atomic potentials V;, at sites R;, have Fourier components Vik.

Within the same approximation, one can develop the total electronic energy
of the alloy in successive powers of V;. The first term which depends on the
relative positions of the atoms is a second order term AE, which will obviously be
the sum of pair interactions, where the two scattering atoms i, j can be thought as
two impurities in an otherwise free electron gas. A well-known result of
electrostatics (of Appendix A) gives [20, 21]

1
AE=:3 Vip) (3)
25 | |
where p} is the charge density of the inner ion j, while V; is the total potential
of atom i, including the screening by the valence electrons. Introducing the
dielectric constant € of the free electrons gas, which depends on the wave vector
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K of the perturbation, this can be written

1 K? .
AE =~ 0 170 ,/KR; 4
2 ; drmey E VeV e, )

where V% is the Fourier transform of the potential of the inner ion .
In crystals, one can split the summation over atomic sites into a summation
over lattice periods n and a summation over the atomic sites i of a unit cell with

2, €% = N6(K — Kgg). (5)
Rn
AE reduces to
AE=N 2 Frr (6)
KRR
where
FK — K2 2' V(‘]KV(‘)KeiKREj- (7)
Smep &5

F is a form factor for the atomic composition of one crystal cell, and Kzx are the
periods of the reciprocal lattice.

With the definiton of V7, the factor L. Vixe'®® is a smoothly varying
function of K, while €, possesses a well-known logarithmic anomaly at K = 2k,,
(Fig. 2). Thus each period Kgx in reciprocal space contributes to the energy a
term AEg which has also a logarithmic anomaly at K = 2k,, (Fig. 3).

If the Fermi level falls in the vicinity of the Brillouin zone limit correspond-
ing to period Kgzr, the valence electron gas thus exerts inner pressure to bring the
Fermi sphere just beyond the condition 2k,, = Kzg. This pressure induces it to
cut slightly the corresponding Brillouin zone boundary (Fig. 1).

In fact, in a more complete discussion of the phase diagram, one must plot
the energy AE as a function of the composition or, here, of 2k,,, and compare
the variations of AE(2k,,) for different possible phases. Figure 4 shows that a
given phase (here ) can appear or not, depending on small variations of the
relative positions of these curves for the various phases «, 8, y possible. If such a

xXb--

0 2k K 0 T

Figure 2 Figure 3 :
Variation of €, with K. Variation of AE, with K.
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Relative positions of AE(2k,,) for three possible
phases a, B, v inducing two different phase dia-
a aty Yy 2ku grams: (a) a, B, v; (b) a, y (no B phase).

phase appears, the Kohn anomaly [22] in AE(2k,,) makes it indeed appear for
the condition K = 2k,, pictured Fig. 1.

Now of course a proper treatment of electronic waves near Brillouin zone
boundaries should start from a more correct dynamical approximation, where at
least two plane waves are assumed to have large amplitudes:

k) =A k) +Bk+K)+ > af k+K'). (8)
K'#K

Indeed only this approach gives the correct behavior of E(k) of |y,) near a
Brillouin zone boundary, while the kinematic approximation (1) gives divergences
of E(k) (Fig. 5). However, as was stressed by Pick and Blandin [23], we are only
interested here in an integral property of the E(k), where one sums contributions
up to a Fermi level which, in 3-dimensions, only falls in the gap over a very
limited area of the Fermi sphere. In most directions, it is below or above the gap,
in a position such that the divergencies do not appear or cancel out. If then one

a/\o

=T

Figure 5
Variation of E(k) near a Brillouin zone boundary: (a)
0 172 Kpg kz  kinematic; (b) dynamical approximation.




Vol. 61, 1988  Metallic quasicrystals and associated Frank and Kasper phases 543

AE,

o-——

N\

2k
(a) (b) (c)

Figure 6

Two values of E,, for which one expects an anomaly in AE in the dynamical aproximation (a, b) and
the corresponding changes of slope of AE(2k,,) (c).

computes correctly such an integral property in the dynamical approximations
and then develops the result to second order in the Vi, one finds the same result
as in the kinematic approximation, which is therefore valid as a perturbation
development. '

It is worth pointing out at this stage that in this approximation AEy has a
logarithmic anomaly. For finite values of Vi, thus of the gap (Fig. 5), one expects
on the other hand AEg to have two successive ruptures of slope [15]: one when
the Fermi surface begins to touch the Brillouin zone boundary; one when it
begins to flow over the boundary over the next Brillouin zone (Fig. 6). In the
same way, the density of states n(E) has two ruptures of the slope in the
dynamical approximation, while it has a double infinity in the kinematic
approximation used here (Fig. 7).

However the differences are slight in the region K =< 2k,, of interest. The
kinematic approximation is also the only one where a simple treatment of
self-consistency can be made, using formula (3). Finally, it has the advantage of
analysing the stability in terms of additive pair interactions deriving from central
forces and which can be summed up in direct space. This is especially useful in
case of complex or imperfect structures.

A classical study of the pair interaction V;p; shows that it decreases as an

n n
_ |~

2aY, ”}
|
W I/
Ll |
[l |
1yl |1

0 a |b E 0 Ew E

Em
(a) (b)
Figure 7

Density of states: 1. dynamical and 2. kinematic approximations.
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Figure 8
Variation with distance R, of the pair interaction V;p;.

oscillating function of distance R;; [24] (Fig. 8).

9)

The condition expressed by Fig. 1 is strictly equivalent to stating that these
additive pair interactions optimize their (negative) oscillations.

C. Extension to solid solutions, to non-stoechiometric compounds and to
quasicrystals

In many instances, the crystal structures considered are not perfect, because
two or more chemical elements can occupy, more or less at random, a given site
in the lattice cell.

If the scattering potentials of these elements are not too different, one can
introduce a virtual perfect crystal where the site considered is occupied by an
average potential V. The local deviation 8V, =V, —V, from this average scatter
the electrons incoherently. This reduces their mean free path /; it produces a
continuous scattering background at the expense of a reduction of the coherent
scattering intensities, together with a cut off factor exp (—R;/l) to the pair
interactions (9). However, the corresponding relaxation rate

_huy (8V)?

h
V=TT TE,

(10)

(Ep = 3mv%, Fermi energy) produces an energy broadening which does not
suppress the gap as long as

|6V > <|VkEwul (11)

This condition is necessarily fulfilled for the Fermi electrons in the weak
scattering limit, where all |Vx|’s are small compared with E,,. One can therefore
extend the preceeding treatment directly to crystalline solid solutions and to
non-stoechiometric crystal compounds just as for X-rays or fast electrons.
Quasicrystals present a further complication in that one cannot properly
describe their structures in terms of a lattice of equivalent cells decorated with
atoms. It is however usually believed [25] that, to a good approximation, one can
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define a quasilattice comprising two types of cells, and that these cells can be
decorated with atoms in a way which is the same for at least most cells. The
quasilattice has well defined Fourier transforms, so that equation (5) applies,
although the delta functions are now distributed over the whole reciprocal space.
The same analysis therefore applies, with again a small continuous scattering
background coming now not only from possibilities of atomic solid solutions or
non-stoechiometries, but also from small variations of atomic composition or
positions from cell to cell.

D. Quantitative applications

This approach shows that if the Fermi sphere just touches a family of
Brillouin zone boundaries corresponding to well defined diffractions spots, there
will be a possibility of observing a corresponding Hume Rothery—Jones
compound.

It is tempting to try and relate the relative strengths of the |Vi| to
corresponding intensities of diffraction spots observed by X-rays or by fast
electron scattering.

This is usually possible only in a qualitative way [14]. The reason is that the
V:’s which scatter weakly the Fermi electrons are pseudopotentials, which are
different and usually much weaker than the Coulomb potentials involved in fast
electron scattering or the corresponding electron densities which scatter X-rays
[6, 19]. These pseudopotentials correct for the fact that, but for H and He, the
valence electrons are not the states of lowest energy; there is a large kinetic
energy correction which compensates most of the short range Coulomb attrac-
tion, in a way which varies from element to element.

In general, one can argue that the scattering intensities result from the
product of a structure factor of the lattice (or of the pseudolattice) times a form
factor of the cell (or of the cells). When one observes only a few families of
diffraction spots of large intensities, and if the position of these spots do not vary
much with exact composition, one can argue that they are due to a large structure
factor of the lattice (or of the pseudolattice), irrespective of the details in the
form factors. It is the same structure factor which appears in the diffraction of
valence electrons as well as in both X-rays and fast electron diffractions. One can
then reasonably argue that the corresponding compounds are Hume Rothery-
Jones alloys if the Fermi sphere just touches some of the corresponding Brillouin
zone boundaries. In this sense, a number of quasicrystals and Frank and Kasper
phases have been said to be Hume Rothery—Jones compounds.

There are however two specific cases where a more quantitative analysis can
in principle be made at present.

1. In Frank and Kasper crystal phases of not too large unit cells, where one
knows the atomic structure in detail, one could compute directly the
different Vi corresponding to the known atomic pseudopotentials. As far
as I know, no such computation has been made yet.
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2. In compounds where one type of atoms acatters predominantly both the
valence electrons and fast electrons (or X-rays), one can compare directly
the relative intensities of the potential and pseudopotential values of V:
they are proportional to each other if one neglects the scattering by other
atoms.

A case of this kind is the AILiCu (or AlLiCuMg) alloys [14]. It is obvious
that the real Coulomb potential of heavy Cu is much larger than those of light Al,
Li or Mg. But it is interesting to notice that the pseudopotential of Cu is also
large compared with those of Al, Li, Mg. This is due to the proximity of the
Fermi level to the 3d shells of Cu, which induces a resonance scattering of Fermi
electrons. Indeed the pseudopotentials at Fermi level are roughly in the ratios
6:2:1 for copper, lithium, aluminum, respectively [26].

Table I gives the values of the K vectors for the main X-rays diffracting Laue
spots of a single quasicrystal of AlgLi;Cu, together with the intensity factors |F,|*
and multiplicities u, according to recent measurements by Janot [27] which
complete earlier ones by Dénoyer [14]. It is seen that 2k, which, for the
composition of the alloy studied is equal to 3.124+0.02 A, fulfills the Hume
Rothery—Jones condition for the Laue spots which come second in the order of
magnitude of u [E|%.

Two points need to be stressed here.

1. What matters is u |F,|°>. A characteristic property of quasicrystals and
associated Frank and Kasper phases is that u is especially large compared
with those active in simpler crystal structures [13, 14]. This is related to
both the 5-fold symmetry and to the fact that the unit cell is very large (or
infinite), so that the active Laue spots are far from being the ones of
minimum K; they can then have large degeneracies.

2. It 1s not clear at present whether the samples reported in Table I are
quasicrystals or related twinned Frank and Kasper phases [27]. The fact
that the Laue spots have a granular structure rather suggests the second
case. However the corresponding quasicrystals have Bragg reflections at

Table I

Intensities of Laue spots for AlgLi;Cu
KA™)  p P wIE?
1.480 20 26 520
2.631 12 40 480
2.766 30 96 2880 3
3.138 60 61 3660 2
3.252 60 25 1500
4.476 30 79 2370 4
4.791 60 14 840
5.262 60 100 6000 1
5.532 120 18 2160 5
5.882 60 27 1620 6
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practically the same average values of K, and with a similar pattern of
intensities.

It is then clear that the same Brillouin zone boundaries effect stabilizes the
two kinds of phases. This seems to be very often the case.

The special stability of these phases can then be viewed as an energetic
resonance due to the coherent (weak) scattering of the Fermi electrons by the
atoms. They can also be understood as structures where the pair interactions (9)
optimize their effects, by a close packing of atoms at distances where a minimum
of these interactions arises (Fig. 8).

If this interpretation is correct, the Fermi level should fall in a region where
the density of states has values smaller than what is expected for a free electron
gas (Fig. 7); this reduction should be of similar amplitude for quasicrystals and
associated Frank and Kasper phases. Measurements of electronic specific heat
seem to show indeed values of y similar for those two types of phases, but
somewhat too large compared with a free electrons model [29].

E. Resonant (d) states of solute transitional elements in normal (sp) metals
and compounds.

In this family, two experimental data related to energetics are generally
known:

1. Hume Rothery-Jones rules seem to be followed; but the transitional
elements seem to act as if their d shells were absorbing a number of
valence electrons, thus resulting in effective negative valencies: about 1
for Copper base alloys [4] and 2 for Aluminium base alloys [30].

2. The inclusion of transitional elements seem to stabilize somewhat these
Hume Rothery—-Jones phases.

There is extensive literature on these points for more or less classical crystal
phases. Recent works have merely shown that quasicrystals and related Frank
Kasper phases also follow these rules [31].

(a) Difficulties of the energetics results

These results are a priori surprising, for the following reasons, to be detailed
elsewhere [32].

When transitional impurities are dissolved in a normal sp matrix, their d
states, with energy E, mix with the broad sp band into a virtual bound level
which is progressively filled with d electrons in a transitional series [9]. For
non-magnetic impurities, there is a single such state per atom, of degeneracy 10,
with a maximum scattering at Fermi level when half filled. The maximum residual
resistivity observed in Al T solid solutions arises when T is Cr or Mn, showing
that these elements have approximate configurations of the type (3d),(4sp), s
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Figure 9
Mixture of d states and of a broad sp band for crystals of increasing concentration of transitional
element. In punctuated lines, the bands to be coupled.

with n =4.5 and 5.5 for Cr and Mn, respectively [39]. This is far from the
configurations (3d), with n’' =8 and 9 for Cr and Mn assumed by the Hume
Rothery—Jones law [29]. A similar analysis can be made for Cu T with same
conclusions.

Furthermore the Anderson model [34] developed for isolated transitional
impurities can be extended to finite concentrations [35]. Although only qualita-
tive, because it neglects the degeneracy of d states, it leads to but small energetic
effects in general.

For crystals, it leads to the mixing in reciprocal space of a flat d band with a
broad sp band (Fig. 9a,b,c). The density of states starts from a hump of
Lorentzian shape at small concentrations, as expected for non-interacting
impurities; for increasing concentrations, a gap of increasing width is produced
near the center of the hump, which however keeps its Lorentzian wings (Fig.
11a, b, ¢). Quasicrystals, with a few bright Laue spots, are in this respect similar
to large concentration crystals.

For random solute transitional elements, long range interferences due to
multiple resonant scattering produce a secondary minimum in ny(E) which grows
with concentration and can be approximately studied in a coherent potential type
of approximation. This secondary minimum grows into a small (pseudo)-gap at

Figure 10

Random solid solutions of transitional elements in a normal metal: a,b,c for increasing
concentrations. In punctuated lines, the CPA approximation.



Vol. 61, 1988  Metallic quasicrystals and associated Frank and Kasper phases 549

very large concentrations [36], where, however, direct short range interactions
should also be considered. Again these changes do not affect the long range
Lorentzian wings of the density of d states (Fig. 10a, b, c).

It is then clear that, when dissolved in a normal metal, a transitional atom
gains some energy, due to the broadening of its d shell. But this energy
2 [®™ ny(E — E;) dE is dominated by the contribution of the Lorentzian wing: it
should not be very sensitive to concentration or long range ordering, which only
affect the core of the Lorentzian. Furthermore this term is smaller than its
equivalent when the transitional atom is included in a transitional matrix, where
n, has a much larger width.

Indeed the maximum stabilizing effect for cases considered so far are in the
crystal or quasicrystal cases, with large concentration, when the Fermi level falls
within the gap. This requires a specific number of d electrons, fixed by the fact
that the ratio of d states below and above the gap is given by the ratio of volumes
I and II, Fig. 9c. Now all perturbations in the core of the Lorentzian are of order
of the gap energy, i.e.,

_ NP 2c¢ 5
E,—E, 3np™0 v (12)
where c is the atomic concentration, p the valency of the matrix and 7n, |v|* the
width of the Lorentzian (n, density of sp states, v coupling matrix element
between sp and d states). The maximum energy gained by the opening of the gap
should then be of order

OE =2Ng*n,(E,) = 2Ng*/nn, |v|*

or
1 8
]T’ OFE = gj'l;3p2 A%Cz. (13)

As the width A= zn, |v|® is of the order of 1eV, this energy is very small,
especially in Al base alloys where p < 3.

Figure 11
Crystals with transitional solute elements in normal matrices: a, b, ¢ for increasing concentrations.
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(b) Possible extension of Hume Rothery—Jones law for resonant scattering

There is a special case that was not considered in the discussion of Fig. 9. It
corresponds indeed roughly to a Hume Rothery—Jones condition. It is when the
flat band E, interacts strongly with two broad bands E, and E, (Fig. 12).

If the flat band meets E, and E, at a Brillouin zone boundary, the local gap
G, will be twice as large as the corresponding local gap G at the crossing of E,
and E,, Fig. 9c. But, for half filled d levels, only half the d electrons will be in
the lower band and affected by the gap opening, while half will be kept in the flat
band. These two factors essentially compensate each other, leading to no special
stability for the case of Fig. 12a.

The situation becomes different if we take into account that the broad sp
band is not a free electron band but a nearly free electron band. The coherent
scattering of the sp electrons by the atoms of the alloy (both matrix and solute
elements) usually leads to a gap G,, at the Brillouin zone boundary. Resonance of
the broad sp band with the flat d band increases the gap to (Fig. 12b).

G =G5+ G5 =Gy, (14)

By interference with the preexisting sp gap, the d electrons now gain an energy
G — G, with respect to the previous case. This is sizeable, as G, and G,, are
both of order of 1eV. Indeed

2 172

G2V vl =25 c(a~ E)| (15)
where, for AlgyMn,y, ¢ =0.20, p=2.5 and E; — E, = 10eV while A,=1¢eV.

The optimum situation will occur when the condition described in Fig. 12
happens on the largest number of directions &, in reciprocal space. This is roughly
obtained when the angle 6 of those k., directions with the normal to the Brillouin
zone boundary is maximum. From Fig. 12c, one sees that the Brillouin zone is just
inscribed in the Fermi sphere.

This condition is be contrasted with the usual Hume Rothery—Jones
condition described in A, where the Fermi sphere just touches the Brillouin zone

(b) (c)

Figure 12
Hume Rothery-Jones condition for resonant scattering. (a) Free electron sp band; (b) nearly free
electrons sp band; (c) condition in reciprocal space.
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boundaries (Fig. 1). From the discussion in A and Fig. 2, one also sees that the
total stability is larger than the one expected merely from the sp gap.

Because the new condition involves, for the same lattice geometry, a larger
sphere, it requires a larger valence electron per atom ratio than the usual
condition. As a result, if one insists in using the usual condition, one is lead to
assume for the transitional elements a smaller valence electron per atom ratio,
thus a smaller or even negative valency.

It is also clear that this discussion applies to quasicrystals as well as to crystal
phases.

Consider for instance the AlgMn,, quasicrystal phase [30]. Let n be the
effective (negative) valency to be attributed to Mn in the usual Hume Rothery-
Jones condition. The real (sp) valency is aobut 1.5. Then

08x3+02xn 38R
0.8%3+02%x15 R
if RV and R + OR are the radii of the two spheres of Fig. 12c. It is easy to see that

38R
Sax b 17
R (17)

Thus

(16)

n=15- 81 (18)
U
This is indeed of order —2 if u = 20.

Equations similar to (16) for matrices of smaller valencies would lead, for
similar degeneracies, to less negative effective valencies of transitional metals.
This is indeed stated for Cu, Ag or Cu base alloys.

Nothing better than an order of magnitude agreement can be expected from
this type of model. One should also stress that the magnetic effects observed in
AlMn quasicrystals (but not in related Frank and Kasper phases) have not been
discussed here, as they should lead only to small corrections.

F. Narrow d bands of transitional compounds

Here, the narrow but degenerate d band dominates the stability and most
physical properties. It can be validly analyzed in the approximation of linear
combination of atomic (d) orbitals [37], with eventual admixture of a broad sp
band [37].

In its simplest d form, the density n,(E) gives rise to a change of energy per
atom, with reference to the gaseous state, which can be given as a development
of successive powers of U and J, the average intra-atomic Coulomb and exchange
interactions between d electrons. For non-magnetic alloys, this reads for z, =5
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[39]
E,—Ei~E +i‘(1—-ﬁ)U+-z—"(z _1)1_4522[55(1_ﬁ)]2+1 R
A A 10 g w L10\" 10 29
(19)
where
1 (Em
1 [Em
z,,=ﬁzf n, dE (21)

and a similar expression for z; =5 where z, is replaced by 10— z,. R is a short
range pair repulsion, w an estimate of the band width and g the number of
neighbors.

We can use the well-known relation [40] then valid for the moments of n,:
Ml = j nd(E = Ed)[ dE = S]tl (22)

where ¢ is an average transfer integral and S; the number of closed loops of /
interatomic jumps between neighboring atoms.

Fitting first a constant density n, with a width w to the three first moments of
the real n,(E) gives [39]

Z4 Zq
E =-—( -—) 2
B 2 1 10 w ( 3)
with
w=(129)"* |¢|. (24)

This predicts that the most stable phases are closepacked and that their cohesive
energy per atom varies qualitatively in the way schematized in Fig. 13. Within this
limit, one can already understand why quasicrystals and related Frank and Kasper
phases have stabilities comparable to those of the FCC of HCP phases: they have
definitely larger values of g, but at the expense of some distortions of interatomic

a
Ed - Ed
7T N
Figure 13
Cohesive energy —(E, — E%) of transitional metals and
o] 10 2d  compounds across a transitional series.
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distances which increase the positive contribution of R in (19). The situation is
somewhat analogous to that of the BCC phases, which is very closepacked with
14 nearest and next nearest neighbors, but at the expense of some differences in
distances. Here again, one knows that the stability is comparable to that for the
FCC of HCP phases.

To discuss the relative stability of these phases, one must go beyond the
second moment, and at least up to M,. Indeed there is a regular succession of
simple phases observed for pure metals and their binary alloys in the transitional
series which was first stressed by Hume Rothery [4]. As expected from the
symmetrical character of this series (FCC, HCP, BCC, HCP, FCC), M; plays no
role here, as it has the same value for these different phases; but corrections
associated with different values of M,/M3 and therefore with the relative weight
of the tails of the d band, can explain this succession; and these conclusions are
confirmed and made more quantitative when one considers further moments
[41, 42].

A similar analysis has not yet been made for the Frank and Kasper phases
(except for the special A;s [43] or Laves [44] phases), or a fortiori for
quasicrystals (except for a cluster work) [45]. It is, however, interesting to note
that a similar regularity is observed for those phases with small size and
electronegativity effects: they are systematically observed for average d electrons
per atom ratio that is somewhat on the right of the middle of the transitional
series, between the BCC and HCP phases [46]. This suggests the same type of
explanation. :

First one can make a point that the Frank and Kasper phases, being based on
imperfect tetragonal packing, are non alternate structures, with sizeable Mj;’s,
nearly comparable to those of the simple FCC, HCP and BCC phases, but
probably smaller. Indeed, the atom at the center of an isohedron contributes to
M; slightly more than the average for these simple phases (in the ratio 5/4); but
there are many atoms with less perfect packing in real phases, thus an average
M; will be below this upper limit.

Then Frank and Kasper phases have different atomic sites with very different
numbers of neighbors g. M, is proportional to the average value of g, while M,
depends more on a local average of g°. As a result, M,/M3 is expected to be
larger in Frank and Kasper phases than in the close packed FCC or HCP phases,
without reaching however the very large value of M,/M3 of the BCC phase.

It is therefore reasonable to expect that in the Frank and Kasper phases
ny(E) has an asymmetry less marked than in the simpler phases and a relative
weight of the tails intermediary between those of the FCC and HCP and of the
BCC phases. Taking into account that, from (20) and (21)

d’Es 1
dz2 ~  2n4Ey)

(25)

one sees that Eg(z,) is likely to be less asymmetrical than for the simpler phases,
and with a peaking near the middle of the series intermediary between BCC and
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Eg
0 10 7y
FCC HCP
~ Figure 14
. FK? Expected variation of Eg(z,) for simple and Frank and
BCC Kasper (or quasicrystal) transitional phases.

HCP (Fig. 14) This would be coherent with observation for the Frank and Kasper
phases as well as for the related quasicrystals where a similar discussion probably
holds — computations reported in [43] to [45] are in qualitative agreement with
this conclusion.

Conclusions

The quasicrystals and associated Frank and Kasper phase seem to follow the
general rules of relative stability expressed initially by Hume Rothery for simpler
crystal phases.

In ‘normal’ metals, a special stability is associated with the Fermi sphere of
valence electrons just touching a set of Brillouin zone limits with strong intensity.

When acting as solute elements in normal metals, a similer rule applies
where the d electrons are excluded from the count of valence electrons. For large
enough concentrations of transitional solute elements, we propose that the
maximum stability occurs when the Brillouin zone is just inscribed in the Fermi
sphere. This would explain the apparent negative valences of these elements
when the usual Hume Rothery—Jones condition is applied instead.

Transitional compounds lead to specific closely but unequally packed phases,
with special stability near to but on the right of the middle of the transitional
series.

Some general justifications can be offered for these rules, due to the
‘valency’ factor, which predominates when the two other Hume Rothery factors
(size and electronegativity) are small. These justifications differ somewhat in the
three cases considered. Furthermore, in each case, they result from an analysis of
the coherent scattering or propagation of the valence electrons which can be
expressed in terms of additive pair interactions only in the case of normal metals.
Even in that case, the long range oscillations of these interactions have little
relation to the simpler pair interactions often used in this field.

Appendix A. Interaction between two impurities in a free electron gas, in
second order perturbation

Within the Born-Oppenheimer approximation, the energy of interaction
W(R;) of two impurities at distance R,; from each other is equal to the work done
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by external forces to bring impurity j from infinity to R;. This in turn is equal to
the change of electrostatic potential energy of the inner ion j.

This electrostatic energy can be split into four energies of interaction:

— with the free electrons,

— with the screening of the ion j considered when isolated,

— with impurity i, screened as if j did not exist,

— with the change in the two screenings due to interference effects at finite
R

The two first terms do not vary with R;
The third is the term V;p} used in the text.
The fourth is a term of order three in V, thus negligible to second order in

i

perturbation.

The analysis still holds if, as for the interactions between say Mn and Al, one

of the impurities has a strong potential.
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