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The continuum limit of dissipative dynamics in
H. Frohlich’s pumped phonon system

By N. G. Duffield")
Department of Physics, Queen Mary College, Mile End Road, London E1 4NS, U.K.

(11. IX. 1987)

Abstract. The kinetics of H. Frohlich’s pumped phonon system is analysed within the framework
of Quantum Dynamical Semigroups. The linear evolution of the hierarchy of reduced density matrices
is shown to support a decorrelated solution in the limit of continuously many phonon modes. Thus, a
measure theoretic analogue of Frohlich’s non-linear kinetic equation for the one-particle distribution
function is obtained.

1. Introduction

In 1968 H. Frohlich proposed a model of coherent excitations in biological
systems.[1] The model comprises a finite number of polarisation waves immersed
in a heat bath, but maintained away from equilibrium by external pumping.
Frohlich described this by means of a non-linear kinetic equation for the
occupation numbers (equation (1.1) below) and argued that for sufficiently strong
pumping the stationary state undergoes Bose condensation into the mode of
lowest frequency.

In this paper we examine Frohlich’s kinetic equation in the rigorous setting
of Quantum Dynamical Semigroups (QDSG’s). We show how the non-linearity
arises naturally in the limit of continuously many modes, through the decorrela-
tion of the hierarchy of kinetic equations governing the evolution of reduced
density matrices. The kinetic equation thereby obtained for the one-particle
distribution function is the measure-theoretic generalisation of Frohlich’s equa-
tion to the continuum model.

Frohlich’s Model. We briefly review the original formulation of the model.
Let there be V modes with frequencies x;: 0<x,<x,=<---=<x,. Denote by n,
the occupation number of the kth mode. The system heat-bath interaction is
assumed to lead to spontaneous emission and absorption of phonons (with
transition probabilities §;) and two phonon exchanges (with probability yx;/V).
Detailed balance at heat-bath temperature T is assumed for these processes.
Energy is pumped into the kth mode at a rate s,. In units for which 7= kgT these

') Present Address: Department of Mathematical Physics. University College, Belfield, Dublin 4,
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assumptions give rise to the following kinetic equation for the n,:

d ¥
;tnk =5, — Ee[nee™ — (L + ne )] — 2, xulne(1 + n))e™ — ni(1+ ny)e”] (1.1)
=1

J

The analysis of the stationary solution of (1.1) is by now well known. Assuming
the transition probabilities to be uniform (i.e. s, =s, § =& and xx=y%), a
self-consistent expression can be found for the stationary distribution of (1.1)
which we denote by m,:

§
X
where u is the “effective chemical potential”, determined from (1.1) by the
requirement that ), i, = 0:

1

my = [1 =] = e‘”)] o (12}

E+s=

S mi(en 1) (1.3)

< |uwe

The stationary density p = V™' ¥, m, can be shown to increase indefinitely with
s, which is only possible if u approaches x;, from below. Thus in the limit of
continuously many modes we expect to find non-equilibrium boson condensation
into the mode of lowest energy.

How, exactly, does Frohlich’s non-linear kinetic equation arise? This
question has been addressed by Wu and Austin [2, 3]. From a Hamiltonian model
of the phonon system coupled to a reservoir, the system dynamics are obtained by
elimination of the reservoir variables in terms of their two-point correlation
functions in the thermal state. The non-linearity of the kinetic equation arises
through the assumption that observables over different phonon modes are
uncorrelated. Whereas this condition can be specified for an initial state, it cannot
be expected to hold for all time.

In this paper we shall proceed rather in the spirit of Frohlich. We shall
analyse the dissipative dynamics of the phonon system alone, but in the rigorous
setting for irreversible quantum processes: that of the theory of Quantum
Dynamical Semigroups [4, 5]. Decorrelation (and hence the non-linear dynamics
for the occupation numbers) will arise naturally when we proceed to the limit of
continuously many phonon modes. States which are initially decorrelated remain
so. This property is sometimes called the “‘propagation of molecular chaos”. Such
behaviour is, of course, familiar from the decorrelation of the Boltzmann
hierarchy to yield the Vlasov equation [6].

The scheme is as follows. Let us start with a finite number V of phonon
modes. We take a V-dimensional Hilbert space #, with an orthonormal basis
{firi=1,2,...,V} whose elements are in 1-1 correspondence with the phonon
modes. Let %, be the boson Fock space over #,, and 2, the trace-class
operators on %,. Let N, be the number operator over the mode f; and p a state in
ABy. Identifying the expectation values of the N, in the state p, (N;; p), with the
n; of (1.1), we seek a QDSG (i. a strongly continuous semigroup of completely
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positive trace-preserving linear maps on %,) {T,:te #"} whose dynamics
resembles (1.1) in the (so far formal) sense that

d
7 (Nis Tp) =51 = Ei(e™(Ni; Top) = (1 + Ni); Tip))

1
R Z XN (1+ N,); T,p) — e"(N{(1+ N); Tp)) (1.4)
jFk
The factor 1/V in the last term is chosen to make the derivative an intensive
quantity. (1.4) can be formally reproduced by a putative generator K for the
semigroup 7; whose form is

v
Kp = 2 (Sj &3 Ej)(a;kpaj - %(aja;kp + pa]-a;k))
j=1

v

|4

+ 21 (s; + §e")(apa; — %(a;"a,-p + pa;a;))
o
1

+ v -21 xiie(afapala; — 3(aa)aalp + paaaal)) (1.5)
L=
i)
where a; = a(f;) and a; = a*(f;) are the annihilation and creation operators for
the phonon modes. Formally, (N,; KT,p) yields (1.4). Of course, if a state p is
decorrelated in the sense that

(NN p) ={Ni;p){(N;sp)  j#k (1.6)

then the identification of n, with (N,; p) yields (1.1) exactly. Thus the problem
of deriving (1.1) reduces to that of substantiating (1.4) and (1.6) in an appropriate
sense.

The paper will be organised as follows. In Section 2 we will show that the
densely defined operator K in (1.5) gives rise to a QDSG {T;:te #"} which
preserves finiteness of expectation values of powers of the particle density. In
Section 3 this property will allow us to write down the kinetic equation for the
evolution of the hierarchy of reduced density matrices under 7;. In Section 4 we
will show that the continuum limit of this hierarchy supports a unique decorre-
lated solution for decorrelated initial conditions: the n-particle distribution
function is simply a product of copies of the 1-particle distribution function. The
kinetic equation for the 1-particle distribution is the continuum analogue of (1.1)
which we seek.

2. Irreversible quantum dynamics

We now construct the irreversible quantum evolution specified by the
putatative generator (1.5). The main result of this section, Theorem 2.4, is that if
expectation values of powers of the particle density are initially finite, they
remain so.
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First we specify our model exactly. Let X =[x, ¥]:0<x <X <. For each
VeN, let XycX, Xy={x;:i=1,2,...,V} be the set of phonon mode
energies. We connect with the rate constants s;, & and y;; of (1.1) by defining the
functions

Vv Xy X Xy — R vv(Xi, X)) = €5y, (2.1a)
ay  Xy—> RT a’tt(xi)zsi‘*' & (2.1b)
ay: Xy—> RT ay(x;)=s; + 5" (2.1c)

We assume that for each V, vy, (resp. ay) is the restriction to X, X Xy (resp. Xy)
of a strictly positive continuous function y on X X X (resp. ™ on X). In what
follows we shall sometimes write y,, for y(x;, x;) and «;" for a®(x;). Then (1.4)
yields the family {K : V € N} of densely defined operators on {%, :V € N}.

|4
Kvp =32 o/ ([alp, a] + [a}, pa;])

i=1

1%
+3 > @i ([ap, af] + [a;, paf])
i=1

|4

+3 _Zl villaiap, a,af'] + (a7 a;, paiaj]) (2.2)
ij=
H

For each V we have the following proposition:

Proposition 2.1. There exists a strongly continuous semigroup of positive
trace-preserving maps {T ,:t € R*} whose generator is an extension of K.

Proof. [S, Theorems 3.1 and 4.1].

In order to prove that the expectation values of powers of the density remain
finite under the evolution we introduce some notation. Since we are interested
only in observables which are polynomials in the N; we will restrict our attention
to &,, the subset of states in 9, which are functions of the N, alone. To each
V-tuple of non-negative integers m= (n,, n,, . . ., ny) there corresponds a state
in &, with n; particles in mode i. Signify the projection onto the corresponding
vector in %, by P,. The P, form a basis for é,, and the norm on &, inherited
from By is

lloll = 2. [trace P,p| (2.3)
Now any state in &, can be viewed as a probability measure on N". In what
follows we shall use N, to denote both a number operator on %, and the operator
on &y corresponding to multiplication by that operator. Dom (N;) will denote the
dense domain of this latter operator in &,,.

We now write down the action of Ky, on &,.. Denote by I;" the shift on &, for



Vol. 61, 1988  Continuum limit of dissipative dynamics in Frohlich’s pumped phonon system 367

which
IF7(Py) = Py, wheren+1,=(ny,...,n;+1,...,ny) (2.4)

and let I; denote the inverse shift (with I7(P,) =0 when n;,=0). Define
L; =117 (i #]) and set I, = I I = 1. Then the action of Ky on &y is

Kvp=Jvp +Zyp (2.5)
where y y
1
hop =2 (I (N+ D) + & IENYp + 3 2 vl (N + 1N (2.6a)
i=1 i,j=1
Vv 1 v
Zyp = — 2 (a;r(Ni +1)+a; N)p—— 2 Vji(Nz + 1)ij (2.6b)

i=1 V=i

For clarity, the volume subscript V will be suppressed for the remainder of this
section. From [5] and [7] we can extract the following facts:

(i) For re[0, 1), K, =Z +rJ is closable, and its closure is the generator of

a strongly continuous positive contraction semigroup {7,,:t€ 2"} on

éyv.
(i) For A>0, (A— K) ' =lim,_,, (A — K,)”" densely defines a closed opera-
tor K on &,.

(iii) For pe &y if 0=r=s<1then0=T, p=T, p.

(iv) For pe &y, T,p=1lim,,, T, o defines a strongly continuous semigroup
of probability preserving positive contractions whose generator is K.
Now we define the mean-number (or density) operator N=1/V L}, N..
In Appendix A we prove the following lemma:

Lemma 2.2. For re|[0, 1), p e N, Dom (N%) = Dom ((K,)").

Corollary 2.3. For r€[0, 1), p € N, Dom (N*) is invariant under T, ,.

Proof. [8, Lemma 1.1] can be trivially modified to show that for any
contraction semigroup S, with generator Q, Dom (Q?”) is invariant under S, for all
p eN.

Theorem 2.4. Let pe C*(N)=( ),ex Dom (N"). Then for all peN, te
[0, =), IN"Tp|| <.

Proof. By Corollary 2.3, C*(N) is invariant under T,, and (N°; T, p) is
continuously differentiable. In Appendix A we show that for p € &y, p e N and
re(s 1)

d

5 (N Tp) < (= palN’ + (a2 "N"7'); T, p) (2.6)

for some positive constants @ and a. By (i) above, ||T, 0| =||pl|, so for p=1
(2.6) can be integrated and we conclude that (N;T,,0) is bounded on any
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compact interval [0, T'], uniformly in r. Now proceed by induction. Suppose that
(N*~1 T, p) is bounded on [0, T]. Then we can integrate (2.6) on [0, T] to
obtain the same property for (N”; T, ,0). Furthermore, the bound is independent
of r. Thus, by (iii) above, |[N’T, 0|l = (NP; T, ,0) is an increasing function of r,
bounded above, and N?T, ,p is a family in &},, monotone in r, converging to some
limit. Since N is a closed operator, then by (iv) above

lim [IN"T, 0| = [N Tp|| <o 2.7)

Finally, since N” is positive, its domain is positively generated, so the result can
be extended to the whole of &,.

Remark 2.5. From (2.6) one sees immediately that the bounds on
(N?; T, ,po) are independent of V.
; P

3. The continuum limit

For each n € N, let X" denote the Cartesian product of #n copies of X, C(X")
the Banach space of continuous functions on X" with supremum norm, and
M(X") the Banach dual of C(X"), i.e. the Baire measures on X". Let
{pv:V eN, py, e C*(N)} be a sequence of initial states. We define the hierarchy
of reduced density measures (or multiparticle distribution functions) {¢, .V €
N,te R} where ¢ ,={¢V,:n € N} as a sequence of positive linear functionals
on {C(X"):n € N}: for f e C(X") define

1

o%.Af) = > fiy e s X NNGN, o N Ty py) (3.1)

The existence of the measures for all finite time is guaranteed by the fact,
established in the previous section, that C*(IN) is invariant under Ty, We also
define the family {v, : V € N} of means on C(X):

W)= 3, F) (6.2)

xeXy

Furthermore, we assume that the v, have a weak-* limit v. Note that
vi(1) =v(1) =1, where 1(x) =1 for all x € X.
In Appendix B we show

d%fp?/,t(f) = ¢V5(B"f — B'f) + (o1, @ v )(B"f - Bf)

+ OV AT — A7) + (9T B vy )(AT)
+ (RUS); Tv.pv) (3.3)
for n e N (with the convention that ¢%,® v, =v,) where B", B":C(X")—
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C(X™*"), and A*": C(X")— C(X") are defined by

(an)(xl"' X )_Zf(xly-" p I’xn+lyxp+1’-'"xn)‘)/(xp:xn+l)

(Bf)x1, ... x,) = af(xn wwe v Xpyms o 3 %) Y Eps Xggy) (3.4)
(A" (xy, ..., x,) = E FO o i Ky Lo X« =+ 3 i) (5

and
IRl =" 71 v + Ryl (3.5

for some positive constants k and k. The second derivative % (f) can be
calculated in a similar way. It contains measures ¢y, for me{n—2,n—
1,n,n+1,n+2} and a remainder term (S}(f); Ty py) for which there is the
bound

g e TR (3.2

for some positive constants ¢ and C.
We now state the main theorem of this section.

Theorem 3.1. Let the family {p,:V € N} be such that for all n € N there
exists a constant k, € R* such that ||¢% || <k, for all V. Then for all n € N and
teR”, ¢y, converges pointwise on C (X") to a measure ¢7, and correspondingly
o, converges pointwise on C(X") to ¢}, as V— o over some subsequence of
integers which is independent of n and t. Furthermore, the limit measures satisfy
the following hierarchy of evolution equations:

d . -
5 9= (L) (f):= ¢ (B"f = B"f) + (7 @ v)(Bf — Bf)
+@HAT —AT) + (¢7T @ V)(ATTY) (3.6)

The idea of proving convergence over a subsequence has been used to treat the
Boltzmann hierarchy [7]. In the present case the proof of the theorem also relies
on properties of certain compact subsets of C(X").

Let

D" ={f €CM:f >0, IfI=1, sup If@)~fON=le=sllarf  (37)

We collect together the required properties of the D" in the following
proposition:
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Proposition 3.2. [9, 10]

(a) D" is closed and equicontinuous, and thus a compact subset of C(X").

(b) Let {u;:i € N} be a sequence in M(X") for which ||u;|| is bounded. Then
u; converges weak-* (i.e. pointwise on C(X")) iff it converges uniformly on D".
(The existence of a limit measure is guaranteed by the fact that M(X) is weak-*
sequentially complete.)

Proof of Theorem 3.1. By Remark 2.4, for each n the V-indexed families of
functions

(= evdf)s (L= evLf);  (f 0= dv(f) (3.8)

are uniformly bounded in V for (f,¢)e D" x [0, T] for any positive finite T.
Furthermore, all the terms in the derivative (3.3) are linear and bounded on D"
for t € [0, T], so that the functions in (3.8) are uniformly Lipschitz continuous on
D", uniformly on [0, T]. Hence the functions (f, t)— ¢% (f) and (f, t)— ¢} (f)
are uniformly equicontinuous on the compact metric space D" X [0, T'] (where D"
is equipped with the metric topology inherited from the norm topology of
C(X™)). Thus by the Arzela—Ascoli theorem, there is a subsequence of integers
such that for each f € D" there is a function ¢"(f):[0, T]— & for which

1(f) = lim % (f) (3.9a)

uniformly on D" x [0, T], and for which

£ 61(1) = fim. $.41) (3.90)

since the derivatives also converge uniformly. Since ¢V, are positive, ||¢V || and
hence ||¢% || are bounded in V, uniformly for re[0, T]. Thus by (b) of
Proposition 3.2, ¢7 can be extended to define a measure on the whole of C(X"),
convergence and differentiability in (3.9) being understood pointwise on C(X") X
[0, T]. The same argument can be used over the increasing family of sets
{C(X")x [0, mT]:m € N}. Then by the diagonalisation argument we can find a
subsequence of volumes V for which convergence is pointwise on C(X") X R".
Having made the construction for n =1 we then repeat for n =2, 3, etc., using
the subsequence obtained by the above procedure at the nth stage as the initial
sequence for the (n+ 1)th stage. A final diagonalisation yields the desired
subsequence.

Finally, the limiting form of the derivative follows straightforwardly from
(3.3) using the fact that the remainder term is of order V~'. O

4. Decorrelation and non-linearity
In the previous section we constructed a hierarchy {¢,:te R}, ¢, =

{¢?:n € N} of positive reduced density measures satisfying the linear differential
equations (3.3). In this section we prove the following result:
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Theorem 4.1. Solutions of the hierarchy (3.6) which initially satisfy the
decorrelation property

P=0o® ... R ¢{ (n copies) (4.1)

are unique, and remain decorrelated for all time. Furthermore the one particle
measure ¢, satisfies the following measure-theoretic analogue of Frohlich’s
non-linear kinetic equation on M(X):

d s, ~
"ci_t‘f’tl(f) = (¢! ® ¢)(B'f — B'f) + (¢! @ v)(B'f — Bf)
+¢}(A+lf_A~1f)+v(A+1f) 42

We proceed via a number of lemmas and propositions. For any n we use 1 to
denote the function which takes the value 1 throughout X".

Lemma 4.2. For any positive solution of (3.6)

n

o) = (play+e 3 (")(@6) — (plaY) e = 1" (play " (43

r=1

where

p=supa*(x), g¢=inf{a"(x)-a’(x))>0 (4.4)

xeX

Proof. Insert f =1 into (3.6). The terms in B' and B' cancel. Using the fact
that v(1) =1:

¢r(1) = —npp?(1) + nq7 (1) (4.5)
for n=1. For n =1 this integrates to
$:(1)=(p/q) + (¢o(1) — (p/q))e™™ (4.6)

which is just (4.3) for n = 1. Now proceed by induction. Assume that (4.3) is true
for n. Then by (4.5)

d
E {¢?+1(1)eq(n+l)r} < qf).;z(l) p(l + f'l) . eq(l+")r£ (p/q)n p(l = n) . eq(H—n)t
S n -r ¢ B & r r
+ 3 1)) =1y (o )y p (bW ~ (plaY) (47)
r=1
Equation (4.7), integrated between 0 and ¢ yields (4.3) for n + 1.

Remark 4.3. For initially decorrelated states we have that

¢5(1) = (¢o(1))" (4.8)
which, substituted into (4.3) yields

¢1(1) =(¢o(1) + (p/q))" (4.9)
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Proposition 4.4. Positive solutions of (3.6) for which the initial hierarchy is
decorrelated are unique on some interval [0, T] where T depends only on ¢(1).

Proof. We show that any positive solution with decorrelated initial condition
can be expressed as a convergent power series in ¢4, and is hence unique. We
iterate (3.3):

-1 4k

#1N = #3) + 3 1 (L90r () + (A () (4.10)
where
@)= [ du--- | Lo,y () (4.11)

(a) The remainder term: First estimate |(L'¢p,)"(f)|. Let C" stand for B", B"
or A*", From (3.6) (L¢,)"(f) contains 7 terms each involving a C**', a C”, or a
C"~'. Similarly, (L'¢,)"(f) contains 7' terms each of which is of the form

Y(q;91, 92 - - - q) = QHCUCH - - - Cf) (4.12)

where 0=qg,=n+p—-1forp=1,2,...,land0=g=n+/[ Let [|-|| denote the
supremum norm on the C(X"). Then from the definition (3.4) of the C"

ICfll=nlifllc  with  c=max {||y], lla”]], le" I} (4.13)
So by the assumed positivity of the ¢/,

1Y:(q;q1, - - -, @)l =) Ifllg1g2- - - qu

e T e T
= o100 11 (4.14)
Adding all possible terms together
Lt n (n+1-1)! I
(Lo (D=0 =57 0 IFI_swp  {or (M) (4.15)
and so in (4.11)
(&) (f)] <—  sup {[(L'¢)" (NI}
+1-1
s( IRy sup s {or) (4.16)
Defining E(¢,) = max {1, (¢4(1) + (p/q))}, then by Remark 4.3.:
((A@)" (NI =If112"'(Adet) E(do)"" (4.17)

so that for t <1 = (14cE(¢y)) ", (Ap)"(f)— 0, for all n, as [ — =,
(b) The power series: By (4.15)

(n+1-1)!

(L ¢o)" ()l = i—1)! 11l ECo)™™" (4.18)
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so that for t =1,
-1 tk
2 17 (L)' () =277 E(¢y)" (4.19)

k=1

which 1s, of course, bounded as [—

Proposition 4.5. The non-linear kinetic equation (4.2) has a unique local
solution in the norm topology of M(X).

Proof. The derivative in (4.2) is bounded:

d
(S)DO| =171 161 +q ol 47y somep.g,r=0 (420

and uniformly Lipschitz continuous in any norm ball of #(X), so by standard
existence theory [11] a local solution exists in some interval [0, t].

Proposition 4.6. The local solution of (4.2) preserves positivity.

Proof. We model our proof on one in [12, 13]. Let the local solution exist on
an interval [0, T]. Since the local solution is norm-bounded, there is a positive
constant ¢ such that ¢;(1) <¢ on [0, 7]. We set

¢ =max {¢, 2¢4(1)} (4.21)

Since a® and y are bounded, we can find positive numbers a and b for which
a+a(x)—a (x) and b+ y(x, y) — y(y, x) are positive for all x and y. Now
write (4.2) as

Pi(f) = (Tp)(f) + (K@) (f) + (Np)(f) (4.22a)
where
TP )(f)= —(a+bc)g,(f) (4.22b)
(Ko:)(f) = (¢; ® v)(Bf — Bf) (4.22¢)
(No)(f)=(P: ® ) b1Bf + B'f —B')+ b(c — ¢/(1))¢,(f)
+¢,(af + AT f = AT )+ v(AT'Sf) (4.22d)

K generates a norm-continuous positive contraction semigroup on {(X). This is
most straightforwardly seen by considering the action of the predual semigroup
with generator K defined by ¢'(Kf) = (K¢ ")(f):

(Kf)(x) = L av(y)y(y, x)(f(y) = f(x)) (4.23)

As is well known [14], operators of this form generate a norm-continuous positive
contraction semigroup on C(X). By duality the same is true for K on J((X).
Clearly J also generates such a semigroup on #(X), and commutes with K. Thus
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J + K generates a positive contraction semigroup {S,:te ®*} on J(X), and
clearly ||S,|| < e @*be),
The point of writing (4.2) in the form (4.22) is the following. Define

(N@")(f) = (¢' ®N)bLOS + B'f = B'f) + b(c = :(1))d'(f)
+¢'(af + A*Yf — A7) + v(ATS) (4.24)

where ¢! is the local solution on [0, t]. If we define a map © on C([0, t]; #(X))
by

©y)=Syo+ | dsS Ny  0=i=r (4.25)
0
then the local solution is a fixed point of 6. §, and N, both preserve positive order
in #M(X). Now consider the sequence of measure valued functions on [0, 7]
O=0, yP=Op""),; n=12... (4.26)

Since " > ¢, " is an increasing sequence of positive measures. In fact, the
sequence is bounded above: let

P = sup (1 (4.27)
p

O=r=t
Then a simple estimate on (4.25) shows that

(1 _ e—(a+bc)r)
a+ bc

PO = ¢l(1) + (u + vP + w(P™M)?) (4.28)

for some positive u, v and w. Thus we can always choose t small enough so that
PM <=2yl => P+ < 29p» (4.29)

Since P{” =0, the monotone sequence {y(f):n € N} is bounded above for all
n and so has a limit v,(f) which defines a positive linear functional on C(X)
which is equal to the local solution.

Proof of Theorem 4.1. Construct the hierarchy ¢7=¢!®---® ¢! (n
copies) of decorrelated reduced density measures from the local solution of (4.2)
in [0, 7]. By differentiation the ¢} satisfy the differential equations (3.3) of the
hierarchy, and are thus the unique local solution of the hierarchy. Since the
hierarchy is decorrelated at t =t we can repeat the construction on successive
intervals [7, T+ 1,], [t + 7, T + T, + T;] etc. We are done if we can show that the
elements of the sequence {7, 7,, ...} are bounded below. But by remark (4.3)
¢:}(1) and hence E{¢,} are bounded for all ¢ > 0; likewise since ¢, are bounded,
the interval over which the local solutions to (4.2) are constructed are bounded
below for all time.

5. Conclusions

We have seen how the non-linear kinetics in Frohlich’s arises naturally in the
continuum limit in the form of the propagation of molecular chaos, rather than
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through any decorrelation condition imposed at finite volume. In another paper
[15], we find the stationary measure for kinetic equation (4.2) (for a certain
family of parametrisations @ and y), demonstrate the existence of a critical
pumping rate above which the stationary measure displays condensation, and
show this measure is globally stable with respect to perturbations.
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Appendix A

The basis of the estimates are the following commutation relations

NIf=I*(N;£8,)  on Dom (N) (A1)
from which it follows that
NIF=If(N£V™")  on Dom (N) (A2)

Proof of Lemma 2.2. (a) Dom (N*)c Dom ((K,)’): from the commutation
relations (A1) and (A2) it is not too difficult to see that

(K.) = % R,M, (A3)

where R, is a polynomial function of the /¥, and M, is a monomial of order q in
the N;. Thus there exist positive constants {r,:g =1, 2,..., p} such that
2p

(K, Ppll =<2 r, INp| (A4)

q=0

(b) Dom (N*) > Dom ((K,)?): we write

14 Vv
K, =2 (AF(N;+ 1)+ A;N) + D, By(N,+ )N, (AS)
i=1 Lj=1
where
1
A =af(rIf - 1) B = v]/ji(r[ij — 1} (A6)

Since ||IF||=1 and r<1, A’ and B, have bounded inverses. Let C=
(szzl A?)‘I(HLIAE_)_I(H;,/jnl Bi;’)~l' Then

Vv %8 1%
CKp=(Z CHNAD +3 CNt 3 CN+ DN o (A7)
i=1 i=1

ij=1
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on Dom K,, where C;* = CA}* and C;; = CB;;. Hence

ICI 1 Kepll = IICKrPII

||(N+1)P|| S INpll o IV + DNp||
Z I(cH™ +z-=21||((3,-_)”||+z,j§=:1 I(C) ™

(A8)
so that

IK.pll=a |IN°p]| (A9)

for some positive a. Hence ||(K,)’p|| = a ||N*(K,)’ 'p|| on Dom ((K,)’). Again,
from the commutation relations it follows that for g e N

N¥K,=KN*+A, where [A,p|<b|N¥p| (A10)
(the essential point here is that the B;; commute with N) and hence

(K.Y pll=a® IN(K, Y ?p || — ab [IN*(K,)"?p|| (Al11)
so that by (A9)

INY(K, " 2pll = ¢, I(K VPl + cpt [I(K Y~ 'pl

with ¢,, ¢,_; positive. This procedure can be iterated to show that

IN"pl= 3 ¢, I(K,)p (A12)

Estimates for Theorem 2.4

Let p e C*(N), p >0. Then for p € N, by (Al,2)
d r—1) &
N5 Top) = u 2= (VN (N; + )N;; T,.0)
+ 2 (@ N+ DN+ VY =N T,p)

g i N(r(N= V™'Y —N); T, p) (A13)

Discard all negative terms in (A13). Then

% (N?: T, .0)< <r :2; (S)(é (af + (af — af)M)NqV"—p); Tr,:P> (Al4)

Now observe that if 0<g,<gq,, then 0=N?'V% <NV so that for r e (3, 1)
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and p =1

d
2[<15V’;1r”,o)<< {(a/ + )N — aNP)

p—2
+ 2, (Z)(QV+ +a )V (NPT NPT, Tf,fﬁ>}
g=0
<(—palNP + (2" +a )2NL T, p) (A1)

where o =sup,cx a*(x) and o =3 inf, .y {a (x) — a™(x)}.

Appendix B

We calculate the derivative of the reduced density measure in (3.1).

|4

vAf) = Vn 2 Sl xi)(Ni o Nii Ko Trapy)
1 | |4
= E_If(x,l, e ,x,-")<N,-1 N [Zl (a7 (17 = 1)(N; + 1)
Far (7 = DN X 1l DN DN [Tupy) (B

1]1

Using the commutation relations (A1) and (A2) to pull the N, through to the right
of all the I, and the fact that I is trace-preserving on &, I; trace-preserving
on the range of N, (B1) is equal to

1 |4

i, 2 feon([Z {1 o0 T W Jorisn

n
V il ..... l-,.,:l

(0% =001 M forn

1 143
+1—/ 2 {n (Niﬁ, + ‘5:‘,:',, - 6;‘.:;,) - H Ni“}in(Ni + 1)Nj]; TV,tpV> (BZ)
u=1

L,j=1 ‘u=1

The leading terms (in powers of V') are those involving only one Kronecker
delta, 1.e.

i Z f(x,l,...,x,-")<2 N,‘l"'Nip"'Nin
p=1

n
Vl| ,,,,, !

|%
X [Z {(51',,'”&?-(]\/} + 1) — 61’.5,0/:‘_]\[1}

i=1

1 v
+‘_/ > Yi(N: + DN;(8;,, — 5,‘,1,,)]; Tv,:Pv> (B3)
=1
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(a caret over an N; denotes exclusion from the product.)
= (¢ + V. ® vy )(B"f — B"f)
(@Y + OV @V )NAT) — PV (A7) (B4

as required. The remaining terms are bounded by

(e + e )N+ D)

g y(x, y)N(N + 1)] g (;)ZQ(VN)"; Tv,zpv>

1
= const X ‘—/n(n —D(N+1)°’(N+2V)Y'"* Ty, py) (B3)

Adding the two sets of terms together (i.e. leading terms and remainders) we
achieve the form stated in (3.3), (3.4) and (3.5a). The calculation of the second
derivatives is similar, but all that is required for Theorem 3.1 is that case is that
l@% (|| be bounded in V for all n and all time in any compact interval.
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