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Phonon frequencies and line widths at valence
fluctuations: a simple vibronic model

By G. Solt') and H. Beck

Institut de Physique, Université de Neuchatel, rue A.-L. Breguet 1,
2000 Neuchatel

(1. L. 1987)

Abstract. It is shown that softening and broadening of the “phonon” line in the response
spectrum of the coupled two-level atom—phonon system shows similar features as those observed for
the intermediate valence Sm 55 Y, ,5s S compound. An exact calculation of the phonon response, at
different values of the atom—phonon coupling and at finite temperature, is presented for the two level
atom-phonon (vibronic) system and an analysis of the modes, together with the shift of the spectral
lines, is given.

1. Introduction

The pressure induced phase transition in SmS results in a metal of
intermediate valence, with coexisting Sm** and Sm>* states for the metal ions [1].
A similar phase occurs at normal pressure in mixed SmS-YS alloys [2] down until
200 K; further cooling leads to a semiconducting state with predominantly Sm**
ions [2,3]. Since the ion Sm** is larger than Sm**, it was expected that
longitudinal phonon modes implying local compression-decompression of the
metal ions are coupled with the valence fluctuations in the intermedite valence
state, where Sm®* and Sm>* states are present with typically equal probability.

Experiments [3-5] on Smg5Y,sS indeed showed anomalous phonon
behaviour as compared to similar but stable valence compounds, namely

(i) the LO branch lies everywhere below the 70 branch and has a deep
minimum at the zone boundary L point (§ = w/a(111));

(ii) the LO phonon peaks are broadened, and the more the nearer they are
to the L point, where the width is so large that ‘“‘scattering can be seen
all the way down to LA phonons” [5].

The consequences of a coupling between the electronic (f-shell) and
vibrational modes have been treated by different theoretical techniques [6-11].
The two main arguments underlying these theories say that

(1) the typical period of valence fluctuations, as deduced from a number of
spectroscopical data [5, 12], is T~3 x 10™"s, which is a typical zone
boundary phonon period in this and similar compounds;
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(2) the most anomalous LO(L) mode is precisely a vibration of S°~ planes in
antiphase, compressing (decompressing) the Sm ion planes sandwiched
in between.

The phenomenological approach includes lattice dynamical (shell) models
with a “breathing deformability”” parameter [6, 7], by which the phonon softening
is well reproduced; on introducing a relaxation term [8] the broadening can also
be described. The partly “ab initio” approaches start from the Anderson model
completed with phonon interaction terms [9-11] and, by use of perturbation
theory and of some parameter fitting, lead to reasonable agreement with
experiment.

With these previous calculations in mind, we still find it instructive to study
the phonon response of an exactly soluble coupled system: the two-level atom
interacting, via a polaronic coupling, with a phonon mode. This model has
already been used [13-16] to explain certain aspects of the intermedite valence
state, like polaron-like behaviour of the excitations. More generally, the
“vibronic” behaviour of coupled electronic and vibrational motion in molecules
and the mathematically equivalent problem of a 2-level atom in radiation field
have an extensive literature [17-23]. Yet, the question how the complicated
dynamics of this relatively simple system appears in a one phonon absorption or
emission experiment, e.g. in neutron scattering, has not been studied to our
knowledge. The advantage of this model is that the frequencies and eigenstates of
the system can, for all values of the relevant parameters (electron excitation A,
phonon frequency w,, coupling A), easily be determined numerically [17] so that
the calculation of the spectral function related to a particular experiment becomes
straightforward [18]. We use known methods in dealing with the 2-level
atom—phonon system, novel is only the calculation of the spectral intensities
(oscillator strengths) relevant for the phonon spectroscopic (neutron) experiment
and the form of the spectrum at temperatures comparable to #iw,. The results
lead to a very transparent interpretation for both the shift in phonon frequency
and for the observed broadening as a function of the relevant physical
parameters.

2. Phonon response of the two-level atom—phonon system

The LO(L) vibration in a NaCl-type lattice is the same as the zone-boundary
mode in a diatomic chain, where the lighter anions (each standing for a (111)
plane in the vibrating NaCl structure) oscillate in antiphase in adjacent cells and
the metal ions (planes) are immobile, as seen in Figs 1a—1b.

We assume now that there is a mobile electron in each “doubled” unit cell,
corresponding to the g = /a wavevector, and this electron prefers to hop from
the momentarily compressed metal ion to the decompressed one. (In the absence
of vibration we have a “fluctuating” hopping leading to the ‘“homogeneous”
intermedite valence state). This electron hopping, correlated to the lattice
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Figure 1

Vibration of the § ~ planes in the longitudinal ¢ = w/a(111) mode for the NaCl-type SmS (or
Sm,Y,_,S) lattice. The small filled circles are metal ions, the anions (big circles) oscillate along the
(111) direction; a) the elementary cube (elongated on the drawing, to point out the planes in phase);
b) the equivalent linear chain.

vibration, is described by the Hamiltonian [14, 15]

H = gy(cics + cpep) — %AO(C:{CB +chca)
A
+ hw,b b — 3 (chica—chep)(b™ +b) (1)

where ¢4 and cj create electron occupation at sites A and B, b™ and b are
phonon emission and absorption operators and €,, w,, A, and A are the energy of
the occupied level, phonon frequency, hopping amplitude and coupling constant.
This Hamiltonian describes a vibronic system. Since the electron number is fixed
to 1, the first term can be omitted. The great simplification here is obviously that
hybridization via the conduction band is replaced by the hopping between atoms
of integer valence, and also that only one single phonon mode is taken into
account. The dynamics of this system is still not trivial. It is known [13-15, 17]
that for A,<< A, the eigenstates are superpositions of coherent phonon states: the
lattice follows the electron hopping (anti-adiabatic limit). In the other limiting case
A, >> A the intermediate valence state is combined with given phonon number
states. In our case A,/fhw,~1 so that for the reasonably strong coupling
Alhw,~ 1 we are between these two limits. With pseudospin operators S; = 30; we
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can rewrite equation (1) as

H=-AS,—AS,(b"+b)+hwb*b (2)
where o; are the Pauli matrices and the state |3) =c} [0) =|A) describes electron
occupation at site A, similarly |[B) =|-3). An equivalent form, obtained by a
rotation,

Hp = AyS, —AS,(b™ + b) + hiwgb™b (3)

is known [22] as the Rabi Hamiltonian for an atom in a monocromatic radiation
field. With the unitary transformation of Shore and Sander [17] we get

- A
H=UHU"*=-CA,S, +hw0b+b—§(b+ +b) (4)
where
1 1 C
V2 -1 C c =cos (wb™b) (5)

Now, H can simply be diagonalized in a finite space of phonon number states
(0=n=<N), since the eigenvalues ¢’ of S, are good quantum numbers with H.
We have

N
Hu}o’v = EU'V‘I])O"V = Ea’v IO’) z CE‘ta’V) |n> (6)
n=0

(o' =#43,v=1,2,...) and for the eigenstates of H

\/—2 CY (20" [2) + (=1)" |-3)] In) (7)

The quantities E,.(d, q) and C(""’)(d q) depend on two parameters d = Ao/ w,
and g = A/hw,. The ground state is always a o' =3 (or vy .) state, and we study
now the nearest 1 _ states in detail, since these are excited, from the vy, ; ground
state, in a phonon absorption experiment.

At weak coupling d>>q* the ground state ¥, ,~(|A)+|B))|n=0) is
symmetric in the electron occupation at A and, B with no phonon present; the
first o' = —3 excited state y_ ; (for d > 1) is the same symmetric electronic state
but with |n = 1), the energy of excitation being AE_ ; ~ fiiw,. The symmetry of
Y_, is clearly due to the “phonon” factor (—1)” for n =1, compensating the
“electronic”’ antisymmetry (via the factor 20') of all ¢’ = —3 states. In return, the
antisymmetry in A= B “remains” for the second excited state ¥_,~(—|A) +
|B)) |n =0) having the energy AE_ ~ Ag.

For strong coupling d << g® the ground state is approximately ¥, ,~
|A) |coh - AO) + |B) |coh - BO), where |coh - AO) is a coherent, by the electron
occupation at A “displaced” vibrational ground state,

— it (T
coh - AD) = e~ 720" =) p = () = ¢~ V24 }n‘,@\-/—’;!)—m) (8)
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Figure 2
Energy of the first two o' = —3 excited states, measured from the ground state energy E.,, as a

function of the vibronic coupling g = A/hw, for d =2.0. The character of the modes changes with g,
as described in the text.

and |coh - BO) is the same with g— (—¢q). The first o' = —3 excited state is

approximately ¥ _ ,~(—|A) |coh-A0) + |B) [coh- B) with excitation energy
AE_ ~ Age~ V24" [18] and the second, ¥ _ ,, is the same but with “displaced”
one-phonon states |coh-Al) = (b* —g/2)e” D¢ =% | =0) and |coh- Bl),
with the energy AE_ , ~ hiw,.

The result for AE_ , and C°™ for arbitrary coupling strength are illustrated
in Figs 2-3.

Note in Fig. 2 the change in character of the excitation as the coupling
increases: the lower “phonon” branch transforms into the soft vibron-excitation
and the phonon-free antibonding electron state goes over, in turn, to the coherent
one-phonon state. Figure 3 shows the coefficients C{°™ for the ground state at
weak and strong coupling, as compared to the coherent state limit C, ~
(q/2)"/Vn!. i

In a phonon absorption neutron experiment at momentum transfer kK = g5
the observed spectrum is proportional to the function

D(E) = (u(t)u(0)) £ )

where u =b"* + b, u(t) is a Heisenberg operator and { ). indicates the Fourier
transform of the quantum and statistical mechanical average. Simple analytical
approximation for D(FE), valid for a general coupling and for non-zero tempera-
tures could not be found. We calculate therefore D(E) numerically, in the
knowledge of E,., and C{™, equations (6—7). We note first that & = —2uSy so



Vol. 60, 1987 Phonon frequencies and line widths 565

1.0 t ' ' ' ' ' ‘ . T T T T T |
d=2.0 ,
og b == coherent limit e®'* §"/V/n _
\\ + weak coupling g=1.1
06 L \\ o sfrang coupling q= 4.1

B el S T | 1 1 1 1 | i}

o 2 4 6 8 1 17 1

Figure 3
The amplitude of states with different phonon numbers n in the composition of the vibronic ground
state ¥, (equation (7)) for weak (¢ = 1.1) and strong (g =4.1) coupling; d = 2.0 as in Fig. 2. The
state for strong coupling is nearly a coherent phonon ground state with “displacement” parameter
G=q/2.
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Figure 4
Transition probabilities (oscillator strengths) for the first two exicted o' = —3 states, with the energies

shown in Fig. 2, vs the coupling constant g. As in Figs 2-3, d = 2.0.
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Figure 5

Predicted intensity D(E) (equation (9)) in a neutron energy-loss experiment at 7 =#hw, on the
vibronic system, for four values of the coupling strength g; d = 1.6. At g = 1.4 the intensity of the
“electronic” transition (E ~ 1.8 fiw,) is still very small, in agreement with Fig. 4. Note the downward
shift and the broadening of the “phonon” line (I = (7 + 1)0(E — hw,) for ¢ = 0), until a wide band of
transitions appears for g = 1.

that it has matrix elements #J. only for 0" = —0'. For T «< hw,, the spectrum
consists essentially from two lines, corresponding to the two energy branches
plotted in Fig. 2, with the intensities (oscillator strengths) shown in Fig. 4.

Figures 2 and 4 show that with increasingly strong coupling the 1-phonon
peak (at ¢ = 0) goes more and more soft and a second, “electronic”’ peak appears
at higher energy (d > 1) with growing intensity. At strong coupling the soft mode
is very intensive and the other peak is stabilized at E = fiw,.

In our model, broadening occurs at T ~ iw, when, besides the ¥, ; ground
state, other initial states are also available for the system.

We note that, in Smg;s Yo25S [5], wo/2m=7x10"s, corresponding to
T/hw,~0.6. The spectrum D(E) is shown in Fig. 5 for T/hw,=1 for a few
values of the coupling constant g. The low frequency line looks broadened with
its centre of mass shifted toward lower (<w,) frequencies, as an effect of the
grouping of lines around the fundamental one, and both shift and broadening
increase with increasing g. We note that an estimate for g has been given [13] as

lg|/2~2.
Conclusion

For low temperatures, the neutron scattering experiment at the coupled
vibronic system should result in a two-line spectrum: the line at lower frequency
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has a pure phonon character at weak coupling and it goes over to a soft
antibonding vibron excitation; the intensity of the second, “electronic” (at g =0)
line starts from zero, but it increases with increasing coupling as the mode
becomes of mixed character. The energy of the low frequency line is less than
fiw, for all coupling. At T ~ fiw, this line looks as broadened, with its centre of
mass still shifted toward lower frequencies, due to a number of transitions with
nearly the same energy. Bearing in mind the experimental resolution washing
together closely grouped peaks, we can conclude that the phonon response of the
two-level vibronic system is similar to that actually observed for the intermediate
valence Smy 5 Y25 S system. However, no observation of the weaker, large-
frequency peak has been reported. An explanation for that can be the small
overall intensity for the LO(L) line [3-5]: in fact, the line shape of this
broadened peak is not known at all. Future experiments may show if the doublet
structure, present in our results and pronounced especially at lower temperatures,
really exists.
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