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More nonstandard quantum electrodynamics

By Robert Fittler

Freie Universität Berlin, Fachbereich Mathematik, Arnimallee 3, 1000 Berlin 33,
RFA

(2LIV.86, revised 5.II.86)

Abstract. Nonstandard quantum electrodynamics, a rigorous field theoretical approximation of
classical quantum electrodynamics, is developed further in lowest nontrivial order of perturbation
theory. The material covers the vacuum polarization counterterm, the fermion selfenergy and its
counterterm, a Ward identity, and the vertex contribution, yielding the anomalous magnetic moment
of the electron, the form factor, and leading up to the (lowest order) Lamb shift. Thus a manifestly
consistent alternative form of quantum electrodynamics yielding correct numerical results in lowest
nontrivial order of Pertubation theory is exhibited.

Introduction

Nonstandard quantum electrodynamics arises from the usual quantum
electrodynamics by replacing the initial free fermion and photon fields by
appropriate nonstandard operatorvalued functions (cf. [1], 0 and [8] pg. 5) using
the following modifications.

The basic standard model M of analysis is twice expanded into M çr y(0) g
M(1) where M(0) contains infinite and infinitesimal elements with respect to M,
and M(1) again contains such elements with respect to M(0) (cf. [1], 1 and 2.5).

The photons are assumed to have a restmass m e M(0) which is infinitesimal
with respect to Ml (cf. [1], 2.5). There are particle number cutoffs for photons and
electrons resp. (cf. [1], 3.2 and 4.4) both being infinite and belonging to Mm.
There is a space cutoff Q belonging to M(1) which is infinite with respect to M(0)
and a UV cutoff P (cf. [1], 2.8 and 2.11). The nonfiniteness of the space cutoff Q
with respect to M(0) is necessary if one wants Q to induce (by Fouriertransforma-
tion) an internal norm approximation of the ô-function over R(0) e Mm in the
sense of [1], 1.11.

At first sight these modifications effect the initial fields only. However they
bear upon other times since the initial fields constitute the building blocks of the
(interaction) Hamiltonian, which governs the time dependence through
Heisenberg's equation (cf. [1], 0). Such is the complete fundamental principle on
which the dynamics is deductively based.

In order to allow a sensible multiplicative charge renormalization in
connection with the vacuum polarization the UV cutoff P was assumed to be
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finite in [1] (cf. [1], 6.23 and 6.24). We are going to remove this obstacle to
relativistic invariance and replace the old UV cutoff by a new P which is infinite
with respect to M and belongs to M(0). The break-down of the multiplicative
charge renormalization will be compensated by using the counterterm approach
of Gupta (cf. [2], [3]).

Notice that all results of [1], except 6.23/24 remain valid and some are
actually sharpened by the infinite value of the UV cutoff P. In particular the
standard first order perturbation theory and our nonstandard modified form of it
coincide infinitesimally closely (cf. [1], 5.12).

The present approach starts with the nonstandard (internal) Q.E.D.
corresponding to the above mentioned Hamiltonian (without counterterms) which
yields a Dyson expansion that is convergent in the nonstandard sense (cf. [1],
5.7). Its sum may be highly nonstandard. The same already happens to its lowest
nontrivial order summands. In order to rectify this the approprite counterterms
are introduced into the original Hamiltonian. The resulting counterterm Hamiltonian

again gives rise to a welldefined nonstandard Q.E.D., now yielding finite
and even numerically correct contributions in lowest nontrivial order of the
corresponding Dyson expansion. Higher order renormalizations will be
considered elsewhere. (Notice that the sum of a convergent nonstandard series of
finite terms need not necessarily be finite). The actual computations resemble the
classical ones rather closely. The classical divergencies appear in the form of
(possibly) infinite but welldefined nonstandard numbers which obey the same
laws as standard numbers. They depend on the initial choices of the infinite UV
cutoff or the infinitesimal photon mass (or both). The same holds for the
determination of the counterterms.

Chapter 1 deals with vacuum polarization on the base of [1], chapter 6,
where the vacuum polarization term appears in 3rd order. Its 'infinite part' will be

compensated by the appropriate 2nd order contribution (cf. 1.1, 1.2 and 1.9)
induced by the counterterm

¦j : {OF ¦ F„VF»V + l((ÔF)2 + (OF)3 + ¦ • OF«,** : d3x

(cf. 1.1). Any choice of an infinite (0-finite) UV cutoff P determines a unique
<5F(~1) doing the job as long as

,2 a I. P* 5
m • — In —~ + ln 4 - - ~ 0

3jt\ Mz 3

The latter relation between the photonmass m and the UV cutoff P follows from
the precondition that ln (m2P) be finite (cf. 1.7, 1.8 and 3.16).

Chapter 2 deals with the fermion mass renormalization in lowest (3rd) order
by splitting the usual selfenergy contribution (cf. 2.1) into a sum of two integrals
(cf. 2.6), one containing 2 as it is commonly used (cf. 2.5), the remaining one
containing a function S. The 2 behaves as expected by contributing just a

constant A of the 'approximate size' of In P (up to finite factors and summands,
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cf. 2.17). In order to compensate the 2-summand of the selfenergy integral the
usual mass renormalization counterterm

-ôMJ:ê(0,x)@(0,x):d3x

is introduced into the interaction hamiltonian (cf. 2.18). It contributes in second
order a term which just compensates the Z-summand of the selfenergy contribution

if ÔM is appropriately chosen (cf. 2.20). So far everything goes according to
the textbooks (cf. e.g. [4], §9.4).

The remaining S-summand of the selfenergy contribution disappears in the
limit f^oo (cf. 2.9).

In Chapter 3 the vertex part is dealt with (cf. 3.1) rather closely along the
lines of [5], Appendix E, yielding first the expected contribution to the anomalous
magnetic moment of the electron (cf. 3.19). This appears in the usual fashion
incorporated to the Ao-function (cf. 3.3). The 'constant part' L of Aq (cf. (3.16)
essentially equals the difference of a UV-infinite and a IR-infinite contribution
(cf. 3.15). According to our precondition on the finiteness of ln (m2P), L itself is

finite. The appropriate choices for m and p even imply that L vanishes (cf. 3.17).
Thus one may avoid the socalled spurious charge renormalization (to this order).

Applying the usual Taylor development yields the expected form factor (cf.
3.19). Thus the preparations needed for the lowest order approximation of the
Lamb shift (cf. [6], 15E.) are ready (cf. 3.21).

Finally, in Chapter 4, a nonstandard version of the usual Ward identity (cf.
4.7) is developed.

1. The charge renormalization

1.1. Vacuum polarization counterterm

In order to compensate the summand -C(cp, sA) of the vacuum polarization
(cp, oA) (cf. [1], 6.21-23) we introduce an additive counterterm

- f : W 2 F,VF»V + \ f (OF)" 2 FoF° : d3x
¦> H,v=0 n=2 i l

into the former interaction hamiltonian

-ef: t ®yß@{B„ + C,):d3x (cf. [1], 6.3)

in the spirit of Gupta [1] (cf. also Dyson [3]). FMr, FMV are defined according to

_ d(gM(x0, x) + C^lxo, x)) d(Bv(x0, x) + Cv(xq> *))
fnvyXo, X).— -

dxv dxv

and FßV Y.l.ß^gßagvßFo-ß. The constant ôF, |ÔF|<1, is to be determined in
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the following. The new interaction hamiltonian, being again a bounded (1-
internal) operator on A4n <8> B4tD (cf. [1], 5.7) yields a corresponding Dyson
expansion (cf. [1], 5.8). Its Wick representation carries in second order a

summand w(—t,t):

-(-ifeFJ' dx0jd3x^ dy0jd3y

3 ' 3'2 :0(*o, x)Yo®(x0, x)B0(x0, x) — B0(y0, v)

1 d1 a
-&(x0, x)yj&(x0, x)B,(x0, x) — Bj(y0, y): — C0(y)

dy0 <9y,

where F:= Erâ-i (ÔF)n. In analogy to classical Q.E.D. one has

1.2 Theorem. For any two one-electron states cp, A e L <8> D, and any 0-finite
value t we have

r+t r + ti c+t r'(4>, w(-t, f)A) -s- eFf^_xSr2 I dx0 I dy0
(2;r)5

x ld3pd3qdk0h(p-q)-
cilClp-Siq-kolXßcikayr,

(p — q)2 — kl + m2 — ie

(ct>,:&+(0,-p)y0&-(0,q)(p-q)2

- 2 ê+(0, -p)y,e-(0, q){p - q),k0:C0(p - q)A)

In order to evaluate 1.2 we need the following technical

1.3 Lemma

rt rt gilQp-Sìq-krìxtjcikftft,

2jz

rt rt gty\tp-\iq-K0)x0eiKt
} idXoidy° k2-k2 + m2-t

f d-vr0e'(Q""n*)xo - -^ J _ic0e~'cu*V<Q',~n*~a'*)*0 + e'(Q/>-Q*+a">«)

rt ft /ç gHQp-Slq-ktùxo-ikoy
b) dx0\ dyo-jj—-y- 5——J-_- J_r k2 - kg + m1 - ie

„_ fe g-'^kUgl'^p-Hq + oi^xo _ ei(Qp-aq-mk)x0\

Proo/. By breaking up /'_, dy0 into ft dy0 + J"i0 ^o-

1.4 Remark. We state the following facts for further use.
a) Any p,qeU3 fulfill Qp - Q? + a>p_? > 0 and Qp - Qq - op_q < 0
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e-/(np-n,)( _ e-(Q--n,-2top_,)(

Qp-Qq- œp_q
b) f dxoe-^-X^-

f+t <(£2-,-£2„)( _ -/(£2p-Q,+2taUp_,)(
fee-ia>p~q'ei(ap-Oq + tOp-q)Xo=,.

J—t Qp - Q, + (op_q

1.5 Corollary. Under the assumptions of Theorem 1.2 we find

(cp, w(-t, t)A) -y fT^p f'dx0jd3p d3qh(p - qX^-^o

X (*, ê+(0, -p)yoe-(0, cj)^^ C„(p - 9)a) + F^|p J"rf3p rfty_(p - q)

x[(p, ê+(0, -p)yo0-(O, ,)(-,>fcll
l(np-n,)( _ ,-(Q„-Q,-2<0?-,)» /(Qp-Q,). _ -;(Qp-Q,+2o>p_,)f

Qp - Q, - (up., Qp - Q, + a»p_ta,
C0(p - -7)AJ

+ F7^ \d3pd3qh(p-q)U, 2 Ö+(0, -p)yye-(0, q)ÌJt^—^

/e-i(--p---,)- _ e/(ß,-Q,-2a>Pta.,)/ e/(Q„-Q,); _ ^-.-(Qp-Q,,+2-u„_„).\ x

X 1

«„-Q,-*,-,
+

n,-o,+ «,„_,
)C^ - q)A)

1.6 Theorem. For any two one-electron states cp, A e L <8> D rf-e vacuum
polarization counterterm yields

(cp, wA): limO-5i'(0, w(-t, t)A)
(—?oc

F^O-^|rfVrfV(p-ç)ô1(Qp-Q,)

X U, Q+(0, -p)yoe-(0, p) ^SL C0(p - q)A

Proof. It is to be shown that all the summands in Corollary 1.5, except the
first one, disappear in the limit t—*¦<*-*. This follows from the Riemann-Lebesgue
Lemma (using Remark 1.4) cf. e.g. [7] Lemma 4.1 pg. 216. As to the first
summand see [1], 6.5. q.e.d.

1.7 Corollary. For any two normed one-electron states cp, A e L <8> D the

vacuum polarization counterterm yields

ie f
(cp, wA) ~ F^== J d3p d3qól(Qp - Qq)(<p, 0+(O, -p)y„0-(O, q)CQ(p - q)A)

assuming that F • m2 ~ 0.
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Proof. The difference between the two expressions has absolute value

ie Ç F - m

V^ J d3p d3q
(p-q)2 + m2

Ó'(Qp " Qq){4>' 0+(0' -^^o0(°' ^Co{P - ?)A)

<F -m2
ie

jd3p d3qô\Qp - Q,)(0, 0+(O, -p)yoe-(0, q)C0(p - q)A)/2ji.
F • m2(cp, sA) (cf. [1] 6.6)

~0 since cp, A are normed and F ¦ m2 ~ 0. q.e.d.

1.8 Lemma. The condition that F > 0 be infinite and ln (m2 • P) be finite
implies m2\nP to be infinitesimal.

Proof. m2P is finite since ln (m2P) is finite. The infiniteness of P then implies
ln Pip ~ 0. Hence m2 ln P m2P ¦ ln P/P ~ 0. q.e.d.

1.9 Remark. Setting

Da I P2 5^
F:=C=— In—5 + ln4

3jt \ M2

yields (cp, wA) — C(cp, sA) ~ 0, assuming that ln (m2P) be finite (cf. 1.8 and
3.18). Since F is positive it determines a unique OF such that F £™=1 (OF)" i.e.
OF F/1 + F With this choice of OF the vacuum polarization counterterm (cf.
1.1) induces the compensation of -C(cp, sA) by (cp, wA) (for suitable cp, A cf.
1.7).

2. The fermion mass renormalization

2.1. A fermion selfenergy contribution

Let

e(—t, t) : (ie)3 dx0 dy0 dziX d3x d3y d3z

I 1- 1
3

: 0(*o, Jf)y^0(*o, x)BXd, x)Bv(yl), y)@(y0, y)
x yv'0(y.., y)Ôkzo, z)ypCp(z)Q(zxx, z):

be the summand of the 5-matrix U(-t, t) (cf. [1], 5.7 and 5.8) corresponding to
the Feynman graph.

A straightforward evaluation leads to

2.2 Theorem. For any 0-finite time interval [—t, t] and any two one-electron
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states (p, A e L <8> D> we get the selfenergy contribution

(cp, e(-t, t)A) -o -e3 rfco rfyo dz0 \d3pd3wd3q ldk0 \dq0 ldu0

11 1
ei(Op-q0-U(,)x0 e--(-<?o-"o+*o)>o e'(kt

2-K 2-jT 2k

'^ê+i°'-p)q2-ql+)m2-iel

(p-q)2-u20 + M2-ieH(P q)Yßp2-k20 + M-is

(2^e-(o,w)^.xh(p)Vp7^m@ (°- w^7rVZÄV2Cp(p-w)A

2.3 Remark. Theorem 1.12 of [1] can be refined in the following way:

r e-ipa<,x(,-y0) g-'Oppco-yol

~2 2~,—2—rdp0 Jti-
J p2-pl + I~2 •"m — ie

where cop: \'p2 + m2 — ie is the root with positive real part (e>0). This is

proved using the residues calculus.

In analogy to 1.3 one has

2.4 Lemma

dxA — j—J-, J-.œq2-qX
'" A.i(Slp-qo-Uo)XQp-i(-qo-uo+ko)yo

2 ~e
m — is

2jt K
¦ + ¦

q2 - (Qp - u0)2 + m2 — ie
'

to'q

g'X-taUj+Sta.p-t.oH'-.yo) e-ìia>'q+Sìp-uoKt+yo)

(-w; + Qp-u0) (oj; + Qp-u0)
ei(£lp-k0)y0

In order to further evaluate the result of Theorem 2.2 we need the following
straightforward consequence

2.5 Corollary and definition.

[ rf-ïo [d3q [dur, fd40e'<^-*.-"o)*oe-.(-4o-Ko+*o)yo

X
h(q)h(p-q) M + u^-p^-er

\8ppYp / „ \2 ,,2 1^2 -Yliq2-ql + m2- ie °"M "* (p - qf - u20 + M2 - ie

{2kZ(Qp, p) + jt~(Qp, p, t, y0)Xap-ko)yo
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where we define

J lcoq \(oq + q0 -(oq + q0/

M+po qwp q
(p-q)2-(po-qo)XM2-ieYt'

Jd«^o92_?2 + m2_.£^r,(/,_?)2_(po_9o)2 + M2_/£r,
anrf

x f Kq)h(p-q) /e'f-^+foK'-y») e-«(»^o)(^WK
s(p0,/M,yo) rf3grfgo —-7— 77—;—J coq \ - coq + q0 œq + q0 /

M+fr^iUfa-p—q
8»^(p-q)2-(p0-qc.)2 + M2-iey»

(for co'a, cf. Remark 2.3).

2.6 Remark. Theorem 2.2 and Corollary 2.5 yield

(cp, e(-t, f)A) -e3 ï dy0 \ dz0 [d3p d^—^e^^-^X^1^-^
J-t J-, J (2k)

x (<*>>

TT^yâ 0+(O, p){2kZ(Qp, p) + ^S(Qp, p, t, y0}

sr ¦ M+^'P TgQ'u 7K-).r.., s
1 /S/» v

1
^, u\xw ^7 h(P)yp^-f2&(0,w)^-fr2C(p-w)A)

For the evaluation ofZ(Qp,p,t, y0) we need

2.7 Lemma. For -t<y0<t we have

e,(-^+^-Q;_,)(,-yo) m 4 q;_„p g

^-^ + Qp-q;-,^"^ 2q;_, r"

j LX0 co'q + qQ 8"^ (p - qf - (Qp - qQf + M2 - ie 7"

2kì

q ' 1Ü \y -t) V"p
e-i(-o;+n;_,+Qp)((+jj0) Af + —Qi.

o>; + q;_, + Qp
g»"y»

2q;_, r"

Proof. By residue calculus.
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2.8. Corollary. For—t<y0<t we have

r h(q)h(p-q) fe'(-«i+Q,-«¥-.X'-»>
E(Qp, p, t, y0) Ini d3q yq) ^ 11 T—g^J coq I - a>q + Qp - Qp_,

M +-QX, p q- e-i-(°>i+p;-«+q,X'+*J

2q;_, '" (o; + Qp_, + Qp

2Q' r"

>1 similar argument yields

h(q)h(p-q)
2,(Qp,p) Kild3q-

-< + Qp-Q;_/-y" 2q;_,
1 M + -J2^rP—f

^ + Qp + q;-/""7" 2q;_, 7"

2.9 Remark. The summand of ($, e(—t, t)A) containing H (cf. Remark 2.6)
thus becomes

?3f dzj dy(x[d3pd3w-^—;em^-a-Zn)e-iQi^-za
J-, J-, J (2k)

^' (2k)3>2®+^0' ~P)n2jTil d34x „, (2k)

ei(~OA-q+np-a-^)u-yu) M+QXr-p—q
-< + Qp - q;_, g""r" 2Q^ y"

e-;(oji+n;ta,+QPx.+y„) M + -ta^^^ç—r~
co; + Q;,, + Qp ^7" 2Q^ y"

h(q)h(p -q)._M -t-J-fogC'u tu)j f

Xh^Yp(2Kf]2& ^>wi\2KrXCf'^P~W">A

which after breaking up the integral /'_, rfy0 into /5, rfy() + J\ rfy0 can be integrated
elementarily yielding an explicit but rather complicated elementary formula.
Applying residue calculus with respect to the d3q integration yields a 0-finite
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value (depending of t) whose O-standard part vanishes in the M(,-limit t-*<*>, by
the Riemann-Lebesgue Lemma.

Now we turn to the summand of (cp, e(-t, t)A) (cf. Remark 2.6) containing
Z(Qp,p).

2.10 Lemma.

2(Qp, p) J dt [d3v dv0h(v - tp)h(v + (1 - t)p)

8mtY" [„2 -vl + t2M2 + (1 - t)m2 - ie]2
Y"

Proof. A straightforward computation using in turn Feynmans identity
l/ab Jò dt(l/[a + (b — a)t]2) and the substitution v — q + tp. q.e.d.

2.11 Remark. Using the facts Zg^y^y., 4 and ^g^y^y-, -2yv yields

2(Qp,p)= j dt\d3vdv0h(v-tp)h(v + (l-t)p)

x
4M -2fonr)- 2(1 ztW£rp)

[v2 -vl + t2M2 + (1 - t)m2 - ie]2 '

which can be rewritten in the form

z(Qp,p)=frfrf rf-, u2(l - f2)(M 7^+,2(M(! +2° 'ir^P ^ Jo W) J (u2-ug + f2M2 + (l-0m2-/£)2
where G(f, p) ç R3 is the support of the function

v^h(v-tp)h(v + (l-t)p) (cf. [1], 6.17).
Since 0+(O, —p)(M —Qprp) 0 the operator ~Z(QP, p) contributes in (cp,

e(—t, t)A) (cf. Remark 2.6) only by

c(Py.=i[ldt[ d3v[dv0t2 2M(!V):JhrT2 ,2Jo Jott.p) J °(v2-v20 + t2M2 + (l-t)m2-ief
which in turn can be split into

c

where

c

(p) 2Ì (cx(t,p)-c2(t,p))dt
Jo

< r J3 r, Af(i+o!(f,p)= rf3U <*%,.2_„2,,2'2M2 + (1 - t)m2 - ief
and

c2(f'p)=L/vL è°ôRw0m2 — j'e)2
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Residue calculus yields

r dv» i
J-, (u2 - vl + t2M2 + (1 - Om2 - /e)2 (2a>;(r))3

where io'v(t) \lt2M2 + (1 - f)/n2 + v2 - ie is the root with positive real part (cf.
also 2.3), and

r "o ^o
0

J__c (u2 - vl + t2M + (1 - t)m2 - ief
Hence

.[ J3 M(l + t)
cx(t,p) 4m\ d3v y '

Jc(,,n) (2ü)v(t))~

c2(t,p) 4m\ d3v 7~r~r3

2.12 Lemma. For a finite p eU3x) we have

cx(t,p)~cx(t,0) (O^t^l).
Proof.

\cx(t,p)-cx(t,0)\ 4m* j3„.„__ Li\ rfV
Jg(i,p)^c(,.o) I(2co'v(t))

where G(f, p) — G(t, 0) is the symmetrical difference

'i M(l + t)
it

„IW\BVlL»ll (2 II" II)
=s4jt d3v '-

-,

since G(t, p) - G(t, 0) ç B°P+npnWp-\\Pn (for B" cf- 3-7)

(-P+IIPII .2 J p + m ll

4^M(l + 0 4^-—^ 2^2M(l + 01n-^^~0 q.e.d.
Jp-npii (2r)J F - ||p||

In analogy to classical Q.E.D. one gets

2.13 Lemma. For finite p e U3X) we have

| dtcx(t, p) ~ 4jr2i'M(ln P + R)
Jo

where P is the UV cutoff and R is a finite real remainder, independent of p.

2.14 Lemma. For finite p e U3X), 0 < f < 1, we have c2(t, p) c2(l - t, p)

Proof. Using the symmetry between G(t, p) and G(l — t, p).
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2.15 Corollary. For finite p e U3X), we get

i
c2(t,p)dt~0I

2.16 Theorem. For finite p e U3X) the only contribution c(p) of 2(Qp, p) in
(<p, e(-t, t)A) (cf. 14) amounts to c(p) ~8k2ìM(R + InF) where P is the UV
cutoff and R a finite real constant.

Proof. Cf. 2.11, 13 and 15.

2.17 Corollary. For any finite time interval [—t, t] and any two one-electron
states cp, A e IL <8> D with finite norm and finitely bounded support the selfenergy
contribution (cf. 2.1, 2) amounts to

(cp, e(-t, t)A) ~ -e3 i dy0 [ dz0 \d3p id3w [rfA:0—^^-^V**0-""020

x (*> TT^yji ê+(0, -p){A + kE(Qp, p, t, y0)}

M+Jc^rT
\h{p)Yp jdx 0^(0'w) ökx c"ip -W)A)p2-kXM2-ie-^"p(2Kf2" v"' "'(2;r)3

where A : 2n • 8k2ìM(R + In F) is infinite but 0-finite,

Proof. Cf. 2.6, 9, 16.

2.18. Selfenergy counterterm

In order to compensate the infinite summand arising from A in 2(Qp, p) to
the fermion selfenergy contribution (cp, e(-t, t)A) (cf. 2.6, 16 and 17) we
introduce an additive 'selfenergy counterterm'

-ÔM: j@(0,x)®(0,x)d3x:

into the interaction hamiltonian. The constant (0-finite) factor ÔM is to be

determined in the following (cf. 2.20). The new Dyson expansion contains in
second order the summand

ô -1, t) - ifeoMÌ dxA d3x dy0 d3y

: &(x0, x)@(x0, x)&(y0, y)yßO(yQ, y) : C„(y)

corresponding to the Feynman graph.

/A straightforward evaluation leads to
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2.19 Theorem. For any two one-electron states cp, A e IL <S> D the selfenergy
counterterm induces in the 0-finite time interval [—t, t]

(cp, ô(-t, rjAJ-y-^poAtafJ"' dy0j' dzojd'pjd'wjdkoe^-^X'"-0^

' p2-kl + M2- ie
'x (cp, 0+(o, -p)_2_,2XA X(p)yPe-(o, w)cp(p- w)A)

2.20. Fermion mass renormalization

Fixing ÔM at the positive 0-finite, but infinite value

ÔM 4jre2M(ln P + R)

causes the infinite part of the selfenergy contribution to be infinitesimally closely
compensated by the counterterm contribution, for normed one-electron states in
__<8> D with finitely bounded support (cf. 2.17 and 19), i.e. it remains

(cp, (e(-t, t) + ô(-t, t))A) s- 0-standard part of

-e3[ rfy0[ dzAd3p[d3w[dk0-^ei«a'>-ka)y<>+(k-aM

1 /s+/n -,« v M + kvrV s
1

X (*' (art* Ô+(0' -p)jtE(Q" P> <> yo)P2-Mk^-iehip)Y(2k)3'2" v"' t,,"~y"p't""JU'p2-k2 + M2-ie'yt'"p(2Kf12
J_

(2^)3

which in the M0-limit t—>°° disappears (cf. 2.9).

x0"(°'w)7^^Cp(p-w)A

3. The vertex contribution

3.1. The vertex part

is the summand

v -1, t) (ie)3 j rfc0 dy0\ rfzo d3x d3y d3z

"Tl
¦ ®(x0, x)ype(x0, x)Bll(x0, x)@(y0, y)ypQ(y0, y)Cp(y)G(z0, z)yv@(z0, z)Bv(zo, z):

of the 5-matrix U(-t, t) (cf. [1], 5.7 and 8) corresponding to the Feynman graph.

A straightforward evaluation leads to
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3.2 Theorem. For any two one-electron states cp, A e I <8> D the vertex part
yields

(cp, v(-t, t)A) -c {^(p,
e

9/2 j dx0j dyQj dz0jd3p d3qd3w

x ldu0 dk0 dq0 — e<(^-'?o-"o)xo _____ „-(««-**>» __ e/(«.+*_.-Q.)-*
J 2j2jt 2k 2k

h(q) M + Uerp-*-tr
q2-q20 + m2- ie Y"

(p - qf -u20 + M2- ie

M -\--kfrr-W -T

x0+(o,-P)(-gßß)-2 ,wl2 1xl>,-_A.«xZ7j2_i^(p-<i)YV

(w-qf-ko + M2-ie h(w - q)yß& (0, w)Cv(p - w)A

3.3 Corollary. For any two one-electron states <p, A e IL <8> D the vertex part
yields

(cp, vA): 0-\\mO-st(cp, v(-t, t)A)
t—»oe

e—20-st(<p, jd3p d3wô\Qp - Q„)0+(O, -p)

ie

(2k)

x Av(p, w)G~(0, w)Cv(p - w)A

where

K(p, w) \d3q\dq0(-gßli) 2 2
J J q — q0 + m —

M + Qy-q^p q
^»(p-qfX^-qoY + M2-,^-^
XY^(w-qf-(^-q0f + M2-ieh^-^

3.4 Remark. Similarly to classical Q.E.D. we get

K(P, w) (-2) I dx\ dyld3qldq0h(q)h(p-q)h(w-q)

-2j>yv^ + 2(^yv> + ^Yv4) + 2M(yv(> + + - 2j) + (> + i/> - 2^)yv) -2^ - 2M2yv

fa2 - 9g + 2(q(px + wy)) + m2(l -x-y) - ie]3

The computation of Av(p, w) follows as far as this is possible the standard
versions, cf. [5], Appendix E pg. 315-321. Let K(p, w) for fixed p, vv e IR3 be the
support of q i-» h(q)h(p — q)h(w — q). Thus Av(p, w) can be written in the form

K(P, w) -2frf* prfy f d3qf fl^j0 ,.3dq0
Jo Jo Jk(p,w) J-oo (q - qt, + 2(qr) + s - lef



Vol. 60, 1987 More nonstandard quantum electrodynamics 895

where 3PV is a polynomial (quadratic in q), r px + wy and s m2(\ — x —y) > 0.

Notice that the denominator is equal to (-(q0- r0)2 + (q - rf+ \r\2 + s - ie)3
where |r|2 r%— ||r||2 (r, r). Using residue calculus one proves:

3.5 Lemma. For s > 0, it follows

3 1r+oc rf<7o

X (q2-ql + 2(qr)+s-ief~ m'.2(qr) +s- ie)3 ~"~ 16((q - rf + \r\2 + s - ie)5'2

M f+oe lodqo .3_ Tq
J X (q2 -q2 + 2(qr) + r - ;^3 ""^h- - -^ - '-'2 - - - -^5/2s-ief I6((q-rf+\r\2 + s-ief

-3 Ini
(q2 -ql+ 2(qr) + s - ie)3 116((9 - rf + \r\2 + s- ie)5'2

-1 J ]
16 ((^ — r)2 + |r|2 + .s- - ie)3/2J

Which yields the following

3.6 Corollary. For finite p, w, r e U*x), s>0, \r\2 rf, - r2 > 0 we /zaue

a) L(p,.)^L^0((72-(7?) + 2(9r) + ,-/£)3~^2^MF

b) U,.) 'L ^° fog - ql + 2(9r) + 5 - ie)3 2 *
s + \r\2 '

v 0, 1, 2, 3

:) f rf3J
Jk(p,w) J-

C) rf3<? rfÇoT-2 2 „/ \ i ^5~n;r ta, I..2» ^V
«(p.,,) ^-oc ,u(^-9é + 2(9r)+j-je)J 2 5 + |r|

d) rf3<7 rfjjoz^ 2—aTT—, TT5~X2 [\ l2 + /L (/?, w, r, 5),
J^.*,) *J_. ™(q2-ql + 2(qr)+s-ief 2 s + \r\2

A ' ^ rf

j L2,3

f ,73 f+00/7 ?° i 2
HI in

> U,w)aqLaq°(q2-ql + 2(qr)+s-ie)3 l" s + \r\* 6

/L0(p, w, r, s)
where

¦s)5'2

and

» -,
3 f (<li-r,)d3q

Lj(p, w,r,s) 2K-\ X'tall6JK(p,w)((q-rf+r\2 + i

...if (q-rfd3q
L0(p,w,r,s) 2K--\ w '

16 Ja:(p>W) ((-7 - r)z + |r 2 „\5/2+ 5)
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3.7 Remark. For finite values of p, w, r, s with s>0, |r|2>0 we have

L^'w'r's)~2nh\K(k2^rXsr for v=(U>2'3

which we will denote by L(r,s). (Here Bp is the ball with radius P UV cutoff
around 0.)

Proof. First notice that

f fa-r,)2rf3g
o

JB»P+,<ta,((?-A-)2 + kl2 + *)5/2

for any finite « of 1 3= 0.
This implies

L2(p,w,r,s)~2K—\16jB»(<72+|r|2 + s)5/2

2_^„ „ \2 /„ „ \2 /-_ „ \2The case v 0 follows since (g — r) (g, - r,) + (q2 — r2f + (q3 — r3) q.e.d.

From 3.6 and 3.7 we can get

3.8 Lemma. For finite values of p, w, r, s with \r\2 > 0, s > 0 we have

&*(*, +, é)
dq\dqiXj-2 ^——

Jkìp.w) J (q -q0 + 2(q,r

X 1
:

2 5 +|r|2

—, (cf. 3.4))+s- ie)3

'-2^yJ + 2(tyvil> + ^yJ)
+2M(yv(jl> + 1/,-2/) + (/ + ^- 2/)yv)

_-2/yv/ - 2M2yv

/ K
-2iyv\-gvV) — + 2L(r, s)

Notice that replacing K(p, w) by Bp would not change this infinitesimal
approximation.

3.9 Corollary. Setting Q: p — w and using r =xp + yw, s m2(l—x—y)
for 0-sy < 1 -x < 1, 0<x < 1 (c/. 3.4) Lemma 3.8 y/e/rfs

"(P) rf39 rf<7o
J/s:(p,iv) J

^vO, ^, è)

(q - q,x + 2(q, xp + yq) + m (I -x-y) — ie)ju(w)

K 1

2 ra2(l -x -y) + \xp +yw|2

>V(4M2- 4(x +y)M2 -2(x + yfM2 + 2 \Q\l(l - (x + y) + xy))

Xü(p)- +yv$-2M(y-x(x+y))
-$yv-2M(x-y(x+y))

u(w)
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Jl

-2iyvy-gv0 — + 2L(xp+yw, m2(l -x - y))jü(p)u(w)

where

\Q\l Q2o+Ql + Q22 + Ql
\Q\ì -Ql-Qì + Q22 + Qì
\Q\22 -Q2o + Q2-Ql + Ql
\Q\ì -Ql+Qì + Qì-Qì

Proof. Apply £u(w) (\p + @)u(w) (M + (j))u(w) and ü(p)\p û(p)(j> - $)

ü(p)(M-Q).

3.10 Remark, a) Using aMV : |(yMyv — yvy^) it follows

Yv0 -ZQ^ + Qvgvv

0yv +2ßMa..v + Qvgvv

b) Using p0 Qp, w0 Qw it follows

\xp +yw\2 (x + yfM2 - xy \p - w\2

3.11 Theorem. For v 0, p, w finite, 0 -£ x < 1 anrf Q<y<l— jcsl we /taue

u(p) d3q\dqa—z =—— j- ——\u(w)
Jk(p,w) J (q2-q2o + 2(q,xp+yq) + m2(l-x-y)-ief

K2 1

2 m2(l-JC-y) + (jc+y)2M2-xylßl2

Jy0(4M2-4(*+y)M2-2(*+y)2M2-2|ß|2(l-(*+y)+*y))j
Xu(p){-2MZQ^(x+y)(l-(x+y)) 1"^
-2iy0( - — + 2L(xp + yw, m2(\ - (x + y))))ü(p)u(w)

assuming that Qp Q^,, where Q :=p — w,

\Q\2 -Qì -Qì-Qì -((Fi - w.)2 + ÌP2- w2f + (p3- w3f).

Proof Straightforward from 3.9, 10.

In order to approximate (cp, vA) (cf. Corollary 3.3) one uses the Taylor
development of the above expression as a function of |<2|2. regarding -SôpOpo as

an independent parameter; then one has to integrate over dxdy (cf. 3.4) and
d3p d3w.

We start with the summand of the 'constant term' containing E;Uo Qn^t-o.
corresponding to an additional magnetic moment. In analogy to classical Q.E.D.
(where m 0) we have



898 Robert Fittier H. P. A.

3.12 Lemma.

dx\ dy
Jo Jo

(x+y)(l-(x+y)) 1

2jl/f2 r..A2-m2(l-x-y) + (x+yfM2 2M

3.13 Corollary. The 'constant' summand of (cp, vA) depending upon 2_(pM —

w„)Opo is given by

^L fa, jd3p d3wó\Qp - qjö+co, -p) 2(p,- %Ko

*à%@~i0'W)Co{p-W)A)

(where a e2/4x) which gives rise to the anomalous magnetic moment of the
electron (cf. [5] pg. 320).

3.14 Remark. Now we turn to the remaining summands in the constant term
(IÔI2 0) of the above mentioned Taylor development:

n2 ri ,i_, 4M2-4(x+y)M2-2(x+yfM2 f1 Xx
y0i — \ dx\ dy 2/~ - ' \s——-——-• 2y0i dx

2 J0 Jo ' m2(l - (x + y)) + (x + yfM2 ro J0 J0

jr2 1 '
6

+ 2 ' 2JT16 JBo ^ (92 + m2(l - (x + y)) + (x + yfM2)5'2) dy

(cf. 3.11 and 7).
Introducing polar coordinates instead of qx, q2, q3 and substituting x

(u/2) + v, y (u/2) - v and integrating over dv (cf. 3.12) yields

,k2 f1 4M2«(1 - u) + 2MV
y0i— rfu

- 2y„«W Jo duI rfp
(p2 + m2(1_M) + M2M2f2

+ ro' y

m2(l-u) + M2u2
-1 r»p .-A, „2

6

,.r2.
iy0( L++ L-+ ¦

JT2

where L^_ and L_ denote the first two factors of y0i respectively. Explicit
integrations yield

3.15 Lemma

L+ + L_ + %- ~ k2Ì2 ln \ In 2F + \ ln M2 - \
6 \ m

3.16 Remark. Given any finite value L and any infinite (infinitesimal) value
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for F (for m2) then there is a infinitesimal m2 (infinite P) such that

-L~L+ + L_ +
K2

6

That L be finite is equivalent to ln (m2P) being finite. The latter condition we
want to hold once and for all.

3.17. Spurious charge renormalization

Choosing F and m such that L is small or even infinitesimal there is quite
little or no corresponding charge renormalization at all necessary.

In order to evaluate the term which is linear in |Q|2 in the above mentioned
Taylor series we need.

3.18 Lemma

i) 2\ dx\ dy-
Jo Jo ¦

l-(x+y)+xy 1 /21nM_U\
m2(l-;t-y) + (;t-l-y)2M2 M2 \ m 6/

f1 Xx 4M2-4(x+y)M2-2(x+yfM2 1 /2, M 1

b)Jon dy
(m2(l-x-y) + (x+yfMy '^Ju^m'Z

2 .j3 2
q xy a q n22X\räy[

16 2 Jo Jo Jb?. (q2 + m2(l -x-y) + (x+ yfM2)7'2 2 • 2 • 6M2

Proof. By a chain of straightforward integrations. Thus one gets

3.19 Proposition. The coefficient of all contributions in ü(p)A0(p, w)u(w)
linear in |g|2 amounts to

,2 rl
2{'y°fWo dy

4M2-4(x+y)M2 + 2(x+yfM2 1 - (x +y) + xy
(m2(l-x-y) + (x+yfM2)2 ~Xy 2

m2(l - x - y) + (x + yfM:

-2iyo2\ dx\ dy2K—--\ -T-Jo Jo 16 2JB<)(flz +
q2xy d3q

(q2 + m\\ - x - y) + (x + yfM2)7

,2 1/4. M 1171
M2\ 3nm+6 6 6

2
1 4/, M 3

lYoX -TT2T In
M 3 \ m 8

This yields

3.20 Theorem. The combined contributions of the 'lowest terms' in p — w and
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\p - w\2 of (cp, vA) are

~yfzk*' jd3Pd3wôl(Qr - Q-)0+(°- -P)
3 I a -x 2. (Pu - w^°*02M2k@^' w^C^ ~ W>A

+ ^j=(<P, \d3p d3wôl(Qp - Q„)0+(O, -p)

assuming that cp and A are normed and have finitely bounded support and that

L~0(cfi 3.19).

3.21. The Lamb shift

We now have accumulated the theoretical and numerical results (cf. 1.9,
2.20, 3.20, [1], 6.21, 5.13) required to carry out the approximation to the Lamb
shift according to [6], 15.E.

4. A Ward identity

4.1. Definition

In order to compare E(/?) and Av(p, w) (cf. 2.5 and 3.3 resp.) we introduce
their respective slightly modified 'integrands'

1 M+p-=~tr
o(p, u) : - _ —2 - m2 _ - gtlflYfl — _ —2 - —2 _ - yp

and

Kip, w, u)
-1 M+jp-*~tc M +jn-—tc— ie

' -\u\2 + m2 - ie0fH"" -\p - u\2 + M2 - ie ,v -\w - u\2 + M2 - ie

By straightforward differentiation one gets

4.2 Lemma

do(p, u)
dpv

4.3 Lemma

K(p,p,u) for v 0, 1,2, 3.

r - r rx 4M — li) —

2(p)= \ dt\ d3v\ rfv0——2 —2—, X*' Jo Jg(,,p) J-« °(-\v\2 + t(M2 - \p\2) + t
4M - li) - 2(1 - t)j>

2M2 - (1 - Om2 - ief
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Proof. A straightforward generalization of the case M2 — \p\2 0 (cf. 2.10).
Notice that in G(t, p) only the space-like component of p is considered.

4.4 Remark. The contribution of

d3u\duoo(p,u) to l.(p)= \d3uh(u)h(u-p)\duQo(p,u)

corresponds in Lemma 4.3 to the contribution

dt\ d3v\ dv0-—r—o
Jo Jtt.-.P) J— (-\v\+t

where H(t, p) is the support of v^>h(v - tp) (cf. also 2.10 and 11).

4.5 Remark. Residue calculus yields

dv0

4M-2J,- 2(1 - Q/

P) ,-* v .(M2 - \p\2) + t2M2 - (1 - t)m2 - ief

/•¦Xa

i} L(||v||a-ug + t(M2 - |p|2) + t2M2 + (1 - t)m2 - i£)2

4;ri(2^ Of for WvW2 + t(M2-\P\2) + t2M2 + 0--t)m2^0

4^ tz—T, tt; otherwise
L (2co'(v,p,t)f

where (o'(v, p, t) : V||v||2 + ^M2 + \p\2) + t2M2 +7J- 0™2 ~ *£)2 is the square
root with positive real part.

u0rfu0
Ò) L(||w||2-vg + t(M2 - |p|2) + f2M2 + (1 - t)m2 - ie)

0.

4.6 Lemma. For any finite p e U4 and for any 0-infinitesimal p - q¥=0 the

expression
1 fdA I"

div f dv
4M -2j) -2(1-0/

lP - «I Jo Ug(,,P)-h(,,p) J— U°(-|u|2 + f(M2-|p|2) + f2M2 + (l-f)w2-/e)2

~Jo(».,)-H(r.,)d "-L^0 (-|w|2 + f(M2 - |?|2) + f2M2 + (1 - 0/n2 - J£)2J

« infinitesimal.

Sketch of the Proof

Notice that G(t, p) — H(t, p) is the 'symmetrical difference' with the
appropriate signs for the contributions of the corresponding integrals.

According to Remark 4.5 we have

/: dv0 4M-2X 2(1 -1)
i

4kì

(-\v\2 + t(M2 - |p|2) + t2M2 + (1 - t)m2 - ief

(4M -2(yxvx + y2v2 + y3v3) -2(1 - t)t>)=:I(v,p, t)
(2w'(v, p,t)f
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Now

/(_¦):= f I(v, p, t) d3v - ï I(v, p, t) d3v
Jc(l.p)-H(t,p) Jc(t.q)-H(t.q)

can be viewed as an integral over part of the \p -<7|-thin 'surfaces' of two balls
both of radius F but with different (finite) centers. l/io'(v, p, tf can be approximated

by 1/F3 with error 'of order' 1/F4. This implies that the 4^V/-part and the
2(1 - t)j>-part contribute in I(t) 'of order' \p - q\. (P2/P3). Thus their contribution

in 1/1/7 -q\ Sodtl(t) is of order 1/F ~0.
As to the y,u,-parts (i 1, 2, 3), they cancel each other in /(f) and /(1 - t) up

to an error 'of order' \p - q\ P3/P4. Thus again they contribute at most of order
1/F~0in

1 f1
] : dtl(t).
\p-q\ Jo

q.e.d.

4.7. A Ward identity

For finite peR^we have

~iP-~K(p,p)
dPv

Proof. Since

2(p) rf3w duQo(p, u) + d3u du0o(p, u)
Jßp J-» Jc(l,p)^B°p J-x

we have

32(p) r J3 r a, 3o(p,u) i- + hmfdu du0 "

!°. J-=-3pv JBo„ J.» c5pv Avp^oAvp

xj rf3w duQo(p + Apr, j.) —I rf3« rf«o^(Fta«)|

~ rf3M du0K(p>P,u) (because of Lemma 4.2 and 4.6)
JB5, J-oc

~Av(p, p) since e-yO (cf. 3.3 and 4.1). q.e.d.
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