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0. Introduction

La théorie des résonances pour I'opérateur de Schrodinger P(h) = —h*A+V
sur L*(R") est développée dans un grand nombre d’articles (cf. [Sim], pour un
survey). Les premiéres définitions mathématiques des résonances (dans un cadre
non réduit a la dimension 1) furent probablement données par Lax et Phillips
[La—Ph], Vainberg [Va], et (dans un cadre encore moins restrictif) par Aguilar et
Combes [Ag—Co]. Cette derniére définition, qui a donné lieu a de nombreux
développements (cf. Balslev—Combes [Ba—Co], Cycon [Cy], Hunziker [Hu],
Simon [Sim]s, . . .) s’appuie sur les techniques de dilatations analytiques, dans des
versions de plus en plus générales appelées distorsions analytiques.

Dans [Hu], W. Hunziker analyse ces différentes techniques pour construire
des prolongements méromorphes des éléments matriciels de la résolvante:

(P=2)""® | ¥)ramn

partant de Im z >0, ou @ et v appartiennent a un ensemble & dense dans L?, sur
lequel la dilatation (ou la distorsion) analytique opere. Il montre ensuite
comment vérifier I'indépendance par rapport a & de la notion de résonance, vue
comme pdle d’'un des éléments matriciels.

Dans [He-Sj], B. Helffer et J. Sjostrand proposent, pour étudier les
résonances de forme dans le cadre semi-classique, une autre définition plus
microlocale: ils montrent que sous des hypotheses convenables, I’hamiltonien est
un opérateur de Fredholm dans des espaces de Sobolev adaptés. Les résonances
sont alors les points z de C pour lesquels P(h)— z n’est pas bijectif dans ces
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espaces de Sobolev. Ceci leur permet de traiter des problémes typiques associ€s
aux résonances comme le “puits dans une ile”, etc... (Voir aussi [Ge-Sj] et
[Sj].)- Simultanément (cf. [C-D-K-S]) ou ultérieurement (cf. [Br—-Co-Dul],
[Hi-Si]), des auteurs étudient le méme type de problémes avec des techniques
relevant de la dilatation analytique. La question naturelle était de démontrer (ce
dont personne ne doutait vraiment) que lorsque les deux techniques s’appliquent
(potentiels réguliers, dilatables analytiquement), les deux définitions de
résonances coincident. C’est I'objet de cet article qui s’appuie trés fortement sur
le travail de Hunziker [Hu].

Au §.1, nous rappelons la définition de Helffer—Sjostrand, et, au §.2, celle
de Hunziker. Le 8.1 contient aussi quelques développements préliminaires.

Au §.3, nous démontrons I’équivalence souhaitée, en considérant le point de
vue “podles de la résolvante”. (Nous ne rediscutons pas de ’équivalence entre la
définition de Hunziker et celles de [C-D-K-S] et [Hi-Si] qui est plus connue).

Le 8.4 est consacré a I'étude des fonctions résonnantes: nous montrons
qu’elles correspondent dans les deux théories, ce qui permet aussi de faire le lien
avec une définition donnée par Ashbaugh et Harrell [As—Ha] dans le cas de la
dimension 1 et d’'un potentiel a support compact.

Nous tenons a remercier Ph. Briet qui nous a transmis 'article de Hunziker,
et également P. Hislop, I. Sigal, J.-M. Combes et J. Sjostrand avec qui nous
avons eu 'occasion de discuter de ces questions.

1. Les résonances de B. Helffer et J. Sjostrand

Soit P(h) = —h?A + V l'opérateur de Schrédinger sur L*(R"), avec V €
C*(R"; R) vérifiant:

Il existe £,€]0, 3[ et M >0t.q. V s’étend analytiquement prés

du domaine D¥'{z e C"; |Re z| = M, |Im z| = ¢, |Re z|} (1.1)

et y vérifie: 1!}_{1; V(z)=0.

zeD

Soit Ey,>0. On s’intéresse aux résonances E(h) de P(h) proches de E,.
Rappelons tout d’abord la définition de [He—Sj] dans cette situation.

Soient

x € Co(R") t.q. x(§) =1 dans un voisinage de {&° = E,}; (1.2)

7€C*(R™) t.q. ¥(x)=0 dans {lx|=3M}, ¥(x)=1 dans {|x|=4M};
(1.2)

G(x, &) =x(x)x(E)(x - §) pour (x, &) e T*R"=R™ (1.3)

Pour teR, |t|=¢, (t,>0 assez petit), on introduit la famille de variétés
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I-lagrangiennes (indicée par ¢):

oG
X

Im ax=tz—§(Re a,, Re a'g)}. (1.4)

La famille de poids (r, R) (cf. [He-S§j], §.1) utilisée ici est:

r(x)=1, R(x)= (x)¥Q + x>, xeR" (1.5)

On q alors #(x, £) = (£), et une fonction d’ordre sur R*” est une fonction m
vérifiant:

|57 3Em(x, §)| = Copmi(x, §)(E)™"P!(x) 7. (1.6)
Si m est une fonction d’ordre, la classe des symboles S(m) est définie par:
a € S(m)e |02 d8a| = Cogm(x, E)(E) P x)™" (a, BeN"). (1.7)

Les espaces de Sobolev sur lesquels P(h) va opérer sont définis a I’aide d’une
transformation de F.B.I. de la maniére suivante.
La phase de cette transformation est donnée par:

()
(@)

pour x € R”, @ € C*" (ou plus spécialement a € A;).
Pour u € 2'(R"), on définit la transformée de F.B.1. de u par:

D(x, o) =(a, —x)as +1i (x —a,)? (1.8)

x—Re a,

(@)

ou yx; est une fonction de troncature t.q. x;€ Co(|x|=1/C), x1=1 dans
x| =1/2C, (CGy>0 assez grand), et ol t(x, o, h) est un (n + 1)-vecteur de
symboles dans S(h™>"*(a:)"*/{a,)™") (pour |x — Re a,| = (1/Cy){«,)), affine-
linéaire en x, tel que det (¢, 3¢t/9x,, . .., ot/3x,) soit elliptique (on peut prendre
par exemple £ =h 7" (@ )" X () 7, x/{a ), .o, X/ {0 ))).

Notons tout d’abord que sous les hypotheses (1.1), (1.2) et (1.2'), la fonction
G(x, &) est une fonction fuite pour P(h) au sens de [He-Sj], §.8. En effet, on
vérifie en utilisant les inégalités de Cauchy que sur la surface d’énergie
E+V(x)=E, ona

H,G =2E,—2V(x) —x - VV(x) 2 K, pour |x| assez grand. (1.10)

VaeC”  (Tu)(a)= j eid’("'“)’ht(x,a/,h)x,( )u(x) dx (1.9)

D’autre part, G vérifie les bonnes estimations, en particulier:

VG| = x(x)x(5)E + (Vi(x))x(E)(x - ) =C
VG| =1(x(E)x + (x - E)Vx(E)x(x)I = C(x).
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Toutes les conditions sont donc réunies pour définir les résonances de P(h)
(dont le symbole est bien dans la classe S(7*)) au voisinage de E,, dans les
espaces de Sobolev H(A,;)(t > 0).

Rappelons d’abord que si fe C*(R") et m =m(x) est une fonction d’ordre,
on a, pour N=0:

H(Ay, m(x)(§)") = {” €eD'(R"); 2 lI(AD,)*(me ™ u)]| 2 < °°}'

|@|=N

Cy est alors dense dans cet espace, et on construit par dualité dans &':
1
H(As, m(x)(E)~") est le dual de H(A,f, - (S)N).

Pour la suite, il nous suffira d’utiliser ’espace:
AN = H(Auey, (x)™N(E)). (1.11)

La variété A,; étant lagrangienne pour Im (da: A da,), on y introduit une
primitive de la 1-forme fermée —Im (azda,) par (cf. [He-Sj] formule (2.2)):

H/(a)=—Re a; - Im a, +tG(Re «,, Re az)

et un calcul simple montre alors que:

H(a)=—t(Re a, - Re a:) - (Re a: - Vy(Re az))f(x)EtH(a). (1.12)

Réécrivons maintenant la Définition 5.4 de [He-Sj] dans notre cas
particulier:

Définition 1.1. Soit m une fonction d’ordre sur R*, et N=0 tel que
(x)™M(E)M=Cm(x, &), VY(x, §) e R*" (avec C=0).

Soit aussi € >0 assez petit. Alors, pour l¢| = ¢, on définit I’espace H(A,;, m)
comme étant I’ensemble des u dans H,; ™ (R") tels que:

f |Tu(a, h) (m(Re a))e 2 HO do < oo (1.13)
MG

(Ici, da est la mesure canonique sur A,; qui est R-symplectique, mais en
paramétrant A,; par Re @, on ne modifie pas la définition en remplagant da par
d Re o).

Pour z e C, proche de E,, P(h)—z peut alors étre considéré comme un
opérateur continu de H(A,s, 1) dans H(A,g, 7~°), qui est une bijection pour z en
dehors d’un ensemble discret ol c’est un opérateur de Fredholm d’indice 0 (cf.
Théoréme 8.3 de [He-Sj]).

On pose la définition suivante des résonances:

Définition 1.2. Soit Q,={z€C; |[Rez — Ej|<1/C,, —t/C;<Imz <T,} ou
on a choisi C; > 0 assez grand et T,> 0 assez petit.
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Alors, pour f,>0 assez petit, et t€]0, ), on définit ’ensemble des
résonances I''(h) de P(h) dans Q,(h) pour h assez petit (h€]0, k] ot h, >0
dépend de ¢) par:

EeT'(h)yoP(h)— E:H(A,;, 1)—= H(A,;, 7 %) n’est pas une bijection.
(1.14)

On a aussi une définition équivalente a partir des poles de la résolvante:

Définition 1.2 bis. Soit E€]|—1/C,+ E,, Ey+ 1/C\[+i] —1,/C,, T)[. Alors,
E eT'(h) ssi il existe t>0 avec h =h, tel que pour tout contour y. assez petit
entourant E et situé dans Q,, il existe u; € H(A,g, F °) et u, € H(A_s, 1) tels que:

f ((P,—2) 'uy, up), dz #0, (1.15)

ol P, désigne l'opérateur P(h) opérant de H(A,;, 1) dans H(A,;, 7 %) et ou
(-, ), est le crochet de dualité entre H(A,;, 1) et H(A_,5, 1) (comme défini dans
la proposition 8.8 de [He-Sj]).

L’équivalence des définitions ne pose pas de probléme particulier: si E vérifie
(1.14), E étant isolée on peut trouver y; dans Q, entourant E, et tel que I''(h)\E
soit & I'extérieur de y.. Alors, pour u, e Ker (P.,— E)c H(A,g, F %), et use€
H(A_,s, 1) tels que {(u,, u,) #0, on obtient (1.15). Inversement, supposons la
propriété (1.15) satisfaite; alors, si E ¢T"'(h), ((P,—z) 'u,, u,), serait holo-
morphe dans un voisinage de I'intérieur du contour ¥, pour tout y assez pres de
E et tout (u,, u,) dans H(A,, F ) X H(A,;, 1). N

Remarque 1.3. On peut affaiblir la Définition 1.2 bis en y remplagant les
espaces H(A,;, 7 ?) et H(A,;, 1) par des ensembles f, et &, qui sont
respectivement denses dans H(A,;, 7 %) et H(Ag, 1).

Remarque 1.4. Soient t,>0 et h,>0 assez petits, ainsi que &, cC
Nz HMw, F2) et sy < \iy=i, H(Ay, 1) des ensembles denses dans chacun
des H(A,g, %) (resp. H(A,s, 1)) (par exemple &, = o, = C;(R")). Alors, pour
(u,, u,) e o, X A,, on a:

1 1 T;
L’application ]E(, ——, Ey+— [+i] =] T(,[ 3z—=>((P—2) 'uy, uy)
C, C, 2

est une fonction holomorphe, indépendante de ¢ € [—¢, t), (1.16)

et pour tout & € |0, hy).

En effet, on remarque d’abord que pour Im z € |T,/2, Ty, et t € [—ty, ty], le
symbole (p |4, —z)~" (o p(x, E)X'E2 4 V(x)) est bien défini partout sur A,g, ce
qui permet par le calcul pseudodifférentiel (comme dans la démonstration du
Théoréme 8.3 de [He-Sj]) de construire (P, —z)~' et d’assurer I’holomorphie de
I’application (1.16).
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L’indépendance par rapport a ¢ provient du résultat de régularité suivant:

T; -
Si Imz>30,ueH(A,G, 1), et (P—2)ue (N H(Aq, F7),

Is1=ta

alorsu e () H(A,g, 1) dés que h = h,,. (1.17)

IsI=1

La démonstration se fait comme celle du Théoréme 8.5 de [He-Sj], mais,
compte tenu de Dellipticité uniforme de P | A — 2 pour Imz>Ty/2, |t| =¢), on
n’a pas de restriction sur t. Ceci termine la démonstration de (1.16).

On aura enfin besoin d’un deuxi¢me résultat de régularité qui se démontre
comme précédemment, et qui est I'analogue pour ¢ # 0 de la théorie classique des
opérateurs h-admissibles sur R” (cf. [He—Ro]).

: 1,
Si Imz>—2—, alors:

ue HAg, 1)

=2
(P 2y e H(Au, 1)}:>u e H(A, ). (1.18)

La conséquence est que si u;, U €( )=, H(A:, 1), alors pour || = 1,:

((Pr - Z)_lula U), = ((P - Z)_lul, u2>L2(R") (1.19)

ou (P —z) ™" est la résolvante de I'opérateur auto-adjoint P de domaine H*(R").

2. Les résonances de J. Aguilar et J.-M. Combes d’apres W. Hunziker

On s’inspire ici de l'article [Hu] ou W. Hunziker définit les résonances a
'aide de “distorsions analytiques” de la maniére suivante:

Soit v e C*(R"; R™) vérifiant:
lu(x) —v(y)| = |x — y| pour tout (x, y), v(x)=x dans
{|x| =Z3M}, et v(x) =0 dans {|x|=2M}.

Pour ¢ holomorphe dans C" et AeC, |A| <&, (avec g, >0 assez petit), on
introduit 'opérateur U, défini par:

(2.1)

(Up@)(x) = @a(x) € T (x, 1) (x + Av(x)) (2.2)

ou x e R" et J(x, A) =det (6; + A 9v,;/3x;),;, les v; étant les composantes de wv.
(Pour A réel, il est clair que Uj, se prolonge en un opérateur unitaire sur L*(R")).

Hunziker présente deux définitions des résonances, dont il démontre
I’équivalence dans son Théoréme 4. (En fait, Hunziker se restreint au cas de
potentiels coulombiens, mais ses méthodes se généralisent sans probléme a notre
situation).
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Définition 2.1. L’opérateur p(h, 1) = U, P(h)U; ", qui est bien défini pour
Ae€]—1, 1], admet un prolongement analytique pour AeC, |A|<¢g, (ou £ >0
dépend du ¢, de I’hypothese (1.1)), et on définit I'ensemble I'*(k) des résonances
de P(h) comme la réunion des spectres discrets des P(h, 1), |A|<é&;, Im A >0.

Soit maintenant & un sous-espace des fonctions entieres sur C" tel que:
Vy € o, I'application A— U,y est une fonction analytique

dans {|A| < &,}, a valeurs dans L*(R"); (2.3)
VAeC, |A| <&, I'image de & par U, est dense dans L*(R"). (2.4)
On considere alors la:

Définition 2.1. bis. Pour tout u,, u, € & et z € C avec Im z >0, on considere
la fonction z— ((P(h) — z) ™ 'uy, us),2. ,

Lidentité ((P(h) —z) 'uy, us)2=((P(h, A) —z) 'Uu;, (Uz)u,);2 permet
d’étendre méromorphiquement cette fonction a travers Imz=0 dans un
domaine G(A) (complémentaire du spectre essentiel de P(h, A)). En notant
((P(h) — 2)"'uy, us)Gy la fonction méromorphe ainsi obtenue, on a:

rrmn=uU U . {poles de ((P(h) — z) " 'uy, uz)Gy}-

IAl<ey uj,uze
ImA>0

De I’équivalence de ces deux définitions, on déduit I'indépendance par
rapport 2 v et & de I'ensemble I'*(), puisque la premiére ne fait pas intervenir
s, et la seconde, de par [l'unicité du prolongement méromorphe, est
indépendante du choix de v. :

Remarquons aussi que, le spectre essentiel de P(h, A) étant décrit par
{z;argz=—-2arg(1+A)}, la famille d’ensembles {pdles de ((P(h)-
2)"'uy, U2) Gy }ia<e, Croit avec Im A.

Hunziker propose comme choix de & le sous-espace:

A= {f entiére sur C" t.q. Ve >0, YN >0, lim (Re 2)Mf(z) = 0}.
|Z|—>o<

IIm z|=(1—¢€)| Re z| (25)

Pour la commodité de nos démonstrations on préférera par la suite utiliser
plutdt le sous-espace:

Ay = {f entiere sur C" t.q. d&,, £;>0, lim e*’f(z) = 0}. (2.6)
|1Z2|—x
IIm z|=¢€; |Re 2|

Celui-ci vérifie bien (2.3), (2.4) d’apres [Hul.

3. Comparaison des deux ensembles de résonances

La comparaison entre I''(h) et [*(h) peut s'opérer de deux maniéres, selon
que I'on adopte le point de vue ‘‘fonctions résonnantes’” (cf. Définitions 1.2 et
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2.1), ou le point de vue “pdles de la résolvante” (cf. Définitions 1.2 bis et 2.1
bis). C’est ce dernier point de vue que l'on adopte dans cette section: il a
I'avantage de donner une démonstration courte du résultat que I'on cherche.
Cependant, la comparaison entre les états résonnants associés a I''(h) et T'*(h)
n’est pas sans intérét, et sera traitée dans la section suivante.

Théoreme 3.1. Si V vérifie (1.1), E,>0, et t >0 est assez petit pour que
Q,c{zeC; argze]|-2 arg(1+ 1), n/2[} (ou comme avant Q,=]|E,—1/C,,
Ey+1/C[+i] —t/Cy, Ty[, C,>0 assez grand, T,>0 assez petit, et ot |A|<g,,
Im A >0), alors T'(h) N Q, =T*(h) N Q, pour h €0, k).

Compte tenu des remarques de la fin du §.1, il suffit de montrer:

Lemme 3.2. Il existe un sous-espace o vérifiant (2.3)—(2.4) et qui est dense
dans H(A,g, FV) pour tout t tel que |t| <t, et tout N € Z.

(On remarquera le parallele qui existe entre la densité dans les H(A,q, F") et
la condition (2.4)).

Démonstration. Montrons que I’espace & = &, défini en (2.6) convient.

Soit @ € HY et ®(x, a) donnée en (1.8).

Comme O®/dx(x, &)#0 lorsque az#0 et (x, &) € Supp x1((x — Re a,)/
(a,)), et compte tenu du fait que #(x, a, k) est d’ordre n/4 en (a:), on peut
gagner par des intégrations par parties en x un nombre arbitraire de puissances de
(o) dans I'expression de To(a):

' ; - R
To(@) = (ae) ™ 3 [ ey g, 0, hy( = )obp(x) d
1BI=k ()
o les 5 sont des symboles (vectoriels) d’ordre h~>"*(a,)~"*. D’autre part,
pour a € A et |x — Re a,| = (1/Cy){a,), on remarque que:

3C>0 t.q. |[tH(a)|—Ime(x, a)=C |tRe a,]
de sorte que, pour tout &£, > (:
l(afg)Ne"’H(“)’hT(p(cv)l é C(h, 82)<a§>N—keC|t Re a, |k X

x e~ % Sup | 3L (x)|| .2
1B1=k

et donc, en prenant k assez grand:

(e ) e T (@)l 3y = C'(h, £2)sup [l 3 (3.1)

En particulier, les deux membres de (3.1) sont finis si ¢ € &, et si on a pris &,
assez petit.

De plus, du fait que C;, est dense dans H(A,s, 7) (cf. [He-Sj], Proposition
5.8), il suffit d’aprés (3.1) de montrer que tout y € C5(R") peut étre approché
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par un élément de &, pour la norme X g = lle?** 3P| 2, et on aura alors la
densité de £, dans les H(A,g, 7). Cela se fait simplement par régularisation
gaussienne, ou encore en approchant e3>y par des combinaisons lin€aires de
fonctions d’Hermite, dont on connait la densité dans les espaces de Sobolev
usuels grace a ’étude de 'oscillateur harmonique. O DE

/—_»p
f//{b«{j iuan ’A
/& Universits %\
{

de —

'd_’jf/HBf}Ghi:cEI@g)
¥
Soit AeC, |A|<g,, ImA>0, et soient t >0 assez petit et E une résonance
dans I'*(h) N Q, =T"(h) N Q,. On peut alors définir de maniére naturelle les deux
espaces suivants:
— l’espace des états résonnants au sens de Hunziker, décrit par Im I,

4. Comparaison entre les états résonnants

~

1
ou II, =i_l_ﬁf (z—=P(A, h)) ' dz
YE

— D’espace des états résonnants au sens d’Helffer—Sjostrand, décrit par Im I,

\ 1 ]
ol n,=ﬁf (z - P(h)) dz,
YE

(ye désigne un contour fermé simple assez petit autour de E, tel que I''(h)\E soit
a ’extérieur de y).
On se propose de démontrer:

Théoreme 4.1. Sous les hypotheses précédentes, on a:

u,elmIl, & 3v, elmIl, tel que U,v, = u,.

Remarque 4.2. Si v,eImIl,, alors 3k e N* tel que (P(h)— E)v,=0. A
'aide de déformations non-caractéristiques (cf. [Bo—Sc]), on peut alors montrer
que v, se prolonge en une fonction holomorphe dans D = {z;|Re z| Z2M,
IIm z| < g, |Re z|}: il suffit en effet de considérer la famille d’hypersurfaces de C":

#:={zeC";|Imz|=¢gfy([Re z| —M — N), M <|Re z| <M + 2N}

(0=e<1, NZ1) ou fy(t)=N—1/2—1¢*/2 sur [0,1], fu(t)=N —t sur [1,N],
fn(—t) = fy(t). Ces hypersurfaces sont toutes non-caractéristiques pour A, au sens
que [8/3z(|Im z| — gfy(|Re z| — M — N)))*#0 sur %%, donc aussi pour P-E 1a on
V est holomorphe, et le théoréme de Zerner (voir [Bo-Sc], [Ma]) permet de
prolonger v, a tous les {z € C", |Imz|<efy(|[Rez| - M —N), M<|Rez|<M +
2N} N {|Imz|<¢g,|Re z|} et donc a {z e C"; [Im z| <Min (|Re z| — M, ¢, |Re z|),
|[Re z| > M}, qui contient (du fait qu'on a pris £,<3) {|Rez|>2M, |Imz|<
€y |Re z|}. Par suite, U, v, est bien définie comme distribution sur R".
La démonstration du Théoréme 4.1 va se faire en plusieurs étapes:

Lemme 4.3. Soit P(A, h) la réalisation de P(A, h) sur H(A,g, 1) avec
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Im A>0. On peut alors définir, pour t >0 assez petit, le projecteur:

1
MA)=— | (z- -1
=55 | @=ra ) a:
et on a: ‘
Im I, = Im I1,(%).

Démonstration. Pour s €[0, 1], notons G,=sG. Du fait que L*(R")=
H(Ay, 1), il suffit de montrer que, pour tout t € R, |¢| assez petit, si z € Q,, et
h >0 est assez petit, on a:

H(Aw, 1
ueH(Ag, 1) Sue () HAg, ). (4.1)
(P(A, h)—z)ue (N H(Ag, F?) 0=s=1

0=s=1 :

Soit p,(x, &) le symbole principal de P(4, k). Si I'on note 1+ A = pe'® (avec
pell—g;, 1+ ¢, 6>0 petit), on a, pour (x, §) € A, et |x| assez grand:

pix, E) —z=p % ¥E? + V(pe'’x) — z
= p~*(Re E)*(cos 20 — i sin 20 + O(ts)) + V(pe'%x) — z. 4.2)

On en déduit, pour |x| assez grand, z € Q,, |t| assez petit:

1
|pa(x, &)—z|§-c—,|t§)|(§)2 sur A, Vse[0,1] ou C>0. (4.3)

La démonstration se termine alors comme celle du Théoréme 8.5 de [He-Sj]
relatif 2 I'indépendance de T''(k) par rapport au choix de la fonction fuite G: on
applique le calcul pseudo-différentiel de [He-Sj] pour inverser P(A, h)—z
modulo un opérateur K dont le symbole est a support compact uniformément par
rapport a s, ce qui conduit a une inégalité a priori de la forme:

lulltae, n = CUIP(A, h) = 2)ullaa) + 1IKullaa,gy) ot €>0
est indépendant de s € [0, 1]. O

On fixe maintenant Ay € {|A|<ég,, ImA >0}, et on sait d’apres (3.1) que
U,.(s4,) est inclus dans H(A,g, 1) pour |¢| assez petit (on pourrait méme montrer
qu’il est dense). D’autre part, il est clair que les résonances de P,(A, h),
P(Ag, h), P,(h) coincident pres de E, et que pour z différent de ces résonances,
les noyaux des résolvantes correspondantes coincident aussi, par unicité du
prolongement méromorphe a partir de la région Im z > Tp/2.

En fait, on a sur A,g, et pour |x| assez grand (en notant 1+ A = pe'®):

pa(x, &) — z = p~*(Re £)*(cos 260 — i sin 26) — irtH,G(Re x, Re &)
+V(pe'®x)—z + O + 6°). (4.9)
On en déduit comme précédemment que les résonances de P4, h)

coincident pour tous les ¢, A assez petits tels que ImA > —¢/C avec C >0 assez
grande, ainsi que les résolvantes correspondantes.
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Soit u;, € Im IT;,. Du fait que U, (s,) est dense dans L*(R") (cf. [Hu]), on a:
w, =11, U,y avec e,
et d’aprés ce qui précéde, on peut écrire:
U, = IL(A0) Up ¥
avec t > ( assez petit, puis si on pose:
u, = IL,(A) Uy

alors la famille (24, )1m 2>— (), ja<¢, €St holomorphe en A & valeurs dans H(A,g, 1).
De plus, si A est réel, on peut écrire:

w, = IL,(A) Uy = UL,y (4.5)

Par unicité du prolongement analytique, on en déduit que la relation (4.5)
reste vraie pour A complexe, et en particulier pour A = A, on obtient:

u,, = Uy, v, avec v,=ILy elmlIl,.

Inversement, si v, € ImIl,, alors (par densité de s, dans H(A,, 1)), v
s’écrit v =11,y avec y € &5, et on en déduit comme ci-dessus et en utilisant le
Lemme 4.3 que pour A complexe, |A| <&, ImA>0, on a:

UlU, = H,(A)U]ﬂp € Im ﬁA. a

Remarque 4.4. Dans le cas ou n=1 et ou V est a support compact,
Ashbaugh et Harrell ont donné dans [As—Ha] une autre définition des résonances
qui s’écrit:

(3u € C*(R) telle que Pu = Eu et

ae'YE" pour x assez grand

Be VE" pour —x assez grand
| avec (a, B) € C\{(0, 0)).

D’aprés le Théoréme 4.1, il est alors clair que cette notion coincide avec
celle de [He-Sj] et que I'on a u € H(A,g, 1) avec t > 0. Notons seulement que ce
dernier résultat peut se retrouver par un calcul direct a partir de la Définition 1.1.

E est une résonance <4 u(x) = {
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