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More nonstandard quantum electrodynamics

By Robert Fittler

Freie Universitiit Berlin, Fachbereich Mathematik, Arnimallee 3, 1000 Berlin 33,
RFA

(21.1V.86, revised 5.11.86)

Abstract. Nonstandard quantum electrodynamics, a rigorous field theoretical approximation of
classical quantum electrodynamics, is developed further in lowest nontrivial order of perturbation
theory. The material covers the vacuum polarization counterterm, the fermion selfenergy and its
counterterm, a Ward identity, and the vertex contribution, yielding the anomalous magnetic moment
of the electron, the form factor, and leading up to the (lowest order) Lamb shift. Thus a manifestly
consistent alternative form of quantum electrodynamics yielding correct numerical results in lowest
nontrivial order of pertubation theory is exhibited.

Introduction

Nonstandard quantum electrodynamics arises from the usual quantum
electrodynamics by replacing the initial free fermion and photon fields by
appropriate nonstandard operatorvalued functions (cf. [1], 0 and [8] pg. 5) using
the following modifications.

The basic standard model M of analysis is twice expanded into M &M, &
M) where M, contains infinite and infinitesimal elements with respect to M,
and M;, again contains such elements with respect to M, (cf. [1], 1 and 2.5).

The photons are assumed to have a restmass m € M, which is infinitesimal
with respect to M (cf. [1], 2.5). There are particle number cutoffs for photons and
electrons resp. (cf. [1], 3.2 and 4.4) both being infinite and belonging to Mq,.
There is a space cutoff O belonging to M;, which is infinite with respect to Mg,
and a UV cutoff P (cf. [1], 2.8 and 2.11). The nonfiniteness of the space cutoff Q
with respect to Mg, is necessary if one wants Q to induce (by Fouriertransforma-
tion) an internal norm approximation of the &-function over R, e Mg, in the
sense of [1], 1.11.

At first sight these modifications effect the initial fields only. However they
bear upon other times since the initial fields constitute the building blocks of the
(interaction) Hamiltonian, which governs the time dependence through
Heisenberg’s equation (cf. [1], 0). Such is the complete fundamental principle on
which the dynamics is deductively based.

In order to allow a sensible multiplicative charge renormalization in
connection with the vacuum polarization the UV cutoff P was assumed to be



882 Robert Fittler H. P. A.

finite in [1] (cf. [1], 6.23 and 6.24). We are going to remove this obstacle to
relativistic invariance and replace the old UV cutoff by a new P which is infinite
with respect to M and belongs to M,. The break-down of the multiplicative
charge renormalization will be compensated by using the counterterm approach
of Gupta (cf. [2], [3]).

Notice that all results of [1], except 6.23/24 remain valid and some are
actually sharpened by the infinite value of the UV cutoff P. In particular the
standard first order perturbation theory and our nonstandard modified form of it
coincide infinitesimally closely (cf. [1], 5.12).

The present approach starts with the nonstandard (internal) Q.E.D. cor-
responding to the above mentioned Hamiltonian (without counterterms) which
yields a Dyson expansion that is convergent in the nonstandard sense (cf. [1],
5.7). Its sum may be highly nonstandard. The same already happens to its lowest
nontrivial order summands. In order to rectify this the approprite counterterms
are introduced into the original Hamiltonian. The resulting counterterm Hamil-
tonian again gives rise to a welldefined nonstandard Q.E.D., now yielding finite
and even numerically correct contributions in lowest nontrivial order of the
corresponding Dyson expansion. Higher order renormalizations will be con-
sidered elsewhere. (Notice that the sum of a convergent nonstandard series of
finite terms need not necessarily be finite). The actual computations resemble the
classical ones rather closely. The classical divergencies appear in the form of
(possibly) infinite but welldefined nonstandard numbers which obey the same
laws as standard numbers. They depend on the initial choices of the infinite UV
cutoff or the infinitesimal photon mass (or both). The same holds for the
determination of the counterterms.

Chapter 1 deals with vacuum polarization on the base of [1], chapter 6,
where the vacuum polarization term appears in 3rd order. Its ‘infinite part’ will be
compensated by the appropriate 2nd order contribution (cf. 1.1, 1.2 and 1.9)
induced by the counterterm

- f 4OF - Fy ™ + J((8F)? + (8F)* + - - )FoF: d’x

(cf. 1.1). Any choice of an infinite (0-finite) UV cutoff P determines a unique
O0F(~1) doing the job as long as

, P? 5
me (lnM2+ln4 3) 0.
The latter relation between the photonmass m and the UV cutoff P follows from
the precondition that In (m*P) be finite (cf. 1.7, 1.8 and 3.16).

Chapter 2 deals with the fermion mass renormalization in lowest (3rd) order
by splitting the usual selfenergy contribution (cf. 2.1) into a sum of two integrals
(cf. 2.6), one containing = as it is commonly used (cf. 2.5), the remaining one
containing a function E. The X behaves as expected by contributing just a
constant A of the ‘approximate size’ of In P (up to finite factors and summands,
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cf. 2.17). In order to compensate the Z-summand of the selfenergy integral the
usual mass renormalization counterterm

u(SMJ-:@)(O,x)@(O, x):d’x

is introduced into the interaction hamiltonian (cf. 2.18). It contributes in second
order a term which just compensates the Z-summand of the selfenergy contribu-
tion if OM is appropriately chosen (cf. 2.20). So far everything goes according to
the textbooks (cf. e.g. [4], §9.4).

The remaining Z-summand of the selfenergy contribution disappears in the
limit t— o (cf. 2.9).

In Chapter 3 the vertex part is dealt with (cf. 3.1) rather closely along the
lines of [5], Appendix E, yielding first the expected contribution to the anomalous
magnetic moment of the electron (cf. 3.19). This appears in the usual fashion
incorporated to the Ay-function (cf. 3.3). The ‘constant part’ L of A, (cf. (3.16)
essentially equals the difference of a UV-infinite and a IR-infinite contribution
(cf. 3.15). According to our precondition on the finiteness of In (m*P), L itself is
finite. The appropriate choices for m and p even imply that L vanishes (cf. 3.17).
Thus one may avoid the socalled spurious charge renormalization (to this order).

Applying the usual Taylor development yields the expected form factor (cf.
3.19). Thus the preparations needed for the lowest order approximation of the
Lamb shift (cf. [6], 1SE.) are ready (cf. 3.21).

Finally, in Chapter 4, a nonstandard version of the usual Ward identity (cf.
4.7) is developed.

1. The charge renormalization

1.1. Vacuum polarization counterterm

In order to compensate the summand —C(¢, sA) of the vacuum polarization
(¢, oA) (cf. [1], 6.21-23) we introduce an additive counterterm

3 o 3
- f 16F Y F F*™+1 Y (8F) S FoF®:d
n=2 i=1

u,v=0

into the former interaction hamiltonian
3
—ef: >, ©v,0(B, +C,):d* (cf.[1],6.3)
u=0

in the spirit of Gupta [1] (cf. also Dyson [3]). E,,, F*" are defined according to

3(B,(xo, x) + C,(x¢, x)) _ 9(B,(x0, x) + Cy(x0, X))
3% ox,

and F*' = Ei,ﬁ=0 8..8vsF.ps. The constant OF, |8F|<1, is to be determined in

F,,(xg, x):=
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the following. The new interaction hamiltonian, being again a bounded (1-
internal) operator on A*!*@ B* (cf. [1], 5.7) yields a corresponding Dyson
expansion (cf. [1], 5.8). Its Wick representation carries in second order a

summand w(—t, t):
= —(—i)zeFf deJd3xf dyofd3y
| a‘ —t —t
Z :O(x0, X)70O(x0, x)Bo(xo, x) 5y, By(yo, ¥)

j=1 ]

*—('-)(xo, x)Y;0(xo, x)B (x0, x) B (Yo, J’) e Cn()’)

w

where F:=}7_, (6F)". In analogy to classical Q.E.D. one has

1.2 Theorem. For any two one-electron states ¢, A€l ® D, and any 0-finite
value t we have

i +t ¢
((P, W(—t, I)A) "5‘6F(2n—)5/2 .[_, dxof_, dyo

et(Q -Q, ko)xgezkoyn

(p—q) —ki+m’—ie

x [ap &g dkoh(p - 9)
(¢,:07(0, —p)ye® (0, 9)(p — q)*
3

=2, 070, =p)1,07(0, ) — 9)jko: Colp — 9)A)

In order to evaluate 1.2 we need the following technical

1.3 Lemma
I(Q Q ko)xoelkoy()
dx f d
0)_ D% —ki+m*—ic
J dx e‘(Q —Qg)xe _ _J' dx e—lwkf(e!(Q - —wk)x(,+et(§2 —-Q, +wk)xo)

k el(Q —Q, ko)xoelkuv
b f dx f d
) °) Pk —ki+m®—ic

[ , , _
A dxye _m"t(e’(gp_gq"'wk)xo — et(Qp—Qq—wk)xn)
Wy J—

Proof. By breaking up [*,dy, into [*, dy,+ [%, dyo.

1.4 Remark. We state the following facts for further use.

a) Anyp,geR*fulfil Q, - Q, + w,_,>0and Q, - Q, — w,_, <0

q
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+1 ) ) e-i(Qp—Qq)t _ e—(Qp—Qq—pr_q)t
b) dxoe —lwp,qtet(QP—Qq—wp-q)xn — l

=~ Q,-Q,~w,,

+t ei(QP—Qq)t _ e—i(Qp—Qq+2wp_.q)r

dx0€ —iwp,qtei(Qp—Qq+wp_q)x0 =i

1.5 Corollary. Under the assumptions of Theorem 1.2 we find

(P, w(—t, )A) = F(2 )3/2 j_, dx()J-d3p d3qh(p q)ez(g —-Q,)xo
(P; 9 Colp _Q)A) +Fa§% Jdg'PdSCIh(P —q)

x (6, (0, =p)7®(0, g)(~i) k)

X (¢, (:)+(0’ _p)}’()@_(or q)

p—q
e i@ _ pi(R=2 =20, )t i(Rp= QN _ o= i(R— Qg+ 2w, )t
X ( = )CO(P - q )A)
Q,-Q,—w,, Q,-Q,tw,,
v F2o [ap diqn(p - S 640, —p)y,0(0, Qi =7
(275)5/2 pd’qh(p —q)| ¢, Z 070, —p)y,© (0, q)in
j=1 Wp—q

(e-i(g,,—szq)r — e (R0, )t (=R _ = i(R,=Q 2w, )
X

+ Colp - A)
Q-9 -, Q,-Q,+w, ) ol =)

1.6 Theorem. For any two one-electron states ¢, AeclL @D the vacuum
polarization counterterm yields

(¢, wA) :=lim 0-st(¢, w(—t, £)A)

—F\/‘e_ -stfd qh(p — )69, - Q,)
(P —q)

P‘I

x (6,870, -p)1® 0, p) L5 Cop - 1)

Proof. It is to be shown that all the summands in Corollary 1.5, except the
first one, disappear in the limit — . This follows from the Riemann—Lebesgue
Lemma (using Remark 1.4) c.f. e.g. [7] Lemma 4.1 pg. 216. As to the first
summand see [1], 6.5. g.e.d.

1.7 Corollary. For any two normed one-electron states ¢, AcL QD the
vacuum polarization counterterm yields

(8 wA)~ F [ @ 48" (R, = 2,9, 80, )@ (0, )Colp ~ A

assuming that F - m*~0.
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Proof. The difference between the two expressions has absolute value

ie F -m?

Vom0 o 5 81(2, - 2,9, 670, P10, Culp ~ 0)A)

—~
o

=<F -m?

ie . B
T | 0 48'@, ~ 2,9, 670, ~p)1@ (0, OCulp - )|
=F -m*(¢, sA) (cf. [1] 6.6)
~0 since ¢, A are normed and F - m*>~0. q.e.d.
1.8 Lemma. The condition that P>0 be infinite and In(m*- P) be finite
implies m* In P to be infinitesimal.

Proof. m*P is finite since In (m?P) is finite. The infiniteness of P then implies
In P/p ~0. Hence m*In P=m?P-In P/P~0. q.e.d.
1.9 Remark. Setting
@ P? 5
F:=C=~—(l — +1 4——)
3x\ M2 3

yields (¢, wA) — C(¢, sA)~0, assuming that In (m>P) be finite (cf. 1.8 and
3.18). Since F is positive it determines a unique 8F such that F = };_, (6F)" i.e.
oF = F/1 + F. With this choice of 0F the vacuum polarization counterterm (cf.
1.1) induces the compensation of —C(¢, sA) by (¢, wA) (for suitable ¢, A cf.
1.7).

2. The fermion mass renormalization

2.1. A fermion selfenergy contribution

Let

t I3 t
e(—t 1):= (ie)3f dx(,j dyoj dzojd‘%x d’y d’z
—t —t —t

= | e J
:©(xg, X)7,O(xo, x)B“(x(,,_x—)'Bv(y(,, ¥)O(yo, )
I Al
X }/vg(y()’ y)Q(Z(), Z)YPCP(Z)G)(Z()’ Z):

be the summand of the S-matrix U(—¢, ¢) (cf. [1], 5.7 and 5.8) corresponding to
the Feynman graph.

A straightforward evaluation leads to

2.2 Theorem. For any O-finite time interval [—t, t] and any two one-electron
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states ¢, A € L @ D we get the selfenergy contribution

(¢, e(—t, OA) = —e3f dxof dyOJ dzofd3p d*w d3qfdk0qu0[duo
-t -t —t

Y P e'(Q —qo—uo)Xo ___ e—l( qo—ug+ko)yo i el(ko— w)Z0o

21 21 2n
1 h(q)
X ( (2 )3/2 ®+(0 —p) 2 q + m gmﬂ’u

(p—q)z—u5+M2—i£h(p—q)y“pz—k§+M—zs
1 _ 1
X h(p)Y, 2n)” ©7(0, w) 2" Colp - W)A)
2.3 Remark. Theorem 1.12 of [1] can be refined in the following way:

J’ e—ipo(xn—)’o) e ~i@p|xo=yol

d = it
pr—pitmi—ic T° :

'
p

where a)l',:=\/pz+m —ig is the root with positive real part (e >0). This is
proved using the residues calculus.

In analogy to 1.3 one has

2.4 Lemma
t oc
j dxof qu ei(Qp—qn-—un)xoe—i("CIn"qurko)Yo
— Jwq®—qi+mP—ic
B { 27 N T
q>—(Q, —ug)’+m’—ic o,

q9
(ei(“w&+9p—uo)(f—yn) e (@ +8p—uo)(t+y0)

X _ ) } GRS
(—wa+Q, —uy) (w;+ R, —u)

In order to further evaluate the result of Theorem 2.2 we need the following
straightforward consequence

2.5 Corollary and definition.

t
f dxojd?’CIJduoquoei(gp_q“_“ﬂh‘oe—1'(—40—un+ko))’o
—t

h(q)h(p q9) g M + ug, p—1q- ,
G —qi+m*—ie”™ M (p—qP—uf+ M*—ic™"
— {27[2(Qp, ) + ‘TE“‘(Qp’ D, t, yﬂ)}el(Qp—ko)W
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where we define

h(q)h(p —q) 1 1 )
,p):=|d’qd ( -
2(p() p) f q qO 20); (U’ +q0 —(D;‘l‘qo gu.uy.u
M + po=4gorp—4 y
(P CI) _(Po 610)2+M2_i8 g
h(q)h(p — q) M + po=gup—T
d’q dq —Y
f T80 7 g m? —ie 3" (p — g — (po—qo)’ + M2 —ic '

and

2(po, b, 1, 30) = 49 da

h(g)h(p —q) (ei(“w&+40)(f—yO) e‘*i(w,',+q0)(t+y0))
oy —w,+qo wg+ qo

M+ po—ge-p—1q
X 8uuYu (P —q) — (po— qo)* + M*— ie

(for w, cf. Remark 2.3).

Yu

2.6 Remark. Theorem 2.2 and Corollary 2.5 yield

(& (1, 00) = [ dy, f 2o [d%p @ 5 = Gerdg =%
e (2 )

x( G 1)3,2 ©*(0, p){272(RQ,, p) + TE(Q,, p, 1, Yo}

M+ h(p)ve 27 1)3/2 8(0 w) 2 1)3/2 C(p - W)A)

X 7

For the evaluation of Z(€2,, p, ¢, y,) we need

2.7 Lemma. For —t <y, <t we have

e (= ®4+4q0)(t—y0) M +Q — G p—t

d
0 | itao T (p =g = (@, — g0+ M-

el (0 +92, =) (=) M+_Qp__P__q_

.}’,u

=27
B o T L G Yo Y
o e*i(w:}+qo)(t+y0) M +Qp—_q'ﬁ"_P___q_
b)f d - ¥ — Y
L o g0 B gy (@ g M e

e—‘l-(CO:;-FQp ~g+2)(t+yg) M + —Qp-—w‘!‘ﬁ‘_'q—
=2mi
w,+Q, ,+Q, Buuu 28

Proof. By residue calculus.
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2.8. Corollary. For —t <y, <t we have

_ [ g2 M@R(p = g) e/ —2in
:;(QPJ p) ty )’0) = 2.71’1](13 w { (J) . Q Q‘; Y gﬂ.uyﬂ

q

M +—-Q;7=71—P_—q- e l(w +Q, ,,+Q_,,)(t+y0)
SETSY T e _ 10
P—q Wqt 22— L
Mt =P —a }
’ Yu
ZQP“]

Bun¥u

A similar argument yields

3(R,,p) = m-fd3q h(@)h(p — )

q

1 M+Q, —p—a
D PN ’ BuuYu ’
0y + 8 —85 5 29,
1 M + —Qp'ﬂ;"?’_q
+ ' ’ g_u_uY_u
W, + Qp + Qppq ZQ

2.9 Remark. The summand of (¢, e(—¢, t)A) containing = (cf. Remark 2.6)
thus becomes

x| ¢, o) 0*(0, —p)n2m’Jd3q
[ ei(*wz}+Qp—erq)(t—yu) M +Q1'7—177'19'—'q A
O L LT T
X e @y g +82)(t+y0) M+ _Qp‘_q,_p,_q_ [
| w9+, S 2Q;
h(g)h(p — M + Q. sg(ye=20)p-
aC)) (? q)m i
w, Q
1 1
2 R(PVom—m 27) " 070, w) ——735 (27 )3/2 Co(p —w)A

which after breaking up the integral [, dy, into [*,dy, + [% dy, can be integrated
elementarily yielding an explicit but rather complicated elementary formula.
Applying residue calculus with respect to the d’q integration yields a O-finite
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value (depending of ) whose 0-standard part vanishes in the M,-limit t— o, by
the Riemann-Lebesgue Lemma.
Now we turn to the summand of (¢, e(—¢, t)A) (cf. Remark 2.6) containing

2(2,, p).
2.10 Lemma.

2(R,,p)= letfd% dvoh(v —tp)h(v + (1 —1t)p)

M + v+ (1 — )Qp
vi+ PM* + (1 — )m* — ig)? Yo

X BupYu [U

Proof. A straightforward computation using in turn Feynmans identity
1/ab = [} dt(1/[a + (b — a)t]*) and the substitution v = —g +#p. q.e.d.

2.11 Remark. Using the facts 2g,,v,y. =4 and 2g,,,v.7» Y. = —2Y, yields

2(2,,p)= fdtfd% dvoh(v —tp)h(v + (1 —1)p)

L AM = 25) —2(1 - ) @2pp)

[ — v+ M*+ (1 - O)m* — ie]*’

which can be rewritten in the form

3(Q,, p) = fdtj jd 02(1—f)(M Q,,rp‘)+2(M(1+t) — o)

G(t.p) U0+t2M2+(1 ) 18)

where G(¢, p) = R] is the support of the function
veh(v—tp)h(v+ (1 —-1t)p) (cf. [1], 6.17).

Since ©*(0, —p)(M — Q2,+p)=0 the operator =(Q,, p) contributes in (¢,
e(—t, t)A) (cf. Remark 2.6) only by

! M(1+1t) —vev
—ofa o adill
P 0 o 1Sl M (L— )ymP — e

which in turn can be split into

¢(p)=2 j (ex(t, p) — ca(t, p)) dt

where
i M(1+1)
t,p)= d? f dv
“(p) G(t.p) v_x ‘(W= vZ+ M2+ (1 - t)ym? — ie)?
and
4+
VU
t,p)= d° J d
el ) L(,,,,) VL T M+ (- O)mP — ie)?
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Residue calculus yields

fx dUO — A 1
LR+ M+ (1= me— e Qo)

where w,(t) = VEEM? + (1 — t)m? + v* — ie is the root with positive real part (cf.
also 2.3), and

oc

v, dvu

=0
= (V= V5 + M + (1 — t)m? — ig)?
Hence
M(1+1t
cl(t,p)=4m'f d3v(,—1
Gupy  (wy(r))
Qv

c(t, p) = 4m’j d’v ————
G(r, p) (2wv(t))3

2.12 Lemma. For a finite p € R{,, we have
cit,p)~ci(t,0) (O0O=sr=1).
Proof.

3, M1 +1)
(6,p)-G(1,0) (w, (1))
where G(t, p) = G(t, 0) is the symmetrical difference

S4ﬂf v MU +1) ?

B+ 1o \BP- ) Cllvlly

since G(t, p) ~ G(t, 0) < By, ., \BS_,,, (for B cf. 3.7)
PPl 2 dr P+pll

=4aM(1+t 47 =2m*M(1+ ) In——
), TGy SRR A

1t p) — (6, 0) = |4 |
G

In analogy to classical Q.E.D. one gets

2.13 Lemma. For finite p € R¢,, we have
letc,(t, p) ~4x*iM(In P + R)

where P is the UV cutoff and R is a finite real remainder, independent of p.
2.14 Lemma. For finite p € R, 0=t =1, we have c,(t, p) ~ —cx(1—t, p)

Proof. Using the symmetry between G(¢, p) and G(1 —¢, p).
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2.15 Corollary. For finite p € R}, we get
1

[[extt,pyar~o
4]

2.16 Theorem. For finite p € R}y, the only contribution c(p) of £(RQ,, p) in
(¢, e(—t, )A) (cf. 14) amounts to c(p)~8mx*iM(R +In P) where P is the UV
cutoff and R a finite real constant.

Proof. Cf. 2.11, 13 and 15.
2.17 Corollary. For any finite time interval |—t, t] and any two one-electron

states ¢, A€ L ® D with finite norm and finitely bounded support the selfenergy
contribution (cf. 2.1, 2) amounts to

(¢, e(—t, )A) ~ —e f dy(,f dzgfd3p fd3 fdkﬂ

f(Qp—ko))’nei(kn—Qw)Zo

@ry°
¥ ( e 1)3,2 0% (0, —p){A + TE(R,, p, L, Yo)}

M +kop
X 2 _ k2 2.
p ot M- —ie
where A :=2m - 87*iM(R + In P) is infinite but O-finite,
Proof. Cf. 2.6, 9, 16.

1 _ !
K(P)Y G550 (0, W) G5z Colp ~ WA

2.18. Selfenergy counterterm

In order to compensate the infinite summand arising from A in (R, p) to
the fermion selfenergy contribution (¢, e(—t¢, t)A) (cf. 2.6, 16 and 17) we
introduce an additive ‘selfenergy counterterm’

——6M:f®(0, x)0(0, x) d’x:
into the interaction hamiltonian. The constant (0-finite) factor 6M is to be

determined in the following (cf. 2.20). The new Dyson expansion contains in
second order the summand

t t
S(—t, t)= (—i)ze(SMj dxofd3x dy, d’y
—t —t

. P
:0(xo, X)O(x0, X)O(y0, ¥)1.O(¥0, ) : Cu(y)
corresponding to the Feynman graph.

A straightforward evaluation leads to
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2.19 Theorem. For any two one-electron states ¢, Ae L @D the selfenergy
counterterm induces in the O-finite time interval [—t, t]

; t t
(¢, 5(—t, t)A)?Ez;—e)sa 5M f dy, f dz, f dp j d*w f dkoe! @ kovogitko=2)z
—t =1

M+ kesp _
“ 12+ M- - h(p)r,© (0, w)C,(p —w)A)

X (¢s (:)+(0’ _p) 2
P

2.20. Fermion mass renormalization
Fixing M at the positive O-finite, but infinite value
oM = 4me*M(In P + R)

causes the infinite part of the selfenergy contribution to be infinitesimally closely
compensated by the counterterm contribution, for normed one-electron states in
L ® D with finitely bounded support (cf. 2.17 and 19), i.e. it remains

(¢, (e(—t, t) + 6(—t, t))A)  O-standard part of
—€3ft dyoft dzofdspfd:’wfdko 1 o' (€2 —ko)yo+ (k—L2,)z0)

2m)?
1 = _ M +k@,/p' 1
X (¢, (2::)3’2@ (0, —p)7E(R,, p, ¢, yo)p2 Rt M —h(p)v, )

X ©7(0, w) (zﬂ—l)s,z Co(p — w)A)

which in the Mg-limit ¢ — oo disappears (cf. 2.9).

3. The vertex _contribution

3.1. The vertex part

is the summand
+t +t +1

v(-t )= (ie)3j dxof dyof dzofd3xfd3yjd3z
—t —t —z

I : 1

s | -1 | _1
: ®(x07 x)yu(")(xo, x)B.u(xO’ x)®(y0’ Y)Yp(“)(}’o; ,V)Cp(}’)@(zo, Z)Yv@(zﬂy Z)BV(ZOJ Z):
of the S-matrix U(—t, t) (cf. [1], 5.7 and 8) corresponding to the Feynman graph.

A straightforward evaluation leads to
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3.2 Theorem. For any two one-electron states ¢, A€l ® D the vertex part
yields

83 +t +t +1t
(@, v(~t, t)A):;(qp,W [ axo ayo [ dzofd3pd3qd3w

X fduo dkO dqo_l_ ei(Qp"“IO“uo)xo _1,, ei(uo—kg)yo ___L ei(q0+k0_gw)z(,

h(q) v M + ug, p=—q"
—qgi+m*—ie " (p—q)—uj+M*—ic

x ©*(0, "P)(_gu.u)qz h(p —a)r.

M +—kg—;—w—_‘q' =
X T p i MO~ D170, W)Cp ~ A

3.3 Corollary. For any two one-electron states ¢, A€ L @D the vertex part
yields

(¢, vA):= O-Ei_)n; 0-st(¢, v(—t, 1)A)
= (2;—;9,2 O-St(q.’:v, f &p dws(Q, — Q,)07(0, —p)
X A(p, W)O(0, W)Cu(p ~ WA
where
Ap, W)= [ [dgu(—g,)

M+ Q _—gop—qg
Xy, e —h(p—q)
“(p—q)P— (R, —q0)* + M*—ic

M+ Q, =gmw—7q
(w—=q)*—(Qu —qo)* + M*—ie

h(q)

—g3+m?—ic

X Yy h(W _Q)Yﬂ

3.4 Remark. Similarly to classical Q.E.D. we get

Mo =D x| ay [2q [agontamn(p - yriw - o

—2pvo W + 204 + Wy ) +2M (v, (B + b —24) + (B + W — 24)v.) — 247 ¢ —2M°y,
[9° — 45+ 2(q(px + wy)) + m*(1 —x — y) — ie]’
The computation of A,(p, w) follows as far as this is possible the standard

versions, cf. [5], Appendix E pg. 315-321. Let K(p, w) for fixed p, w € R? be the
support of g—=>h(g)h(p — q)h(w — q). Thus A, (p, w) can be written in the form

I L e P.(p, W, ¢)
Av,w=—2fdfd d3f
pow)==2) x| By LY =g+ 2ar)+s —iey 0
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where @, is a polynomial (quadratic in q), r =px + wy and s =m*(1 —x — y) =0.
Notice that the denominator is equal to (—(go—7r)*+ (g —r)* +|r|* +s —ig)’
where |r|*=r5 — ||7||* = (r, r). Using residue calculus one proves:

3.5 Lemma. For s >0, it follows

a) f+x dqo i 3 1
— 1 —
— (q*—qi+2(qr) + 5 — ig)’ 16 ((q —r)*+ |r|* +s — ie)*"?
“+2c
do dQO A Yo
b = D —
) —= (§°—q5+2(gr) +s — ig)® ™ 16 ((q — r)* + |r|> + 5 — ie)*?
o g6 dqq A3 e
—= (@~ —qo+2(qr)+s —ie) 16 ((g — r)" + |r|* + 5 — i)

1 1 |
16 ((g —r)* + |r|* +5 — ie)**

Which yields the following

3.6 Corollary. For finite p, w, r e R{}), s >0, |r|>=ri—r’>0 we have

A 1 i ik
d3 J d N_n,z
2) K(p.w) 9 i o (qth%+2(qr)+s —i£)3 2 s+ |r|2
s i 2
b d3 f d qdv A v ‘
) ko o @i 2qry +s —ie) 27 st IrP
v=0,1,2,3
+o0 %
q.9 I 5, K,
d3 d u — , :/:
) L(p,w) g e 90 (q* — gé +2(gr) +s — ie)’ 2" s+ |7 HFVv
d d3 +wd q}2 l 2 rJ2 L )
! ~— +iL.(p, w, r,5),
) Kilp ) 1 o (> — qé+2(gr) +s — ie)’ ZJr s+ |r? P
=123
o 2 . 2 -
daj d 9o Y, o W
) Jeom ) = 2gr ts ey 2" s+ 6
iL()(p, W, r, S)
where
(g, —1)’d’q

3
Lp,w,r,s)=2a0—
’ 16 Jicpowy ((q — 1) + |r[* + 5)°?

and

1 (g —r)yd’q
Lo(p, w,r,s)=2n0—
P ) 16 Jxpowy ((g = r)* + |r|? + 5)°?
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3.7 Remark. For finite values of p, w, r, s with s >0, |7|> >0 we have
3 k? d’k

Lv y W, I, -~ 2”_f !

(p w,r S) 16 B(}(kz+ |r|2+s)5/2

which we will denote by L(r, s). (Here B} is the ball with radius P = UV cutoff
around 0.)

for v=0,1,2,3

Proof. First notice that
j (q:—r) dq
Bh. 8y, (g —7)* + |r* +5)*?

for any finite u of 1 =0.
This implies

3 qid’q
L y Wy Iy ~2 P
2@ w, r S) n16 B(}, (qZ e |r12+3)5/2

The case v =0 follows since (¢ —r)’=(g, —n)* + (g2 —r)*+(g:—n)* q.e.d.

From 3.6 and 3.7 we can get

3.8 Lemma. For finite values of p, w, r, s with |r|>>0, s >0 we have

3 | P, W, §)
IK@,w)d QJdQ() (qz _ q(z} 3ol 1) o = i8)3 (cf. 3.4)
L [t

—~ ] —

2 s+ |rf

2M(y,(p + W —2H) + (p + W —2P)y.)
=2fy,f — 2M?y,

2

_Zin(_gv() _J'ré" I ZL(r, S)) .

Notice that replacing K(p, w) by B} would not change this infinitesimal
approximation.

3.9 Corollary. Setting Q:=p —w and using r=xp +yw, s=m*(1 —x —y)
forO0=y=1—-x=1,0=x=1 (cf. 3.4) Lemma 3.8 yields

2@ ¥, 4)

—q5+2(q, xp +yq) + m* (1 —x —y) — ie)

s u(w)

u(p) dBQId‘I() Tz

K(p.w)
¥, o 1
Nl_2mm2(1 —x—y)+|xp +yw|?
v (AM? — 4(x + y)M? = 2(x + y’M* + 2 |Q|; (1 — (x + y) + xy))
Xa(p)q +v.Q - 2M(y —x(x +y)) u(w)
@y, 2M(x —y(x +y))
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2

=21y, (~guo -+ 2Lxp + yw, (1= x — y)) Ja(p)u(w)
where

1Q15=05+ Q1+ 03+ Q3

Q17 =-05— Q71+ Q3+ 03

|Q1Z2=—-05+ Q71— 03+ Q3

IQ13=-Q5+ Q7+ 03— 03

Proof. Apply pu(w) = ( + Q)u(w) = (M + @)u(w) and () = &(p)} — @)
= a(p)(M — @).

3.10 Remark. a) Using 0, :=3(Y,.Y, — Y. Yu) it follows

Q= -20,0,, + 0,8
Qy, = +2Q,0,, + Q.8
b) Using po=Q,, npy=Q,, it follows
xp +yw|*=(x +y)’M* —xy |p —w|*

3.11 Theorem. For v=0, p, w finite, 0=x=<1and 0=y =1-—x =1 we have

_ 3 Pop, W, 4)
“p) K(p.w)d qqu” (> —q5+2(q, xp +yq) + m*(1 —x —y) — i)’

. 1
2 m(1—x—y)+ (x +yyM —xy O
i} Yo(4M? — 4(x + y)M* = 2(x + y)’M?> =2 |Q)* (1 — (x +y) + xy))
X u(p){ —2MZQ,0,0(x +y)(1—(x +y)) }u(w)

2

~2iyo( =T+ 2L(xp + yw, mA(1 = (x + 7)) )a(p)u(w)

u(w)

assuming that Q, = Q,,, where Q:=p —w,
101 =—-071—- 03— 03=—((p, — W)’ + (p2— w)* + (p3 — W5)").
Proof. Straightforward from 3.9, 10.

In order to approximate (¢, vA) (cf. Corollary 3.3) one uses the Taylor
development of the above expression as a function of |Q|?, regarding £0,,0,, as
an independent parameter; then one has to integrate over dxdy (cf. 3.4) and
d’p d’w.

We start with the summand of the ‘constant term’ containing ¥, _o Q. 00,
corresponding to an additional magnetic moment. In analogy to classical Q.E.D.
(where m = 0) we have
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3.12 Lemma.

PR (x+y)d-(x+y) 1
fdxo dymz(l—x—y)+(x+y)2M2 2M*

0

3.13 Corollary. The ‘constant’ summand of (¢, vA) depending upon Z(p, —
W, )0, is given by

: 3
\7‘;’—; (¢, f &*p d*wd(Q, — Q,)0(0, —p) 20 (Pu = W) G0

1 o
X522 @70, w)C(,(p—w)A)

(Where a = e*/4x) which gives rise to the anomalous magnetic moment of the
electron (cf. [5] pg. 320).

3.14 Remark. Now we turn to the remaining summands in the constant term
(]QI*=0) of the above mentioned Taylor development:

.JTZ 1 1—-x 4M2_4 A M2_2 8 ZMZ 1 1—x
yoz-—z—f dxj dy (x +y) (x +) —2)/01'] dx
0 0 (
J'l,'z

m*(1—(x +y)) + (x + y)*M? )
(__+2-2n.._1_ d3 qZ )d
6 16 Jgo q(qz‘f‘mz(l*(x+y))+(x+y)2M2)5/2 34

(cf. 3.11 and 7).
Introducing polar coordinates instead of ¢q;, g., g; and substituting x =
(u/2) + v, y = (u/2) — v and integrating over dv (cf. 3.12) yields
o (v AMPu(l —u) + 2M%u?
Yol | du—— 7.5
2 Jo m-(1—u)+ Mu

— 2y0inzjidudep pu + yoi u
o Jo | (pP+m* (1 —u)+uM?*"? 6

2
= iyo(L+ +L_+ %)

where L, and L_ denote the first two factors of y,i respectively. Explicit
integrations yield

3.15 Lemma

2

M
L++L-+%~x2(21n;n—~—%ln2P+%lan—?;)

3.16 Remark. Given any finite value L and any infinite (infinitesimal) value
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for P (for m?) then there is a infinitesimal m? (infinite P) such that
2

—L~L,+L_+Z-.
6
That L be finite is equivalent to In (m®P) being finite. The latter condition we
want to hold once and for all.

3.17. Spurious charge renormalization

Choosing P and m such that L is small or even infinitesimal there is quite
little or no corresponding charge renormalization at all necessary.

In order to evaluate the term which is linear in |Q|* in the above mentioned
Taylor series we need.

3.18 Lemma

a) Zrdx T o i;Exy-;i)(:iyy)zMz 1\;2 (2 ln%—%)

o [af WUt s

9 2 %r; dxfol_xdy s (g7 +m(1 - . iJ-O;f)diq(x +yPM)”? 2 ;261"-’ 2

Proof. By a chain of straightforward integrations. Thus one gets

3.19 Proposition. The coefficient of all contributions in a(p)Ay(p, w)u(w)
linear in |Q|* amounts to

2 rl 1-x
—Z{iyon—J’ dxj dy
2Jo o

(4M2—4(x +y)M? +2(x + y)*M? 3 1—(x+y)+xy )
(m*(1 —x —y) n (x FyPM2E Y T Al —x—y) + (x + y)°M?
5 g’xy d’q }
—2 f gl dvgms 2
o2 Y J’16 2 e (P +mP (1 —x—y) + (x + y ) M2)

This yields

3.20 Theorem. The combined contributions of the ‘lowest terms’ in p — w and
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lp — w|? of (¢, vA) are
ie

N ﬁ(cp, j &p dws'(Q, — ©,)0*(0, —p)

el T P

_le 3 43 ol _ Sefdor
+\/2—E(qb,fdpd wo'(Q, —Q,)07(0, —p)

e
Lol WI( M

3
3 M2 In ; = g) '}/09_(0, W)C()(p == W)A)

assuming that ¢ and A are normed and have finitely bounded support and that
L~0 (cf. 3.19).

O(0, w)Co(p — w)A)

3.21. The Lamb shift

We now have accumulated the theoretical and numerical results (cf. 1.9,
2.20, 3.20, [1], 6.21, 5.13) required to carry out the approximation to the Lamb
shift according to [6], 15.E.

4. A Ward identity

4.1. Definition

In order to compare Z(p) and A, (p, w) (cf. 2.5 and 3.3 resp.) we introduce
their respective slightly modified ‘integrands’

1 M+ p—u
o, u):=—|u|2+m2— ig BT —lp—ul*+ M*—ic L
and
A (p, w, u)
—1 M+ p=—u M+uw—wr—ic
= Yv Yu-

TP mi— et T U A MP— i —w—uPP + MP—ie

By straightforward differentiation one gets

4.2 Lemma

do(p, u)
a

v

=A,(p, p,u) for v=0,1,2,3.

4.3 Lemma

: * 4M -2 —2(1 —t)p
so)-[a [ a .
B L T+ 1 —1pP) + M= (1 — 1y — e)?
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Proof. A straightforward generalization of the case M*— |p|*=0 (cf. 2.10).
Notice that in G(¢, p) only the space-like component of p is considered.

4.4 Remark. The contribution of
J' d3ujdu00(p, u) to Z(p)= Jd3uh(u)h(u —p)Jduoa(p, u)
By

corresponds in Lemma 4.3 to the contribution

! = aM — 2§ —2(1 - t)p
3
fo dtf,,(,,,,)d ”Ld”" ([0 + t(M2 = |pP) + 2M% — (1 — ym® — i€y’

where H(t, p) is the support of v+— h(v —tp) (cf. also 2.10 and 11).

4.5 Remark. Residue calculus yields

i * dv,
_e (V)P = vd+ t(M? = |p?) + 2M? + (1 — t)ym? — ig)?
1
Asi 2 2 1n 12 4 2 A2 i =
| ey for I o+ M (1= >0
B 1
4 otherwise

" 20'(v, p, D)

where @'(v, p, t):=V||v|> +t(M?>+ |p|?) + PM*+ (1 — t)m® — ie)? is the square
root with positive real part.

b) * U()dvﬂ _
e (U|* = v+ t(M*— p?) + 2M* + (1 — O)m® — ie)®

0.

4.6 Lemma. For any finite p € R* and for any 0-infinitesimal p —q #0 the
expression

1 1 ac — — —
I dt{f d3vf dv, 2 jM 22# 22(12 0p 2 a2
p—qllo G(t,p)~H(t,p) - (—=v|*+t(M* = |p|?) + °M* + (1 — t)m” — ig)

. (" aM =29 —2(1 — 1)§
d ULdUO ([ + t(M2 = |qP) + M* + (1 — ym® — ie)z}

J'G(t.q)*H(t.q)

is infinitesimal.

Sketch of the Proof

Notice that G(¢, p) = H(t, p) is the ‘symmetrical difference’ with the ap-
propriate signs for the contributions of the corresponding integrals.
According to Remark 4.5 we have

J“ dn 4M —2p —2(1 —t)p

ce C(—PH M= pP) + M + (1 - O)m® — ie)?
_ dri
- Q'(v, p, b))’

(4M = 2(y,v1 + you, + y3u3) = 2(1 = )p) =:1(v, p, 1)
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Now
I(t):=f I(v, p, t) d’v —f (v, p, 1) d’v
G(t.p)-H(tp) G(t,q)~H(1.q)

can be viewed as an integral over part of the |p — g|-thin ‘surfaces’ of two balls
both of radius P but with different (finite) centers. 1/w'(v, p, t)’ can be approxi-
mated by 1/ P? with error ‘of order’ 1/P*. This implies that the 4M-part and the
2(1 — t)p-part contribute in I(¢) ‘of order’ |p —q|. (P*/P?). Thus their contribu-
tion in 1/|p — q| [§ dtl(¢) is of order 1/P ~0.

As to the y,v;-parts (i = 1, 2, 3), they cancel each other in I(¢) and I(1 —¢) up
to an error ‘of order’ |p — q| P°/P*®. Thus again they contribute at most of order
1/P~0in

1
P —q]|

1
f drl(t). q.e.d.
0

4.7. A Ward identity

For finite p € R{;, we have

92Z(p)
apv ~ Av(p) p)

Proof. Since

S(p)=| d’u| duyo(p,u) +] d3uf duyo(p, u)
BP — G(1,p)~Bp —x
we have

oz = do(p,
9Z(p) — d3uf duﬂM_,. B =

op, Jss )= opy ap—0A,p

b {f d3uf duyo(p + Ap,, u) — d3uf duyo(p, u)}
G(1,p+Ap,)=Bp — G(t.p)~Bp —

~f d3uf duoh,(p, p, u) (because of Lemma 4.2 and 4.6)
BY —

~A,(p, p) since € 50 (cf. 3.3 and 4.1). q.e.d.
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