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One-dimensional band dispersion relations in
terms of SU(2) representations

By M. W. P. Strandberg

Physics Department, Massachusetts Institute of Technology
Cambridge MA 02139 USA

(9. XI. 1987)

In honor of Martin Peter’s 60th birthday

Abstract. The properties of the representions of the symmetry operations of the one-dimensional
Schrodinger’s equation are sufficient to determine, abstractly, the values for the ‘allowed’ ranges of
energies for which the solutions of Schrodinger’s equation are finite. A small set of representations
which are useful factors of the representations for quite complicated translational symmetry are
derived. The dispersion relationship between the wave vector and the allowed energy bands is
derived. The form these dispersion equations assume is illustrated in a few special cases. It is pointed
out that this approach, based on the representation for finite translations, is compatible with the
computer literacy which present day students can be assumed to possess. Discussion of this type of
material can provide a non-trivial excuse to use some of the powerful tools of the theory of groups.
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1. Salutatory Preface

It is a pleasure to be able to offer this contribution to the observance of Professor
Peter’s 60th birthday. I am grateful for the years we worked together as
colleagues at MIT. And when he left MIT, through our continuing friendship, I
have found gratification in following his career. It has been a productive career
with many facets; his scientific achievements, his academic leadership, his
community involvement, and his role as a caring family man. As a creative
person, Professor Peter, as do all creative people, owed Society for providing him
the opportunity to realize those gifts. He has repaid that debt bountifully. May he
have many more decades of work now, doing just those things that are pleasing to
himself!

1.1. A bit of history

When Professor Peter came to work with us at MIT nearly 40 years ago we
were all favorably impressed by this large, gentle, intelligent Swiss student. Time
was to show his influence on us all. First, his physical strength was a certain
factor, when coupled with his fun loving side. He would, just to impishly
challenge the lesser bodies, lift a large electro-magnet and put it in the middle of
some one’s desk during that person’s absence. The opportunity often presented
itself, for example, when he left after working late at night in the laboratory. The
late Professor Richard Mattuch was half the size of Professor Peter. I remember
him arriving one morning at the laboratory riding his unicycle. He then had to
patiently play the role of a butt of our laughter as he struggled to clear his desk of
a magnet. But the strength of the intellect of Professor Peter also influenced us
more often. We had the custom of having study seminars which met once a week,
with a topic which one might call ‘cultural’, given the daily needs of our work.
Professor Peter organized a set of seminars on group theory. We were led
carefully through Schur’s lemma, and so on. His introduction to Schur’s lemma,
and to its meaning, certainly gave us the boost we needed to make the clarity and
elegance of this thing of beauty — the theory of groups — useful to us in our much
more mundane work. I have collected in this paper some calculations in an
attempt to show some of this beauty. I am happy to dedicate this paper to
Professor Peter in this Festschrift in remembrance of those associations we had
nearly four decades ago.

2. Introduction

As a pedagogue I have often tried to understand the reason for the
dichotomy of wave and matrix mechanics having been used so little as a tool to
describe the intellectual content of quantum mechanics. It is obvious that to say
that matrix mechanics concerns itself with the properties of the representations
of the symmetry operations of the system, the # in #v, and that wave mechanics
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concerns itself with the properties of the basis vectors, the vy in #v, glosses over
the intellectual content of the dichotomy. It is like saying that the Holy Grail is a
cup! It misses the historical, intellectual, and analytical content of the subject.

In the theory of rotational spectroscopy the distinction is stunning. The
rotational degrees of freedom depend only upon rotation symmetry operations,
1.e., the identity is the translation symmetry representation. So the system is quite
simply described by the properties of the commutators of the angular momentum
operators. But much early work was carried out using wave mechanics [1]. The
wave-mechanics papers are long and filled with the manipulation of hyper-
geometric functions, and the discussion of their arcane properties. Cohorts of
functions march across the pages, garlanded in superscripts, and with an
underbrush of subscripts dragging at their feet. The effect of a comparison of this
approach with the work of O. Klein which developed the properties of the
rotational symmetry representations from the Lie algebra of the angular
momentum components, is indeed stunning; the power and simplicity of the
representational approach is clearly evident. But as we know the success of
representational quantum mechanics as it is applied to prosaic problems has been
decidedly underwhelming . . .

The situation described above requires a book for its treatment. Let me,
here, give only a suggestion of what might be discussed. For an example it is
appropriate to take one that includes computer literacy. Wave mechanical band
theory in one dimension involves the selection of basis vectors, the wave
functions, which behave ‘properly’ as one approaches the singularities of the
potential and infinity. The most simple condition is that the wave function remain
finite. When one works with basis vectors which are described as continuous
functions of the coordinate and explicitly integrates Schrodinger’s equation
toward infinity, one can, with the use of some mathematical virtuosity, predict the
behavior as the solution approaches infinity. Performing this routine on a
computer is impossible. One can not ‘approach infinity’ since any distance
described by a computation is finite. Continuing the computation simply increases
the accumulated round-off error without bounds.

If, instead, one studies the representations of the translational symmetry
operations for Schrodinger’s equation with a computer, one need only explore
representations for finite translations; the invariants of the representations for
finite translations allow one to determine if the wave function they generate will
behave properly as one approaches infinity. In other words, a study of matrix
mechanics is more appropriate for a computation literate society. This point will
become more credible if we carry out some explicit computations.

3. Translation representations for Schrodinger’s equation
If we restrict ourselves to realistic potentials having denumerable discon-

tinuities and integrable singularities, we can represent them by using a comb
array of d-functions with weight for each d-function being given by the integral of
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the potential on the infinitismal interval that includes the individual &-function.
The integral of Schrodinger’s equation can then be performed across a given
o-function. This procedure yields the following set of equations from which the
representations for the infinitismal translation symmetry operator may be
determined; (2)

(n+1)e
V(x)=> V,ed(x —ne), V,= -i: j V(x) dx

ne+ 2
O=f i (# - E)y(x)dx=> —y'(ne+) + y¢'(ne—) +% V,.ey(ne)

2ma®

(/o
The last equation states the need for continuity of the wave function with
integrable potentials, or with particle conservation. This set of equations must be
augmented by the double integral of Schrodinger’s equation for free-space
translation in the interval between d&-functions. In this interval the solutions to
Schrodinger’s equation, which allow a convenient local isomorphism of the wave
function of be drawn with spinors, are the exponential phasors, exp (tikx),
where k = vVE. The particular solution will be some linear combination of these
phasors, a similarity transformation. For completeness we must note that there is
a singular solution for k =0 which can not be obtained from the phasor solution
by any similarity transformation. This is the solution, 9 = Ax + B. To include this
solution in our discussion presents no difficulties. It will not be considered here
explicitly, in the interest of simplifying the presentation. One can use these
solutions to evaluate the slopes in the equation resulting from the first integral of
Schrodinger’s equation through a particular d-function. The computation that
one develops by following the wave function through the infinitismal translation
in this manner rapidly degenerates into some rather opaque algebra.

unit energy = v’ = unit length = a; Y(ne+)=y(ne—)

3.1. Canonical macros from SU(2) for translation

3.1.1. Macro for infinitesimal translational. It is preferable at this point to
make use of the fact that the wave function is a linear combination of two
independent parts by using a local isomorphism of the solution with spinors. In
this isomorphism the amplitudes of the linear combination of solutions that
determines the wave function transform under translation like the components of
a spinor. Consider the translation between J-functions. With the exponential
form chosen above, one sees that the amplitudes of the components change by an
amount exp (*ike) for a translation by an amount, & Written as a spinor
representation this would be a diagonal 2 X 2 matrix with those elements. Call
this representation the propagation representation, P. If the amplitudes of the
spinor components are called u and v, then the isomorphism is expressed
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explicitly as follows:

v () (33 . 3) - (exp(()ikg) exp (“_ikg))(jjﬁjii) -7,

P would, of course, correspond to a rotation of a spinor about the z-axis. In like
manner, the equation for the change in slope of the wave function due to the
potential and its continuity given above can be written in terms of a spinor
tunnelling representation, 7. Explicitly these equations assume the following
form in spinor representations.

Ylnet+) = y(ne—) 1 1 \/u
Y'(ne+)=vy'(ne—)+ V,ey(ne—) > (ik —ik)(v)+

%( 1 1 )(u‘
\ik+ Ve —ik+Ve v)_

Combining these two results, one has the representation for infinitismal transla-
tion, R, which includes both the effect of the spatial displacement and the effect
of the potential, and is given by the product of the tunnelling representation, T,
and the free-space propagation representation, P.(3)

u u 1 1 \! 1 1
GGl TG i) Gevve —aevel
v/ 4 v/ _ ik —ik ik+V,e —ik+ Ve
[ Yee Ve
—i —i
P(f) _ (exp (ike/2) 0 ) _ 2k 2k
2 0 exp (—ike/2))’ a V. 1+,‘7n8
"2k "2k

With é-function centered:

1 = unit matrix

_bofE £\ _(cosh —sinh
(e = P(Z)TP(Z)’ MR = <sinh p —cosh [3)
R(e)=1+ic-VE — V,M(B) =exp (ieVE — V,M(B)); expB=VE-V,/VE

The exponential form for the infinitismal translation follows from the fact that it
is an infinitismal translation, and hence equivalent to the exponential to first
order in ¢, the only significant order.

3.1.2. Macro for finite translational in a constant potential. With a constant
potential the o-function strength is constant. Hence a translation by Ne is
described by N successive infinitismal translations by an amount & The
representation for successive translations in our field of representations is the
matrix product of the individual representations. Explicitly:

R = (R(g))N =exp (iNeVE — V,M(B))
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A product such as this is readily evaluated, since the Cayley—Hamilton theorem
shows that it can be written as a linear function of R and the identity. (See
Appendix of Ref. 3). The expansion of the exponential form is trivial since the
square of the matrix involved, M, is the identity. The result is:

% = (R(g))" = cos (NeVE — V,)1 + i sin (NeVE — V,)M(B)

3.1.3. Macro for finite translation in a square wave potential. Successive
translations through constant potentials of different constant magnitude is simply
the product of their individual finite translation representations. For a periodic
square wave, a translation by N basis cells is the Nth power of the representation
for a single basis cell. This power of the representation is readily evaluated
explicitly by Sylvester’s theorem, for example.

R\ R, = cos B, cos 0,1 —sin 8, sin ,M(B, — B-)
+ i[cos 6, sin 8, M(f,) + sin 8, cos 8, M(f3,)]

91=N151VE_‘71§ 92=N252\/E—‘21

3.1.4. Macro for finite translational in a ramp potential. There is probably an
elegant mathematical method of evaluating the product of matrices of one
linearly varying parameter, but I have not been able to discover it. So for this
case we must resort to tricks. We know that the eigen functions for the ramp
potential are the Airy functions. Thus the spinor amplitudes of our spinor basis
vectors must be related to the Airy functions by a similarity transformation. By
equating magnitude and slopes of Airy and spinor solution at one point on the
potential the expansion coefficients of the linear transformation that must be used
are determined. The amplitudes of the spinor components at any other point are,
therefore, explicitly determined by evaluating the Airy functions at that point.
This verbiage translates into equations which have the following form:

veo-(1 ) x-(} L)

wiol2)-K(t)

The determinant of W is the Wronskian of the eigen solutions, so it is constant
and non-zero. The W are therefore not singular, and it can be inverted to yield
the eigen function expansion amplitudes in terms of the spinor amplitudes. A
second point provides a second set of equations from which the transfer matrix be
evaluated as:

a-kwew ks (4) ~a(?)

1 (a+a)—z(ﬁk—£) (af—é)+i(ﬁk+£)

A= detw

(a-—é)—i([g’kJr%) (a+6)+i(,8k—£)
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a =f(x2)g'(x1) — f'(x1)g(x>)
B =1f(x1)g(x2) — f(x2)g(x1)

Y =['(x2)8'(x1) = f'(x1)g"(x2)
8 =f(x1)g'(x2) — f'(x2)g(x1)

There remains a minor detail of rescaling the space coordinate so that
Schrodinger’s equation assumes the form of Airy’s equation,

dy

dx*
For a linear potential the relevant term in Schrodinger’s equation is written in
terms of an electric field strength, &, as:

{f(x), g(x)} = {Ai(£x), Bi(+x)}

xy

E
V-E=h%€( +—)
YT

The change of variable is thus:
E
=[x +=) 12~
‘ (x %3) @l

d*y €
FEATTRA

3.1.5. Macro for translation in a symmetrical triangular potential. The
equivalent of reversing the direction of propagation is complex conjugation of the
spinor amplitudes, since the amplitudes vary as exp (*ikx), as noted above.
Reversing the direction through the potential is the inverse of the forward
translation representation [2]. If the representation for translation through an
ascending ramp is R1, then the representation for translation through the
symmetrical descending ramp is (R17')*. The representation for translation
through the triangular potential is therefore the product (R17')*R1. In terms of
the notation used above this is written explicitly as:

(Rt = Tyl = | wo+ ) +i( L kop) |

1
(det W)?
l

— * _ ay
(gisym)IZ - (gisym)ZI - (det W)Z [ k + ﬁék]

3.1.6. Macro for translation in a sech® x potential. The sech® x potential has
been an interesting curiosity and has been studied often since the original
discussion of Pdschel and Teller [4]. This potential is sufficiently localized so that
it can be considered to be contained within a finite segment of the x-axis. What is
meant by this statement is that, at distances several times the half-width of the
potential, the potential has dropped to values which differ insignificantly from its
value at % infinity. The eigen functions for this potential are the hypergeometric
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functions, the associated Legendre functions, or the Gegenbauer polynomials [5].
As they approach =t infinity these functions reduce to simple exponential running
waves. This means that the representation for finite translation in this potential is
most easily determined using these two points, namely, £ infinity. On carrying
out the procedure outlined above with the Airy function, one finally obtains the
following result: [5]

V=-—s(s+Du’sech®ux; e=V-E, E>0, eu==ik
s — € = n, integer E <0, eu =k

a =2ue[VA'B cosh (0, + 6,) — VAB' cosh (65 + 6,)];
(1 +&)I'(—¢)
C T(=5)I(1 +35)

B =2[VA'Bsinh (6, + 6,) + VAB' sinh (05 + 6,)];

T+ ¢e)(e)
CT(e—s)[(1+¢+s)

y =2(ue)’[VA'Bsinh (8, + 6,) — VAB' sinh (05 + 6,)];
4__ Ta=9r(-e)
" T(—e—s)I(1—g+s)

0 =2ue[VA'Bcosh (6, + 6,) + VAB'’ cosh (65 + 6,)];
_ T(1-)T(e)
- T(1+5)I(—s)

!

det W =2ue
exp 6, =VA'/B; 0,=ue(x,—x_); expO;=VA/B'; 0,=ue(x, +x_)

One can also quite simply obtain the translation representation for the case of a
translation from the potential extremum, x =0, to x approaching plus infinity.
The analysis yields the result:

a = pe[D' exp (—uex,) + C' exp (uex,)l;
L(1+¢e)Vm2~©

() 7)

I'(1-e)Vm2®

r(==)r(+5)

B =[~Cexp (uex,) — D exp (—uex.)];
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y = (ue)’[-D' exp (—uex,) + C' exp (uex.)];
e [(e)Vmw 2!

F(I + £2+ s))r(sgs)

r_ 2£+i
b Loz

0 = ue[—Cexp (uex,) + D exp (—uex,)];

D

One can learn a good deal about special functions by attempting to demonstrate
that the complex conjugate of the inverse of last result multiplied by itself is
equivalent to the result obtained for the symmetric potential, the preceding
equation.

4. Dispersion relations

If a similarity transformation, S, exists which will diagonalize R, then we
may write:

A0
S“‘%S=A=( ! )
0 A

Since the representation is unimodular, the product of the eigen values is 1. So
we may parameterize the eigen values as:

Ay=exp (+iua);  A,=exp(—ipa)

where u is either real or imaginary, or 0, or m/a, and a is the unit of distance.
Note that the invariant trace is 2 cos ua. Hence if the trace of R is £2, then the
eigen values are degenerate and equal to x1. In this case the diagonalizing
transformation is singular, and no combination of the original basis vectors gives
two eigen values. This exceptional case was mentioned above, and in this case the
eigen values are £1, 1+ b.

We see that the dispersion equation is determined by the trace as:

cospua=73Tr R

For the representations to be compact and the solutions bounded the trace of R
must be within the interval, —2 to 2. Since R is a function of the energy, E, this
equation determines the ranges of ‘allowed’ values of the energy.

The carrying out of the explicit solution for the allowed values of energy is,
in general, a meticulous task burdened with annoying details. With the use of a
computer there is no problem. One calculates the trace with successive,
incremented values of the energy. Those values of energy for which the trace is
within the range —2 to 2 are then used to describe the allowed states. For our
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present purposes, it will be sufficient to discuss some interesting aspects of the
resulting dispersion relationships.

4.1. Some properties of allowed bands

4.1.1. Dispersion for infinitismal translation. The trace is readily evaluated
for the representation given above. It can be written, with a simple trignometric
transformation, in the following convenient form:

tan 0, = —V,e/2k

cos (6, + ke¢)
cos 8,

2 Tr[R(e)] =

It should be noted that this is, possibly, a more convenient form of the dispersion
relation obtained by Kronig and Penney for an array of d-functions with finite
spacing. Their use of a d-function array was ad hoc, since they made no effort to
relate the strength of the d-function to a real potential. Their potential showed
band gaps because the unit cell size, the spacing of the §-functions, was assumed
large. An array of constant amplitude O-functions has a continuous energy
distribution with wave vector as we will see in the next section.

4.1.2. Dispersion for translation in a constant potential. The trace of the
representation for finite translation in a constant potential is the tautology:

cos uNe = cos (NeVE — V)

This means that all energies greater than the potential are allowed, and all
energies less than the potential give rise to an imaginary wave vector, and so are
forbidden. Integrating Schrodinger’s equation gives the same result almost by
inspection.

4.1.3. Dispersion for translation in a ramp potential. The analytical expres-
sion for the trace in this case is readily written down. The real task is one of
teasing out of the equation some readily digestible information. Some special
cases must be considered in order to allow the Airy functions to be expressed in
terms of functions with which a wide population has had some experience. These
approximations exist for values of the coordinate in the intervals, —o to —3, —3
to 3, and 3 to —. We list a typical case here:

E
E>V: z=1?5|”3(x——);
| €]

Z z
¢ =32"% cos p(x, — x;) =3 cos (§, — Cl)[{‘/;'i_\“/;]
2 1

4.1.4. Dispersion for translation in a symmetrical triangular potential. Again
the trace is readily evaluated. A particular case of interest can be expressed in the
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following approximation: the potential, V, is a symmetrical , triangular well,
descending to —V; in a distance 0.1a, E >0, translate from 0 to a. [6]

cos pua = cos [2(§, — £,)] cos (0.8ak)
+sin [2(&, — )] sin (0.8ak)[| €' + | €|~*”]

E E
=—|¥ 1/3; = (01 _ _) 4 1/3
C s %23/2

The potentials for which band gaps vanish will be given by:

E 3712 E 3/2792 32n2152
wl(+3) -() |-
0 Vo Vo #”
for
E <V, (V) =56, 3552, X80~ . . « ; 50, 25525
The bound states for these potentials will be given by:

=)

Epe= 1 (

4.1.5. Dispersion for translation in a sech® x potential. This potential can be
used as an approximation to the preceding potential, the symmetrical triangular
potential. One well-known result for the sech’x potential is that for integer
values of the amplitude parameter it is reflectionless, hence there will be no band
gaps. One can use this result to determine the parameters for an equivalent
triangular potential for which the band gaps will disappear. With parameters
which give some congruence of this potential with the triangular potential used in
the preceding section, the potentials which yield no band gaps in the continuum
states are [6]:

V(x) = —s(s + 1)u? sech? ux, u=18
Vo=1{0,2,6---}18={0, 66,197 - - -} x*

The bound states for these potentials are:

E=—y;[—(1+2n)+\/1+4(s)(s+1)]2, n<s

= —u?{0, 1}, g=1
=—u*{0,1,4}, s=2

The agreement with the results of the preceding section is satisfactory.

The potential also has pedagogic interest since it is a convenient vehicle with
which to discuss the factorization of the representations of the Casimir invariants
of Schrodinger’s equation. This process is analogous to the use of ladder
operators on the special functions [7]. The latter operators allow one to express
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the wave functions for one potential in terms of the wave function for
Schrodinger’s equation with the potential amplitude parameter incremented or
decremented by one unit. In this way one can deduce the general form of the
translation representation for a sequence of wave functions. Analytic continua-
tion then allows one to establish the form for any variation of the potential.

5. General remarks

The discussion given here started with the derivation of the representation
for an infinitismal translation in the group of Schrodinger’s equation. To discuss
Schrodinger’s equation one uses the quasi-Euclidean algebra su(1, 1), which is
homomorphic to the algebra so(2, 1), among several others. This is the algebra
that generates the Lorentz group that leaves a space-like vector invariant. The
infinitismal representation is of the non-compact, one parameter, parabolic class.
Conjugate one-parameter classes are the compact, elliptical class of rotations, and
the non-compact hyperbolic class of boosts. If we had demanded total abstraction
for the derivation of this matrix we could have simply assumed the form as
necessary for representations of the Lorentz group. The parameter could then
have been determined by exploiting the homomorphism to the Schrodinger’s
equation in a simple case, say, when the potential is constant.

It should be clear that the strategy of using a é-function array to simplify the
construction of the representation for translation in the Lorentz group is a
convenient heurism, and not an essential structure in this problem. It imbues the
problem with the reality that seems to be preferred by physicists compared to
mathematical abstraction.

The issue always seems to be one of discovering the mathematical structure
on which to hang the physics; or of discovering the physical problem to hang on
some carefully crafted mathematical structure . . . !

6. Conclusion

There are two, at least two anyway, hard facts about physics and physicists.
One is that answers to problems are usually obtained by any means that is
necessary, with no regard to whether it is ugly or beautiful. The answer is
paramount, the method can be forgiven. The second hard fact is that, since the
time of Newton, the basic problem in physics has been that of identifying the
mathematical structures upon which isomorphisms can be built with which to
describe particular physical systems. One wonders if matrix mechanics would
have appeared sooner if non-commuting algebra, and matrix representations had
been more familiar tools of physicists. Einstein was led by Grossman to consider
the properties of metric geometry and to the work of Riemann on curvature. He
then saw how the equations of the general theory of relativity were to be written.
Would spin have been evoked earlier if physicists had had a mathematician’s
understanding of the properties of even dimensional representations?
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Certainly representation theory combines elegance of execution with simpli-
city and rigor. As pedagogues are we not short changing our students by not
encouraging them in a more affirmative manner to gain facility in thinking in
terms of group concepts? Band theory really has nothing to do with Mathieu
functions, or other special functions. By not using representation theory more
frequently are we not making our students play with a short deck of cards?
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