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Non-linear coupling of electromagnetic waves
in a cold magnetized plasma

By Erwin Schanda

Institute of Applied Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern,
Switzerland

(17. VIII 1987)

Abstract. Harmonic features in the microwave spectrum of solar flares seem to be produced by
non-linear wave coupling. Density, temperature and magnetic field in the vicinity of eruptive coronal
regions have values for which the fluid concept of plasma is applicable. In this paper the current
density for the interaction of three electromagnetic waves in a cold magnetized collisionless plasma is
derived and applied to formulate the coupling rate of coherent waves in a first order approximation.
This result is then extended to the rate of transfer of wave energy between incoherent spectra of
extraordinary waves.

1. Introduction

In a recent investigation of the spectral properties of microwave radiation
from solar flares, the occurrence of harmonic features with a 2:1 ratio of the
emitted frequency bands has been discovered [1]. The generation of this
harmonic emission is difficult to explain by those processes widely accepted to be
responsible for various kinds of microwave flare radiation. In the processes of
plasma radiation or of gyroradiation the fundamental frequencies would be
strongly re-absorbed and the respective models require either steep density
gradients or very high magnetic fields in order to become operative at the
observed radio frequencies between about 3 and 10 GHz. The electron cyclotron
maser process can be excluded because after the total reabsorption of the
fundamental radiation not only the second and fourth but also the third harmonic
would have to show up; this is not observed. Therefore, a concept of generation
of the second harmonic by the intense fundamental through a parametric
interaction within the magnetized plasma surrounding the radiation source may
be considered a serious candidate for explaining the observed spectrum. The flux
densities of the solar flare radiation with observed harmonic features were of the
order or larger than 100 solar flux units (107°° W/Hz m?) at about 3 to 10 GHz.
This can be computed back to the vicinity (=100 km) of the source region. A 1%
bandwidth of this incoherent radiation will there yield already an intensity of
several Watt per square meter.

This idea provoked the author to resume a conception which was developed
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long ago [2, 3], but was never applied because of lack of observational evidence in
those years. It was thought that the non-linear wave coupling of wide band
incoherent radiation can cause spectral redistribution. However, from an
observations’s point of view it is difficult to prove whether spectral equalizing 1s
caused by non-linear wave coupling. Proof of this process is only possible if a
distinction between fundamental and harmonic spectral bands can be recognized
in the observation.

The concept of non-linear wave—wave interaction has been presented in
many texts, e.g. [4,5,6,7,8]. The analysis has been applied to the parametric
coupling of three waves, usually one of them being a longitudinal mode. The
reason for this is that the dispersion relations of electromagnetic waves only allow
for very few wave modes and/or very special geometry to satisfy the conservation
of energy and momentum conditions simultaneously for three waves; this is
particularly true for unmagnetized plasma.

Moreover, in the majority of the texts the interaction between exclusively
coherent waves is treated because one had the application to laboratory plasmas
in mind. The papers most relevant in the present context are by Stenflo [9] on
three-wave interactions in cold magnetized plasma and by Tsytovich and Stenflo
[10] on three-wave interaction in turbulent plasma. In [9] the coupling coefficients
are derived for resonant interactions between three coherent waves with well
defined phases propagating in different directions in order to satisfy the resonance
conditions. In a turbulent plasma non-linear terms are present due to spatial
gradients if the turbulence exceeds a critical limit [10]. High frequency electro-
magnetic waves can be absorbed via the non-linear decay into two longitudinal
plasma waves and this process can be used for plasma heating.

Among the more recent publications on non-linear wave interaction a
majority is also motivated by the possibilities of plasma heating. For this purpose
the coupling between electrostatic modes and the extra-ordinary [11] or the
ordinary wave close to the cutoff at the electron plasma frequency [12] are
investigated and special problems as e.g. in the radio frequency heating of bumpy
torus plasma [13], the non-linear mode conversion and anomalous absorption
processes have been studied. With regard to the high intensity radiation in
non-linear interaction it is important that attention has been drawn to the effects
of high frequency induced magnetization causing an extra, ponderomotive, force
in the plasma [14]. A necessary condition for the operation of wave coupling is
that the dispersion relation allows sufficiently long interaction between the waves.
A Kkinetic treatment, necessary for high temperature plasmas, shows the change of
the dispersions relation for waves propagating in a magnetized plasma [15]. One
of the rare papers on non-linear wave coupling in astrophysical conditions in
particular with regard to solar radio bursts has been published by Wu et al. [16].
They propose a model based on the synchrotronmaser instability excited by a
hollow beam of moderately relativistic electrons in a plasma in which the plasma
frequency is much higher than the gyrofrequency. As a result of this instability,
unpolarized electromagnetic waves with frequency near twice the electron plasma
frequency can be amplified.

In contrast to investigations presupposing either one of the interacting waves
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to be a longitudinal mode or different mutual propagation directions in order to
satisfy the resonance conditions for parametric wave coupling, in the present
paper the interacting waves are assumed to be electromagnetic waves and to
propagate altogether in the same direction within a magnetized plasma. The
conditions of the plasma in the surroundings of an active region of the solar
corona are typically: temperature 10° K < T = 10" K, electron density 10" m™ =<
n=10"m™, magnetic field 0.017 =B =0.17. This means that electron
cyclotron and plasma frequencies can be within the same order of magnitude and
are comparable with the frequency range of the observed electromagnetic waves.
The temperature is such that the plasma can be treated with the fluid equations
and at the given range of density the collision frequency is very low (<<10° Hz).
One can also consider the plasma parameter g = (nAd)”', the inverse of the
number of electrons in the Debye volume; this value is far below 10™* showing
that, together with a very low collision frequency, the fluid treatment, i.e. the
concept of waves in a cold plasma is permitted. The plasma beta 8 = nkT2u,/B?,
the ratio of kinetic energy of the particles and the energy contained in the
magnetic field, is less or far less than 1072, i.e. the plasma behaviour 1s dominated
by the magnetic field.

With regard to the high intensity of waves another criterion has to be
satisfied. The electron oscillations induced by the wave must be sufficiently weak
to avoid coupling to plasma waves in the polarization direction of the electromag-
netic wave field, i.e. perpendicularly to its propagation direction. The mean
amplitude of oscillation of an electron at the plasma frequency about its
equilibrium position equals the Debye shielding distance Ap. If the wave-induced
oscillation is sufficiently less than Ap, we may assume negligible coupling to a
plasma wave. To estimate this we consider a free electron driven by a harmonic
field dv/dt = —(e/m)E,sin wt, from which the oscillation amplitude follows as
|xo| = (e/m)E,/w*. In the frequency range under consideration (@ = 10's™") it
follows x,(m)=10""E,(V/m). As long as n<10" (w,<6 10'"s™') and T >
10°K we get Ap>2x 107> m, hence for E,<2 X 10* Volt per meter the direct
coupling into a plasma oscillation will be negligible. Moreover an efficient
coupling and propagation of plasma waves will only take place for signal
frequencies within a few percent above w,.

It can also be shown that damping mechanisms, self absorption due to gyro
resonance or bremsstrahlung as well as collision effects are sufficiently weak in the
parameter range of interest, as to allow for efficient coupling of wave energy from
the fundamental to the harmonic frequency even in the case of incoherent
radiation.

It is the purpose of this paper to formulate the concept of non-linear coupling
of electromagnetic waves in cold magnetized plasma. The application to the
astrophysical problem which stimulated this study will be derived and the
feasibility will be discussed in a separate paper at present in preparation.

2. Current density due to non-linear interaction of three electromagnetic waves

A sufficiently intense electromagnetic wave travelling through a plasma
modulates density and velocity of the charged particles. A second wave entering
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the plasma meets with a medium whose propagation parameters change peri-
odically in space and time. Hence this second wave is parametrically modulated
and combination frequencies are produced. If not only the combination fre-
quencies but also the combination wave vectors have well-defined relations to the
respective quantities of the two original waves the combination waves may also be
able to propagate.

Within the concept of cold plasma approximation, i.e. where all distribution

functions are replaced by their respective moments, the momentum and the
continuity equations yield products of velocity and density fluctuations caused by
the waves. These products result in a second order term of the current density j
and in this way enter the wave equation
PE, 8 (93 FE, P @
372 3r(8 E )_H()E() EY? — Ko ot = HWo ey (1)
where superscript (1) and (2) are set for first and second order contributions
respectively and subscript k£ indicates the spectral component. Permittivity and
permeability of free space are &, and y,. This wave equation is applicable to any
spectral contribution for which wave vector k and frequency w, satisfy a
dispersion relation k(wk) in the considered medium.

In the following we assume a two-component plasma and use superscripts i
and e for ions and electrons respectively. The current density

j = e(Zn't' — n°v°) (2)

contains the product of the fluctuations of the velocities ¥ and 7° and of the
densities Zn' = n“ = n of the charged particles.

The effect of the electromagnetic wave fields E(r t) and H(# t) and of
the — homogeneously assumed - static magnetic field H, on velocity and density
can be derived from the equations of momentum (formulated here only for
electrons, charge —e and mass m)

ov° (., 9\.. e - P B
and from the continuity equation
on 0
e e o R 4
ot or (d) )

With the Fourier transform
E@, t)= j E. e % dk dw (5)

and its inverse

E(k, w)= ) f EF, e =KD gf dy (6)
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the spectral component E(k, w), (henceforth we abbreviate E(k, w) by Ej) is
related to the space and time dependent wave field. The Fourier concept can
be extended to products of harmonic wave quantities —say A(k,, ;) and
B(kz, w,) — which may yield a product wave with wave vector ko, and frequency
w, if, in a first order consideration, only three waves are permitted (see e.g.
[5]). The spectral presentation of this product wave is

(AB)k" == fAlekz 6(E() - l;l - Ez) 6(0)() - C()] - 0)2) d’z] dlzz dw] dmz (7)

The frequencies w,, w,, w, and wave vectors E,, Ez, EO of the original waves and
the product wave together have to obey the conservation laws of energy and
momentum

o= W + W, (8)
E()zlzl +i€2 (9)

respectively. Besides (8) and (9), each pair k, w, is related by its proper
dispersion relation k(wy).

The spectral presentation of a product of two waves (7) applied to the
momentum equation (3) of the electrons, making use of 3/0t=iw and 3/9F =
—ik, yields

- —Ie . q‘e = -
IOGVy, — lf (0%, - k) U, dky 5 6, 4

€ > =>e 7 bl 4 o
- {Eko + uo[ Ui, X Hp] + H()f [U%, X Hy,] dki 2 6w-"} (10)

with the abbrevations
dk, ,=dk, dic’2 da)l dw,
w k= 5(500 — w>) 5(E() - ’a - Ez)

The plasma has been assumed homogeneous to first order, therefore, di/dF (the
second term l.h.s. of (3)) is exclusively determined by the wave induced
fluctuations. The corresponding equation for the ions contains Ze/M instead of
—e/m with ion mass M. The spectral presentation of the continuity equation (4)
yields terms like

w()”i‘“:k() ”Z Ui dk, >0, 4 (11)

By cyclic interchange of the wave vectors la,, k - Ez and frequencies w,, w,;, w,
in equations (10) and (11), all contributions to the three waves by the non-linear
interaction of the corresponding pair can be obtained.

By use of Maxwell’s equation (k X E,) = ouoH,, the magnetic wave field can
be substituted. With some vector algebra applied to (10), we obtain the spectral
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component ko, w, of the electron velocity caused by the first and second order
effects of the wave fields ko, w, and kl, W, kz, w, respectively.

- o ie =k - il ie k >e -
Uiy = [Ekn + nu()(vko X HU)] + 2 (Ukl : Ekz) dkl.2 6w,k
wom wom J W,
Ekz
J'(Uk kz) vkz l _:| dk1,2 6w,k (12)
w, M

The first term at the r.h.s. of (12) is obviously the linear relation between velocity
and wave field of the identical spectral range. The second and third terms
represent the second order contributions to the velocity fluctuation U, due to the
products of wave fields and first order velocity fluctuations in the spectral ranges
ki, w, and k,, w,. Again, cyclic 1nterchange will yield the complete picture. The
implicitely appearing velocity v, in the first term at the r.h.s. of (12) can be
approximated by the solution of the linear relation alone as long as the effect of
the non-linear terms on v, 1s weak. R

If higher order terms, i.e. combinations of multiples of k; and w,
respectively, are_not considered the relation (12) for k, and the corresponding
ones for k; and k, the spectral components of the velocity U, can be represented
by the first two terms of a series expansion like

b, =00 + 5@ (13)

where k stands for k, or k, or k. .

Let us first regard only the linear term in (12). The presence of a static
magnetic field causes the relationship between electron velocity vi" and the
wave field E,

(Ue(l))p = (Tk)pq (Ek)q (14)

to be determined by a tensor

1 _ (wix)z l wﬁz _ we wf‘y _‘l wgy ngwf‘z
Wy W Wi Wy Wi
1 e e\ 2 e e ..e
(T =7 | - L Py g _ (——w“y) o Dot
1~ (—) W Wi Wy Wy Wy
Wy e e € \i2
l- wf) wcxa)cz —i U)fx _ wcyw('z 1 _ (w(z)
| O Wi Wy Wi Wi
(15)
Here the cyclotron frequency for electrons is @f = u(, e/m H,, with its

components in an X, y, z orthogonal coordinate system (w¢)® = (wf,)* + (w§,)* +

(w?,)*. Tensors and vectors used in tensor relations are set between brackets and
their coordinates are indicated by subscripts (suffix notation). The anti-symmetry
of the imaginary parts in this tensor is caused by the anisotropy of the magnetic
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field. In the corresponding tensor for the ions the signs of the imaginary parts are
reversed and the value of . is reduced by the electron to ion mass ratio as
compared with ;.

In order to simplify the following computation without loosing the essential
generality of the analysis we assume the static magnetic field to be aligned along
the z-axis, i.e. .= 0., ©, = 0, =0.

The tensor (15) is then simplified to

i 0
Wy
(T =—3| _. 0
klpq — (wi = -—i& 1 0 (16)
1_‘ a)_) wk
k
e\ 2
0 0 1—(9ﬂ
wy _

A series expansion of the particle density with respect to linear and non-linear
interaction, n, =n{" + n{¥, as for the velocity is not necessary if we limit the
non-linear terms to second order, i.e. to products of constants and second order
quantities and to products of two first order quantities. Because of the assumed
stationarity of the plasma (v,=0) there remain only 3 terms when density and
velocity are multiplied

nt =n 0" + n VoY + n,o@ (17)

There i1s no constant term, one linear term and two terms which determine the
non-linear contribution to the current density. The linear portion of n with wave
number k£, due to electrons follows in analogy to (11) if (14) is used in the product

I
ﬂnvkn)

. €ng
=1

mw% (k())P(Tzu)Pq(Eku)fl (18)

The current density with wave vector l&, can be formulated with the products of
spectral components of density and velocity as

o =e | (@n bt~ g 52) k2 0,4 (19)

The linear portion of the current density is

. . 8(} i i e e
(.’;(10)).'7 =1 E [wl’z(Tkn)P(! + wPZ(Tku)P‘I](Ekn)(I (20)
where the plasma frequencies squared
. nhZ%? née?
w? == and ¢ =— (21)
Me, mée,

of ions and electrons respectively are introduced.
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The second order portion of the current density with wave number k is due
to the non-linear action of the waves k, and k,. As already indicated with (17)
and (19), only the resulting expressions of products n{)v!) + nyv{2) are presented
with v taken from (12). The respective products with k, and k, interchanged
yield formally equal expressions and are suppressed in the following result. With
this prerequisite, the second order current density contains six terms, three stem
from the action of the wave fields on the ions and three from the electrons. One
of the three terms of each species originates from the product of first order
expressions of density and velocity fluctuations (second term r.h.s. of (17)) and
two terms are due to the second order expression of the velocity fluctuations (last
term in (17) where the two last terms of (12) have to be applied).

(jfo))p (Tkn)pq L0 {f (k2), (Tk )rs(Ex)s(Ex,)r dky 2 84 i

n f (ka). (Til),_,,(Ek,)s[(T" Ja(Ei)e = (Eiy)ql dki 5w<}
Ze j (k)

)rs(Ek ) (Tkz)Pq(Ek;_)q dk] 2 w,k

E0w,

- (Tk”

)Pq

{ f (k2)q (T2 (B (B, dK12 00k

f (k). (Tk Vs (Ex )5 [(T)ar(Ei ) — (Exy),] dky 5“)_,(}

_8() pJ (k) (T )rs(Ek|)s(Tiz)pq(Ekz)q dkl,Z 6(:),/( (22)

The indices p, g, r, s, t are used as subscripts to indicate the tensor and vector
coordinates, the subscript p is also used for plasma frequency.

Equation (22) only shows the effect of waves with wave vectors k, and k2 on
the creation of a current density fluctuation with wave vector k(,— k, + kz and
frequency w,= w, + w,, i.e. the generation of higher energy photons by pairs of
lower energy photons. The inverse process, the decay of the higher energy
photon into two of lower energy according to the same conservation laws (8), (9),
not formulated here, can formally be derived according to the same procedure.

3. Rate of coupling of coherent waves

With the current densities computed for the linear, (20), and the non-linear
contribution, (22), we can enter the wave equation in order to find a relation for
the rate of wave coupling. Before doing so, a few simplifying assumptions will be
made, certainly permitted in the astrophysical applications for which the present
concept has been developed, but also feasible in many laboratory plasma
situations. We suppose that the dimensions of the plasma are much larger than
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the characteristic length along which substantial non-linear wave coupling takes
place. Second, the properties of the plasma relevant to the wave interaction
change slowly and adiabatically over the characteristic interaction length. Third,
the following considerations are only valid for a weak non-linear process such that
the characteristic interaction length is much larger than the wave length and the
characteristic interaction time much longer than the wave oscillation period. If,
additionally, we take a localized source of intense radiation and study the wave
coupling along the propagation path, then the assumed quasi-stationarity permits
to approximate d/dt by iw in the wave equation while time derivatives of |E| and
/| are negligible compared with iw. The same assumptions allow to limit the
spatial derivatives to the first order. We set E, = F; expi(wt — k - 7) in order to
distinguish between amplitude (including polarization) and oscillatory property of
the wave field; with this we get

dE)y [ . I(F)p
E RO ey

where again index notation of the vectors is used.
In the second order derivatives, one has to distinguish between

]expi(wt_E-?)

d d(Ek)p 2 (k)p ; T
), d(r), [k (Fy), + 2ik, 3(r), ] expi(wt —k - F) (23)
and
_d d(Ed), WPINI:I07 PRNYPIN-I079 ¥) YR
d(r), d(r), |10 B, + 06, o), T a0, Jewitor-£-7

(24)

with this kind and degree of approximation the spatial portion of the wave
equation (1) becomes (we suppress the oscillatory portion)

{—[k2+2i(k)p%] 8pg + (K),(k), +i(K), a(f) +i(k)p%}(Fk)q (23

In the special case where polarization vector and wave vector are parallel, the
terms k* and (k)p(k), of the linear wave equation as well as the terms due to the
non-linear action (k - 3F,/5F) cancel each other and, within the accuracy of our
approximation, as in the linear wave equation in cold plasma only a non-
propagating plasma oscillation develops. The time derivatives at the 1.h.s. of (1),
having the temporal quasi stationarity in mind, are given as in the linear wave
equation by

o€o(€),swi(Fi)s (26)
with the dielectric tensor

i2 weZ

(6 = (8)s ——5 (T4~ o (T (27)
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where (T%),, and (T%),, for ions and electrons are according to (15). When putting
(25) and (26) in the wave equation (1), the cases with different mutual
orientations between static magnetic field, wave vector, and polarization of the
electric wave field have to be separated. We can specify the magnetic field to be
aligned with the z-axis leading to the simplified version (16) of the tensor (15)
and, with some loss of generality, consider two special directions of wave
propagation, parallel and perpendicular (say along the x- axns) to the magnetic
field. For the sake of lucidity we put j& =J@ exp i(wt — k - 7), where polariza-
tion and phase are contained in the “‘amplitude” J Sf) while the oscillatory portion
is separated.

_ The «case of propagation perpendicular to the magnetic field
(Hy=(H,),, k = (k),) the wave equation written out in components yields

“Ofow(z)(gkn)xq(Fko)q = innuO(chzn))x

o), — 20ke)e S 4 (1) (Fi)y = 0oitolUE), (28)
x

g “()&)w(ZJ(Ekn)zq(Fku)q = iwoﬂo(-];czu))z

(). — 20ke), Sk
In each line of equation (28), the subscript g of the dielectric tensor and of the
wave amplitude vector has to assume successively all values x, y, z of the three
spatial components of the wave field. According to the discussion after equation
(25), not only the term (ko)7 (Fy,)x of the undisturbed wave equation vanishes for
ko parallel to F k,» but also the term containing the rate of wave coupling,
d(F,)./dx, i.e. there is no direct coupling to a longitudinal wave. This is a
consequence of the limitation to first order derivatives in (23) and (24). However,
also from a physics point of view this seems reasonable, because the longitudinal
wave cannot propagate synchroneously neither to the driving fundamental nor to
the harmonic electromagnetic wave.

This means there remain only the ordinary electromagnetic wave (third line
of (28)) and the extraordinary wave (second line) for which non-linear wave
coupling via the second order portion of the current density is predicted by (28).

For wave propagation parallel to the magnetic field (Hy = (H,),, k = (k),),
again the terms containing spatial derivatives of the longltudmal mode
(Fr = (F,).) vanish,

~(ko)(Fip) = i2(ko), G(Fko)x

+ 1o€o®5(Exy)xg(Fro)g = i0otto(J )

a(Fko

29
32 )y - Mogowo(eko)yq(Fk(,)q lwo.uo(fk0 )y )

_(ko)g(F Koy — i2(ko).

Ju()g()w%(gkg)zq(F kn)q = iwoto(J ﬁ))z

According to the assumption of weak non-linear interaction (|0F,/dr| < kEF,) it
will, in a first order approximation, be permitted to subtract the undisturbed
(linear) wave equation from (28) and (29) respectively.
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With this we arrive at the approximate solution for the rate of coupling of
waves propagating perpendicular to the magnetic field (H(}— (Hy)., ko= (ko),),
i.e. of extraordinary and ordinary wave respectively

a(E((})y_ _ Wolo

— J( 30
ox z(k())x( i )y (302)
A(Fy ): Wl
0/z __ J 2) b
ox z(k())x ( 2“ )2 ‘ (30 )
and of waves propagating along the magnetic field (Ia, = (ky),)-
a(E(o)x — Woldy (Jg(z))x (313)
oz 2kgy). "7
a(Fk )y Wyl )
oy _ 31b
az Z(k())z (Jkn )y ( )

Close inspection of the current density (22) and the tensor (15) shows that the
number of coupling equations (30), (31) will further be reduced if /i vanishes for
particular mutual directions of magnetic field, wave vector and polarization.
Besides there is another necessary condition to be satisfied before wave coupling
happens; the dispersion relations of the participating waves have to be such as to
allow for interaction according to (30) or (31) over a sufficiently long distance R.
This means that over a narrow but finite bandwidth Aw the conditions of energy
and momentum conservation (8), (9) have to be satisfied sufficiently accurate, i.e.
6k <1/R, where 6k = k,— k, — k, is the maximum deviation from (9) over the
given bandwidth Aw. At another place it will be shown that for frequency
doubling, i.e. when @, = w, and k, = k, within the limits of a narrow bandwidth,
the extraordinary wave exhibits a very favorable dispersion relation. Therefore in
the next sections exclusively this wave will be considered.

Moreover, for (30) and (31) to be applicable, the interacting waves have to
be coherent waves with fixed mutual phase relations. The coherence length c/Aw
has to be much larger than the minimum distance R for substantial wave
coupling. In the considerations so far it has been supposed that the interacting
waves are coherent. In the following, incoherent wave spectra are admitted for
which — besides (8) and (9) — no mutual phase coherence exists.

4. Non-linear interaction between incoherent wave spectra

In nature high intensity radiation usually originates from mechanisms which
are inherently non-coherent, e.g. from the beam of uncorrelated electrons
accelerated to relativistic velocities during a solar flare. Only in very special
conditions a certain degree of coherence is created, e.g. by the maser effect
driven by electrons in a magnetic loss cone instability.

For high intensity of incoherent radiation, we assume a high radiance
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continuously distributed over a substantial bandwidth. The large bandwidth and
the generation by uncorrelated processes are the causes for completely uncorre-
lated phases within the radiation.

We suppose a frequency bandwidth Aw and a corresponding range of wave
numbers Ak over which the radiance of at least one wave is sufficient to initiate a
noticeable non-linear interaction and within which the dispersion relation of the
interacting wave modes allows to satisfy the conditions of energy and momentum
conservation (8) and (9) respectively. The reciprocal bandwidth 1/Aw =t and
1/Ak = p may be considered as correlation time and correlation length respec-
tively. The wave interaction has to be treated as a random process if the
characteristic time 7 and length R for wave coupling (e.g. e-folding) are much
larger than the correlation time and correlation length

T>r, R>p (32)

Nevertheless, the condition of energy and momentum conservation (8) and (9)
have to be satisfied over a duration and length larger than T and R respectively.
Hence the dispersion relation has to allow for

1

1
50 >T, K > R (33)

(0w = wy,— w, — w,) for combinations of spectral portions within the bandwidth
Aw.

With this in mind, the wave field may be considered as averaged out over the
characteristic interaction time, hence (E, ) = 0. The averaging of products of two
field strengths of the same spectral range

(EkE;fr) — (eri(ml—lz~?—qpk)F;:’e—i((u’!—f’v?—qﬁ())
=Bl 1E| 0(0 — ") 8(k — k') (¢ — @) (34)

yields finite intensities only for correlated field quantities.

For the purpose of computing the interaction of incoherent waves, we
consider here only the case of collinearly propagating extraordinary waves.
Multiplication of the equation (30a) with the complex conjugate of the wave field
(Fk,), with wave number k, and putting it behind the differential operator at the
L.h.s.. yields

9 |Fk0|32: _ _ Wyl
ox (ko)x

At the r.h.s. of (35) (F}), can be replaced by the integral of equation (30a)

IN|Fly 1

|3_ woly 2 T Ay (J12 36
T 2 \(k), (Ji,")y dx(J3)), (36)

Because of the random character of the interacting waves, the average of (36) has
to be taken.
In view of equation (22) for the non-linear portion of the current density, it is

(Fi), (T, (35)
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obvious that this averaging is a lengthy task. To avoid the presentation of the
whole procedure, only the first term caused by the electrons (4th line of equation
(22)) is shown. The simplified tensor (16) can be utilized because of the choice of
Hy= (H,). and k = (k),

<(Tzl)rs(Fkl)s(sz)r(Ti?)rs(Fl’:'l)s(F;:’z)r)

_ o I e
szx F;:a,x Fk1x+l P.’qy F:’lx_l-a_)_eriy
1
1 . .
= e e _s_c - C *
w7 w, s "
w; w;
- [0,
_szz_ _szz_ L (1 wl) k, | _( (U;z ki i
1
= ¢ 2 [lezx |2 + |Fk2y'2+ Iszz|2]
(1-%%)
2 weczZ 2 5
AL1Ped £ SV |+ [ 1P S 1Pt |+ (1= 25 ) 1P G7)
1

In this averaging process, use has been made of the following relations:
According to (34) only correlated field quantities of the respective spectral

ranges yield contributions.
For our choice of orthogonal directions of magnetic field, wave vector, and
initial wave polarization, only elliptic polarization in the x—y plane can occur

_(F")x = | eti®
(Fk)y leyI
with phase of (F;), advanced (+) or retarded (—) with respect to (F),.

Concluding from the linear case of wave propagation, ¢ can approximately be set
equal /2. With this the averaging of the mixed products in (37) yields, e.g.

. Q¢ . " w;
_lzu—; ((Fk1)x(Fk1)y - (Fk1)x(Fk|)y> = iz; IFklxl |Fk|y| (38)
1

for the two orientations of the magnetic field.
The factor in front of e.g. the first electronic term (4th line in (22)) results in

W w; .,
o (k2)x o (k2)x

(T2 (k)e(T5)ya(K3)e = —— ;
W W,
- -
Wo Wo
if the direction of the propagation of all interacting waves is along the x-axis.
In the application of the present concept, we consider high frequency

5 0(ky — k3) 6(wz—w3)  (39)
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electromagnetic waves in a plasma of density and magnetic field such that the
electronic branches of the dispersion relation are responsible for satisfying the
necessary conditions (8) and (9) of wave—wave interaction. If the density and
velocity fluctuations of merely the electrons mediate the wave coupling then, for
the sake of clarity, the formulation can be reduced to the contribution by the
electrons. The result of the described procedure applied to equation (36) is

<8|Fk0|y> 1 380”0“’
ax m(k())x

2)2 2 2
we
- 'F’;'e 2 [(m.txijm.yl)
] otat [1-(Z)] |
w(} W,
2 we 2
(1Pl 2 F) + (1= () | 1FR] dow ks 80

1
[ kof

-GGG

weZ 2
(1Pl (2 25) g 2+ 25
Wyw2 W3
x| 1Fl £ 2 |Fk,|y] doy dk, 28,4
2 2 2
Wo LAk [oh
S TR I L
W, W2
w? 2
X | L £ 1Fl, | dog b,z 0, (40)
2

The analogous expression for the contribution by the ions contains their
respective values and signs of mass, density and charge, and consequently for
plasma and cyclotron frequencies. The alternating signs for the sense of
polarization are reversed for the ions.

5. Conclusions and Application

The proposed concept of non-linear wave—wave interaction in a cold,
collisionless magnetized plasma allows for detailed analysis and numerical
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computation of the rate of wave coupling. In a first order approximation the
coupling rates of coherent wave fields for propagation of all participating waves
perpendicular or parallel to the static magnetic field have been derived and from
this the coupling rate of the wave intensities of incoherent, extraordinary waves
have been deduced.

The present analysis did not account for any loss mechanism. For the special
combinations of particle density, temperature and magnetic field at which the cold
plasma concept is valid, the most probable loss mechanisms are cyclotron
absorption, inverse Bremstrahlung in electron—ion encounters and electron—
electron collisions. These processes set a threshold which has to be exceeded by
the non-linear interaction before one wave can grow at the expense of another
one.

The even more stringent condition imposed by the compatibility of the
energy and momentum conservation principle with the dispersion relation of the
interacting waves has already been discussed. It is difficult to identify a dispersion
relation which allows to satisfy (8) and (9) for three different spectral ranges of
electromagnetic waves. For a simple geometric arrangement as the interaction of
extraordinary waves only frequency doubling (@, = w,= w,/2) can be accom-
modated. The limitation of the present analysis to pure orthogonal arrange-
ments of the directions of magnetic field vector, wave vector and polarization
vector is a draw-back which, however, made allowance for a reasonable clarity of
the presentation. Interaction of three different spectral ranges seems to be limited
to more general arrangements of the above mentioned vectors.

In spite of the limitations of the presented concept, it can be applied to a
variety of plasma conditions and configurations. For the case of the solar corona
in the vicinity of an active region conditions are prevailing for which the present
concept is applicable.

A numerical investigation has been made of the coupling rate of incoherent
radiation within finite bandwidth and the correlation length has been determined
over which substantial wave coupling can be achieved. A detailed analysis of the
effects of the mentioned damping processes on the feasibility of the non-linear
coupling has been made and the compatibility of the dispersion relation of the
extraordinary waves with the resonance conditions (8) and (9) has been proved.
The reduced coupling efficiency due to polarization effects has been estimated. A
detailed discussion of these topics will be presented in a separate paper currently
in preparation, therefore only a few indications of the orders of magnitude are
given here.

The dispersion relation of extraordinary waves allows to satisfy the condi-
tions of momentum and energy conservation for frequency doubling if

w,/wE>4/3.
A simplified and frequency-integrated formulation of the rate equation (40) is
A IE‘()|2 > )
———=C|E\|" |Ey 41
- =CIE|E;| (41)

The coupling rate C attains values between ~10* and ~107! for w¢~ 10"s™!
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and a bandwidth of ~1% of an incoherent wave spectrum. An inflexion of the
dispersion curve at w,/w¢~ 1.5 gives rise to a correlation length of more than
thousand wavelengths for the 1% bandwidth. Therefore

A |Ey|”
|Eq* | Eof?

can yield values between 1 and 10 if the correlation length is taken for AX, and
l4=w,/w;=<1.55 is chosen. This means complete conversion of the wave
energy between the lower and the higher frequencies (w,, w, vs. wy) within the
correlation length if unity field strength of the wave is exceeded. Comparison with
wave intensities close to the solar flare regions (|E|*>> 10°(V/m)?®) suggest that
this process may be considered feasible.

Among the damping processes gyro-resonance is the most efficient one. If we
assume a decreasing strength of the static magnetic field on the propagation path
(which is perpendicular to the field direction) then mainly the fundamental
frequency wave (w;) will be attenuated within an extremely narrow frequency
range (<1%), hence over a small path length, by the second harmonic of the
local gyrofrequency. This is based on the fact that at maximum coupling between
fundamental and harmonic (for 4/3 < w,/w¢, <5/3), the fundamental frequency
is related to the gyrofrequency wg, of the coupling region by about wg, < w, <
1.5 wgy. All other combinations of wave frequencies and local gyrofrequency as
well as electron-ion and electron—electron encounters are two or more orders
of magnitude less effective in damping.

According to the fairly low loss mechanisms in the frequency ranges relevant
for the wave coupling an efficient and observable creation of harmonic radiation
from an intense incoherent fundamental radiation may be expected.

=CAX. (42)
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