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0. Introduction

La théorie des résonances pour l'opérateur de Schrödinger P(h) -h2A + V
sur L2(U") est développée dans un grand nombre d'articles (cf. [Sim]2 pour un
survey). Les premières définitions mathématiques des résonances (dans un cadre
non réduit à la dimension 1) furent probablement données par Lax et Phillips
[La-Ph], Vainberg [Va], et (dans un cadre encore moins restrictif) par Aguilar et
Combes [Ag-Co]. Cette dernière définition, qui a donné lieu à de nombreux
développements (cf. Balslev-Combes [Ba-Co], Cycon [Cy], Hunziker [Hu],
Simon [Sim]3, s'appuie sur les techniques de dilatations analytiques, dans des
versions de plus en plus générales appelées distorsions analytiques.

Dans [Hu], W. Hunziker analyse ces différentes techniques pour construire
des prolongements méromorphes des éléments matriciels de la résolvante:

((P-z)-VlvW)
partant de Im z > 0, où cp et ip appartiennent à un ensemble si dense dans L2, sur
lequel la dilatation (ou la distorsion) analytique opère. Il montre ensuite
comment vérifier l'indépendance par rapport à si de la notion de résonance, vue
comme pôle d'un des éléments matriciels.

Dans [He-Sj], B. Helffer et J. Sjöstrand proposent, pour étudier les
résonances de forme dans le cadre semi-classique, une autre définition plus
microlocale: ils montrent que sous des hypothèses convenables, l'hamiltonien est

un opérateur de Fredholm dans des espaces de Sobolev adaptés. Les résonances
sont alors les points z de C pour lesquels P(h) - z n'est pas bijectif dans ces
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espaces de Sobolev. Ceci leur permet de traiter des problèmes typiques associés

aux résonances comme le "puits dans une île", etc. (Voir aussi [Ge-Sj] et
[Sj]2). Simultanément (cf. [C-D-K-S]) ou ultérieurement (cf. [Br-Co-Du],
[Hi-Si]), des auteurs étudient le même type de problèmes avec des techniques
relevant de la dilatation analytique. La question naturelle était de démontrer (ce
dont personne ne doutait vraiment) que lorsque les deux techniques s'appliquent
(potentiels réguliers, dilatables analytiquement), les deux définitions de
résonances coïncident. C'est l'objet de cet article qui s'appuie très fortement sur
le travail de Hunziker [Hu].

Au §.1, nous rappelons la définition de Helffer-Sjöstrand, et, au §.2, celle
de Hunziker. Le §.1 contient aussi quelques développements préliminaires.

Au §.3, nous démontrons l'équivalence souhaitée, en considérant le point de

vue "pôles de la résolvante". (Nous ne rediscutons pas de l'équivalence entre la
définition de Hunziker et celles de [C-D-K-S] et [Hi-Si] qui est plus connue).

Le §.4 est consacré à l'étude des fonctions résonnantes: nous montrons
qu'elles correspondent dans les deux théories, ce qui permet aussi de faire le lien
avec une définition donnée par Ashbaugh et Harrell [As-Ha] dans le cas de la
dimension 1 et d'un potentiel à support compact.

Nous tenons à remercier Ph. Briet qui nous a transmis l'article de Hunziker,
et également P. Hislop, I. Sigal, J.-M. Combes et J. Sjöstrand avec qui nous
avons eu l'occasion de discuter de ces questions.

1. Les résonances de B. Helffer et J. Sjöstrand

Soit P(h) -h2A + V l'opérateur de Schrödinger sur L2(W), avec V e

C"(W; U) vérifiant:

Il existe e0 e ]0, i[ et M > 0 t.q. V s'étend analytiquement près

du domaine D {z e C";|Rez|^ M, |Im z\ _1i £„ |Rez|} (1.1)

et y vérifie: lim V(z) 0.
|z|—=-
zeD

Soit £o>0. On s'intéresse aux résonances E(h) de P(h) proches de Eo-

Rappelons tout d'abord la définition de [He-Sj] dans cette situation.
Soient

X e CJ(R") t.q. xiM) 1 dans un voisinage de {£2 £0}; (1.2)

X € C"(R") t.q. x(x) 0 dans {\x\ ê3M}, x(x) 1 dans {|jc|^4M};

(1.2')

G(x,ï) x{x)x(ï)(x-Ï) pour (x, Ç) e T*U" - U2n. (1.3)

Pour teU, l-l-tata-fo (r()>0 assez petit), on introduit la famille de variétés
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I-lagrangiennes (indicée par t):

{A-)ì~*a (ax, a%) e C2"; Im a% -t—-(Re ax, Re atA),

dG Ì
lm ax t— (Re or,, Re aê)J. (1.4)

La famille de poids (r, R) (cf. [He-Sj], §.1) utilisée ici est:

r(x) \, R(x) (x)d=(\ + \x\2)m, xeU". (1.5)

On a alors r(x, £) (§), et une fonction d'ordre sur IR2" est une fonction m
vérifiant:

\d"x d'lm(x, §)| ê Q,m(;t, |)<|>-""<jc>-|fl". (1.6)

Si m est une fonction d'ordre, la classe des symboles S(m) est définie par:

a e S(m)o|3? 3ffl| =i Q,m(;t, |)<|>-""<x>-|af| (a, /3 e N"). (1.7)

Les espaces de Sobolev sur lesquels P(/i) va opérer sont définis à l'aide d'une
transformation de F.B.l. de la manière suivante.

La phase de cette transformation est donnée par:

®(x, a) (ax-x)aç + ijX-(x-ax)2 (1.8)

pour x e U", a e C2" (ou plus spécialement a e A,c).
Pour u e 3>'(M"), on définit la transformée de F.B.L de u par:

VoreC2", (Tu)(a)=lei^xa)\x,a,h)xi(^T^^)u(x)dx (1.9)

où Xi est une fonction de troncature t.q. #, e CÔ(\x\ 1/Q), X. 1 dans

|jc|^1/2Q (Cq>0 assez grand), et où ?(x, or, /i) est un (n + l)-vecteur de

symboles dans S(/r3"/4(tfg}',/7<a:;c)n/4) (pour |x-Reax|ê(l/C0)<ax)), affine-
linéaire en x, tel que det (t, dt/dxx, dt/dxn) soit elliptique (on peut prendre
par exemple t h~3nl4(ak)n'4 x (ax)-nl4(l, xx/(ax), ,xj(ax))).

Notons tout d'abord que sous les hypothèses (1.1), (1.2) et (1.2'), la fonction
G(x, §) est une fonction fuite pour P(h) au sens de [He-Sj], §.8. En effet, on
vérifie en utilisant les inégalités de Cauchy que sur la surface d'énergie
l2 + V(x) Eo, on a

HPG 2E0 - 2V(x) - x ¦ VV(x) ^ E0 pour \x\ assez grand. (1.10)

D'autre part, G vérifie les bonnes estimations, en particulier:

|V,G| \x(x)x(m + (VxtoMfX* • 1)1 ^ c
|VêG| \(x(Ç)x + (x ¦ ï)Vx{m{x)\ ^ C(x).
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Toutes les conditions sont donc réunies pour définir les résonances de P(h)
(dont le symbole est bien dans la classe S(r2)) au voisinage de En, dans les

espaces de Sobolev H(A,G)(t > 0).
Rappelons d'abord que si f e CX(U") et m m(x) est une fonction d'ordre,

on a, pour N ___ 0:

H(Af,m(x)(Ç)N) \ue2)'(nn); £ \\(hDxy(me-flhu)\\L-<A.

Cq est alors dense dans cet espace, et on construit par dualité dans 3)':

H(Af, m(x)(Ç)~N) est le dual de h(a^, - <§)").

Pour la suite, il nous suffira d'utiliser l'espace:

H-N H(Ae(x),(x)-N(^)-N)- (I-")
La variété A,G étant lagrangienne pour Im (da^ a dax), on y introduit une

primitive de la 1-forme fermée —lm(a^dax) par (cf. [He-Sj] formule (2.2)):

H,(a) —Re ocç ¦ Im ax + fG(Re ax, Re a^)

et un calcul simple montre alors que:

Ht(a) -t(Re ax ¦ Re *ê) • (Re a% ¦ Vx(Re au))x(x) tH(a). (1.12)

Réécrivons maintenant la Définition 5.4 de [He-Sj] dans notre cas

particulier:

Définition 1.1. Soit m une fonction d'ordre sur IR2", et /VUO tel que
{x)-N{^yN^Cm(x, |), V(x, §)eR2" (avec CêO).

Soit aussi e > 0 assez petit. Alors, pour \t\ t0 on définit l'espace H(AtG, m)
comme étant l'ensemble des u dans H~N(U") tels que:

1 \Tu(a, h)\2 (m(Re a))2e_2d,(a)/* da < +«. (1.13)

(Ici, dar est la mesure canonique sur A,G qui est IR-symplectique, mais en
paramétrant AtG par Re a, on ne modifie pas la définition en remplaçant da par
d Re a).

Pour z e C, proche de Eq, P(h) — z peut alors être considéré comme un
opérateur continu de H(AtG, 1) dans H(A,C, f~2), qui est une bijection pour z en
dehors d'un ensemble discret où c'est un opérateur de Fredholm d'indice 0 (cf.
Théorème 8.3 de [He-Sj]).

On pose la définition suivante des résonances:

Définition 1.2. Soit Qr {zeC; |Rez - E0\ < \/Cx, -t/Cx < Im z < T0} où
on a choisi Cx > 0 assez grand et T0 > 0 assez petit.



996 Bernard Helffer et André Martinez H.P.A.

Alors, pour /<, >0 assez petit, et te]0, t0], on définit l'ensemble des
résonances T\h) de P(h) dans Q,(h) pour h assez petit (he]0,h.] où h, >0
dépend de t) par:

EeY\h)<^P(h)-E:H(A,G, l)-*H(AtC, X) n'est pas une bijection.

(1.14)

On a aussi une définition équivalente à partir des pôles de la résolvante:

Définition 1.2 bis. Soit E e ] - I/C, + £<„ E0 + l/Cx[+i ] - tQ/Cx, T„[. Alors,
E e F1 (h) ssi il existe r>0 avec h^h, tel que pour tout contour yE assez petit
entourant E et situé dans Q,, il existe w, e H(A,G, X) et u2 e H(A_,G, 1) tels que:

1 {(P,-z)~,ux,u2),dz^0, (1.15)
JYE

où P, désigne l'opérateur P(h) opérant de H(A,G, 1) dans H(A,G, r~2) et où

(•,•), est le crochet de dualité entre H(A,G, 1) et H(A_,G, 1) (comme défini dans
la proposition 8.8 de [He-Sj]).

L'équivalence des définitions ne pose pas de problème particulier: si E vérifie
(1.14), E étant isolée on peut trouver yE dans Q, entourant E, et tel que Fl(h)\E
soit à l'extérieur de yE. Alors, pour ux e Ker (P, - E) tH(A,g, r~2), et w2e
H(A_,G, 1) tels que (ux, u2) =£0, on obtient (1.15). Inversement, supposons la

propriété (1.15) satisfaite; alors, si E^Y\h), ((P, - zy'u,, u2), serait
holomorphe dans un voisinage de l'intérieur du contour yE, pour tout yE assez près de
E et tout (ux, u2) dans H(A,G, r~2) x H(A,G, 1). ¦

Remarque 1.3. On peut affaiblir la Définition 1.2 bis en y remplaçant les

espaces H(A,G, r~2) et H(A,G, 1) par des ensembles Mx et sî2 qui sont
respectivement denses dans H(A,G, f~2) et H(A,G, 1).

Remarque 1.4. Soient to>0 et /i„>0 assez petits, ainsi que slx c
Plins/,, H(\c> X) et sî2 cr ("Vis.,, H(A,G, 1) des ensembles denses dans chacun
des H(A,G, r~2) (resp. H(A,G, 1)) (par exemple $lx si2 C^(IR")). Alors, pour
(ux, u2) e sixx M2, on a:

L'application
1 1

Eo- — Eo + —
C) c,

+i
Tç,

2,Itt 3Z^((P,-Z) 1UX, U2)

est une fonction holomorphe, indépendante de f e [—to, t0], (L16)
et pour tout h e ]0, A,,].

En effet, on remarque d'abord que pour Im z e ]7J,/2, Tn[, et t e [—to, t0], le

symbole (p \a,c~ X' (où p(x, §)=f§2+ V(x)) est bien défini partout sur A,G, ce

qui permet par le calcul pseudodifférentiel (comme dans la démonstration du
Théorème 8.3 de [He-Sj]) de construire (P, — z)~' et d'assurer l'holomorphie de

l'application (1.16).
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L'indépendance par rapport à t provient du résultat de régularité suivant:

Si Im z>-^,u e H(A,G,1), et (P - z)u e fl H(AsG, X),

alors m e H H(AsG, 1) dès que h h0. (L17)

La démonstration se fait comme celle du Théorème 8.5 de [He-Sj], mais,
compte tenu de l'ellipticité uniforme de P \A,(:~ z pour Imz>r0/2, \t\^ât0, on
n'a pas de restriction sur t. Ceci termine la démonstration de (1.16).

On aura enfin besoin d'un deuxième résultat de régularité qui se démontre
comme précédemment, et qui est l'analogue pour t ¥= 0 de la théorie classique des

opérateurs h -admissibles sur IR" (cf. [He-Ro]).

Si Imz> —, alors:
2

ueH(A,G, 1) i x ._ „/A -2x
cp m a u{^tieH(A,G,r2). (1.18)
(P-z)ueH(A,c, 1)J

La conséquence est que si ux, u2e Hms.,, H(A,G, 1), alors pour |f| ^tQ:

{(P, - z)~lux, u2), ((P- z)-lux, u2)LHn») (1.19)

où (P - z)-1 est la résolvante de l'opérateur auto-adjoint P de domaine H2(U").

2. Les résonances de J. Aguilar et J.-M. Combes d'après W. Hunziker

On s'inspire ici de l'article [Hu] où W. Hunziker définit les résonances à

l'aide de "distorsions analytiques" de la manière suivante:
Soit v e C*(Rn; U") vérifiant:

\v(x) - v(y)\ __= \x -y\ pour tout (x, y), v(x)=x dans

{\x\^3M}, et -j(x) 0dans {\x\^2M}.
Pour cp holomorphe dans C" et À e C, |A|<£, (avec £,>0 assez petit), on

introduit l'opérateur Uk défini par:

(U,cp)(x) cpx(x) =J(x, Xyi2cp(x + kv(x)) (2.2)

où jc e IR" et J(x, Â) det (<5,y + À dvjdxf),^, les t>, étant les composantes de v.
(Pour A réel, il est clair que Ux se prolonge en un opérateur unitaire sur L2(1R")).

Hunziker présente deux définitions des résonances, dont il démontre
l'équivalence dans son Théorème 4. (En fait, Hunziker se restreint au cas de

potentiels coulombiens, mais ses méthodes se généralisent sans problème à notre
situation).
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Définition 2.1. L'opérateur p(h, A) UxP(h)U~l, qui est bien défini pour
AeJ-1, 1[, admet un prolongement analytique pour A e C, |A|<£X (où £x>0
dépend du £0 de l'hypothèse (1-1)), et on définit l'ensemble T2(h) des résonances
de P(h) comme la réunion des spectres discrets des P(h, A), |A| < ex, Im A >0.

Soit maintenant si un sous-espace des fonctions entières sur C" tel que:
Vi/; e si, l'application A—» Uxxp est une fonction analytique

dans {|A| < ex}, à valeurs dans L2(IR"); (2.3)
VA e C, |A| < ex, l'image de si par Ux est dense dans L2(IR"). (2.4)

On considère alors la:

Définition 2.1. bis. Pour tout ux, u2 e si et z e C avec Im z > 0, on considère
la fonction z—> ((P(h) — z)~1ux, u2)Li.

L'identité ((P(h) - z)~lux, u2)Li ((P(h, A) -z)-lUxult (Ux)u2)Lz permet
d'étendre méromorphiquement cette fonction à travers Im z 0 dans un
domaine G(A) (complémentaire du spectre essentiel de P(h, A)). En notant
((P(h) - z)~lux, u2)GW la fonction méromorphe ainsi obtenue, on a:

T2(h)= IJ U {pôles de ((P(h)-z)-lux,u2)GW}.
|A|<£i U\,U-l^s1
ImA>0

De l'équivalence de ces deux définitions, on déduit l'indépendance par
rapport à v et sé de l'ensemble T2(h), puisque la première ne fait pas intervenir
si, et la seconde, de par l'unicité du prolongement méromorphe, est

indépendante du choix de v.
Remarquons aussi que, le spectre essentiel de P(h, A) étant décrit par

{z;argz =-2arg(l + A)}, la famille d'ensembles {pôles de ((P(h)-
z)~lux, .^gwIiai«., croît avec ImA.

Hunziker propose comme choix de si le sous-espace:

six J / entière sur C" t.q. Ve > 0, VN > 0, lim (Re z)Nf(z) o).
v l-l—»* J

|Im-.|_S(l-<.)|Re-.| /v, ^\
Pour la commodité de nos démonstrations on préférera par la suite utiliser

plutôt le sous-espace:

si2 f/ entière sur C" t.q. 3e2, e3 > 0, lim eE:ZJ(z) o). (2.6)

|Imz|Sf, |Re z\

Celui-ci vérifie bien (2.3), (2.4) d'après [Hu].

3. Comparaison des deux ensembles de résonances

La comparaison entre Tl(h) et T2(h) peut s'opérer de deux manières, selon

que l'on adopte le point de vue "fonctions résonnantes" (cf. Définitions 1.2 et
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2.1), ou le point de vue "pôles de la résolvante" (cf. Définitions 1.2 bis et 2.1

bis). C'est ce dernier point de vue que l'on adopte dans cette section: il a

l'avantage de donner une démonstration courte du résultat que l'on cherche.
Cependant, la comparaison entre les états résonnants associés à Tx(h) et T2(h)
n'est pas sans intérêt, et sera traitée dans la section suivante.

Théorème 3.1. Si V vérifie (1.1), Eo>0, et t>0 est assez petit pour que
Q- c {z e C; arg z e ]-2 arg (1 + A), Jt/2[} (où comme avant Q, ]EQ - 1/Ci,
E0-\-l/Cx[+i] — t/Cx, T0[, Cx>0 assez grand, To>0 assez petit, et où |A|<£,,
Im A > 0), alors T\h) n Q, T2(h) n Q, pour h e ]0, h,].

Compte tenu des remarques de la fin du §.1, il suffit de montrer:

Lemme 3.2. // existe un sous-espace si vérifiant (2.3)-(2.4) et qui est dense

dans H(AtG, rN) pour tout t tel que \t\ < t0 et tout N eZ.

(On remarquera le parallèle qui existe entre la densité dans les H(A,G, fN) et
la condition (2.4)).

Démonstration. Montrons que l'espace si sl2 défini en (2.6) convient.

Soit cp e H" et <_>(;., a) donnée en (1.8).
Comme d(p/dx(x, a)¥=0 lorsque as + 0 et (jc, ax) e Supp Xi((x ~ Re ax)l

(ax)), et compte tenu du fait que t(x, a, h) est d'ordre n/4 en (arg), on peut
gagner par des intégrations par parties en jc un nombre arbitraire de puissances de

(_*i) dans l'expression de Tcp(a):

Tcp(a)=(a,X 2 f e"**-°*tk,p(x, a, h)Xl(- " Re"'W*) dx
ißiSk-

où les tkß sont des symboles (vectoriels) d'ordre h 3nl4(ax) n'4. D'autre part,
pour a e A,G et |jc - Re ax\ \% (1/C0)(ax), on remarque que:

3O0 t.q. \tH(a)\ - lm cp(x, a) ^C\tReax\
de sorte que, pour tout e2 > 0:

\(ae)Ne-m"VhTq>(a)\ -i C(h, e2)(aiî)N-keCvKea'vh x

x e-E2(rea',2Sup ||e2E2J:2 dpxcp(x)\\L2
\ß\ak

et donc, en prenant k assez grand:

\\{as)Ne-'H^'hTcp(a)\\LHAic)^C'(h, £2)sup \\e2^2 d"cp\\L.. (3.1)
\ß\Sk

En particulier, les deux membres de (3.1) sont finis si cp e sâ2 et si on a pris e2

assez petit.
De plus, du fait que CÔ est dense dans H(A,G, rN) (cf. [He-Sj], Proposition

5.8), il suffit d'après (3.1) de montrer que tout xpeCÔ(W) peut être approché
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par un élément de sä2 pour la norme £|pis* \\Xxl dficp\\Li, et on aura alors la
densité de sl2 dans les H(A,G, fN). Cela se fait simplement par régularisation
gaussienne, ou encore en approchant e3e2X tp par des combinaisons linéaires de
fonctions d'Hermite, dont on connaît la densité dans les espaces de Sobolev
usuels grâce à l'étude de l'oscillateur harmonique. D

.lOTcrSi.

Neuchât4. Comparaison entre les états résonnants

Soit A e C, |A| < £,, Im A > 0, et soient t > 0 assez petit et E une résonance
dans T2(h) fl Q, Tl(h) C\ Q,. On peut alors définir de manière naturelle les deux

espaces suivants:

- l'espace des états résonnants au sens de Hunziker, décrit par Im IÌA

où nA ^| (z - p(x, h)X dz

- l'espace des états résonnants au sens d'Helffer-Sjöstrand, décrit par Im n,

où n-Xbz-pm"'h-
(yE désigne un contour fermé simple assez petit autour de E, tel que Tx(h)\E soit
à l'extérieur de y).

On se propose de démontrer:

Théorème 4.1. Sous les hypothèses précédentes, on a:

ux 6 Im llÀO3v, e Im n, tel que Uxv, ux.

Remarque 4.2. Si u, e Im n,, alors 3k e f^J* tel que (P(h) - E)kv, 0. A
l'aide de déformations non-caractéristiques (cf. [Bo-Sc]), on peut alors montrer
que v, se prolonge en une fonction holomorphe dans D {z;\Re z\^2M,
|Im z\ < £„ |Re z\}\ il suffit en effet de considérer la famille d'hypersurfaces de C":

WNe {z e C"; |Im z\ £/N(|Re z\ - M - N), M < \Re z\ < M + 2N}

(0^£<1, N^l) où fN(t) N- 1/2- t2/2 sur [0,1], fN(t) N-t sur [1,_V],
fN(—t) =fN(t). Ces hypersurfaces sont toutes non-caractéristiques pour A, au sens

que [3/3z(|Imz| - £/N(|Rez| - M - N))]2 J- 0 sur X, donc aussi pour P-E là où
V est holomorphe, et le théorème de Zerner (voir [Bo-Sc], [Ma]) permet de

prolonger v, à tous les {z eC", \lm z\ < efN(\Re z\ - M - N), M<\Rez\<M +
2.V}n{|Imz|<£0|Rez|} et donc à {z e C"; |Imz| < Min (|Rez| - M, £„|Rez|),
|Rez|>M}, qui contient (du fait qu'on a pris £0<2) {|Rez|>2M, |Imz|<
£„ |Rez|}. Par suite, Uxv, est bien définie comme distribution sur IR".

La démonstration du Théorème 4.1 va se faire en plusieurs étapes:

Lemme 4.3. Soit P,(X, h) la réalisation de P(X, h) sur H(A,G, 1) avec
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Im A>0. On peut alors définir, pour t>0 assez petit, le projecteur:

n,(A) ^j" (z-P,(X,h))-ldz

et on a:

Im rïA Im nf(A).

Démonstration. Pour 5 e [0, 1], notons Gs sG. Du fait que L2(IR")
H(\x, 1), il suffit de montrer que, pour tout f e IR, \t\ assez petit, si z e Qm, et
h > 0 est assez petit, on a:

"^'^ *ue H H(AtGs,l). (4.1)

(P(X,h)-z)ue H tf(A,G,,r2)
Osisi

Soit px(x, §) le symbole principal de P(X, h). Si l'on note 1 + A pe'° (avec
p e ]1 — ex, 1 + £i[, 6 > 0 petit), on a, pour (jc, £) e A,G, et |jc| assez grand:

px(x, Ç) - z p-2e-2WÇ2 + V(pewx) - z

p_2(Re g)2(cos 26 - i sin 26 + Û(ts)) + V(pewx) - z. (4.2)

On en déduit, pour |jc| assez grand, z e Q,,,, |f| assez petit:

\px(x, |)-z|!^|0|<§>2 sur A,Gj, Vse[0, 1] où OO. (4.3)

La démonstration se termine alors comme celle du Théorème 8.5 de [He-Sj]
relatif à l'indépendance de Tx(h) par rapport au choix de la fonction fuite G: on
applique le calcul pseudo-différentiel de [He-Sj] pour inverser P(X,h) — z
modulo un opérateur K dont le symbole est à support compact uniformément par
rapport à s, ce qui conduit à une inégalité a priori de la forme:

\\u\\mAiC^C(\\(P(X, h)-z)u\\mAiG)+\\Ku\\H(A,at)) où OO
est indépendant de s e [0, 1]. D

On fixe maintenant A0e{|A|<£1; ImA>0}, et on sait d'après (3.1) que
Uxtk-^i) est inclus dans H(A,G, 1) pour |j"| assez petit (on pourrait même montrer
qu'il est dense). D'autre part, il est clair que les résonances de P,(X0, h),
P(X0, h), P,(h) coïncident près de E0 et que pour z différent de ces résonances,
les noyaux des résolvantes correspondantes coïncident aussi, par unicité du

prolongement méromorphe à partir de la région Im z > T0/2.
En fait, on a sur A;G, et pour |jc| assez grand (en notant 1 + A pe'e):

px(x, §) - z p"2(Re £)2(cos 20 - i sin 26) - itHpG(Re x, Re £)

+ V(pewx) - z + 0(t2 + 62). (4.4)

On en déduit comme précédemment que les résonances de P,(X, h)
coïncident pour tous les t, X assez petits tels que ImA> —t/C avec 0 0 assez

grande, ainsi que les résolvantes correspondantes.
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Soit uXa e Im nA|). Du fait que UXn(si2) est dense dans L2(IR") (cf. [Hu]), on a:

uXl) IÌAoUXnip avec \p e si2,

et d'après ce qui précède, on peut écrire:

uAo n.(Ao)t/Aoi/;

avec t > 0 assez petit, puis si on pose:

ux n.(X)Uxip

alors la famille (ua)i.t.a>-(./c), |A|<£i est holomorphe en A à valeurs dans H(A,G, 1).
De plus, si A est réel, on peut écrire:

ux Tl,(X)Uxip Uxll,xp. (4.5)

Par unicité du prolongement analytique, on en déduit que la relation (4.5)
reste vraie pour A complexe, et en particulier pour A A0 on obtient:

"a„ U^v, avec v, Tl,xp e Im n,.

Inversement, si v, e Im n„ alors (par densité de si2 dans H(A,G, 1)), v
s'écrit v Yl,ip avec xp e sâ2, et on en déduit comme ci-dessus et en utilisant le
Lemme 4.3 que pour A complexe, |A| < ex, Im A>0, on a:

Uxv, IÏ,(X)Uxip 6lmllA. D

Remarque 4.4. Dans le cas où n 1 et où V est à support compact,
Ashbaugh et Harrell ont donné dans [As-Ha] une autre définition des résonances
qui s'écrit:

3u e CX(U) telle que Pu Eu et

E est une résonance O \ _ J ae x,h
pour jc assez grand

"W [ße-iVExlh pour -jc assez grand

avec (or, j8)eC2\{(0,0)}.

D'après le Théorème 4.1, il est alors clair que cette notion coïncide avec
celle de [He-Sj] et que l'on a u eH(A,G, 1) avec t>0. Notons seulement que ce

dernier résultat peut se retrouver par un calcul direct à partir de la Définition 1.1.
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