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A simple connection between the motion in a
constant magnetic field and the harmonic
oscillator

By D. Dehin') and V. Hussin

Université de Liége, Physique Théorique et Mathématique, Institut de Physique
au Sart Tilman, Batiment B.5, B-4000 Liege 1 (Belgique)

(5. TII. 1987)

Abstract. We propose a very simple change of variables enlightening the connection between the
motion in a constant magnetic field and the harmonic oscillator. The so-called kinematical and
dynamical symmetry algebras are explicitly constructed for the magnetic context starting from the well
known results on the harmonic oscillator.

1. Introduction

Since the contribution of Johnson and Lippmann [1], it is well known that
the motion in a constant magnetic field can be studied by using some typical
properties of the harmonic oscillator. Moreover when 2-dimensional space
systems are considered, the corresponding nonrelativistic hamiltonians have also
been recognized [2] as the generators of two nonconjugate 1-dimensional
subalgebras of the inhomogeneous symplectic invariance algebra.

With the event of supersymmetric quantum mechanics [3], both of such
physical and fundamental applications have recently been reconsidered [4, 5] with
the purposes of determining their symmetries and supersymmetries. On the one
hand, the harmonic oscillator is one of the simplest physical system admitting all
the symmetries displayed in the so-called ‘nonrelativistic conformal quantum
mechanics’ [6, 7] as shown by Niederer [8] in this journal. Such a system also
admits a maximal set of supersymmetries in N = 2-supersymmetric quantum
mechanics [5]. On the other hand, the motion in a constant magnetic field is
another very fundamental type of an electromagnetic interaction when charged
particles are concerned and its supersymmetric version has also been recently
discussed [4].

In this note let us draw our attention on a simple connection between both of
these applications with direct implications for the determination of their sym-
metries as well as their supersymmetries. Limiting here our discussion on

")  Chercheur I.I.S.N.



Vol. 60, 1987 The motion in a constant magnetic field 553

symmetries we just want to give such a simple connection through a change of
variables in the same way that Niederer [8] has related the harmonic oscillator to
the free case [7] and has determined its so-called maximal kinematical invariance
(MKI) group SCHR(n) if the n-dimensional context is considered.

In Section 2, we give the announced change of variables, thus relating the
problem of an interaction with a constant magnetic field with the one of the
harmonic oscillator in two spatial dimensions. Both the classical and quantized
points of view are considered. The kinematical [8] and dynamical [9] symmetries
associated with these problems are respectively recovered in Sections 3 and 4
through our change of variables. In Section 5 some comments are presented in
connection with the 3-dimensional case.

2. The change of variables and the one-to-one correspondence

2.a. Classical point of view

Let us here consider the 2-dimensional classical harmonic oscillator charac-
terized by the equations

Xo= “‘wzxo, Vo= _(UZYO; (2.1)

where the subscript 0 will refer in the following to the harmonic oscillator
context. The motion of an electron in a constant magnetic field is described by the
equation

where Xy = (Xas, Ya> Zum)- In the fgllowing, the subscript M will always refer to
the magnetic context. If the field B is chosen along the z-axis (B = (0, 0, B)), we
explicitly get
Xy = eByy, Ymu = —eBxy, (2.3)
5, =0, (2.4)
so that the particle moves freely along the z-axis as expected. We are then

interested in the motion obtained from (2.3) in the plane (xa, y») perpendicular
to B.

The change of variables (¢,, x4, Yo) <> (trr, Xar, Yu) We are considering is the
following one:

t() = tM)

Xy = COSWt Xy — sinwt Yums (25)

Yo = SINWt Xy + COSWI Yy,

where we put w =3eB. Let us summarize such a transformation on the
coordinates (x, y) on the form

(;") = R(w, é})(;“) (2.6)

0 M
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where R is a rotation around the z-axis with an angle wt. It is easy to convince
ourselves that such a change of variables leads to a 1-1 correspondence between
the two contexts.

2.b. Quantized point of view

In quantum mechanics, a 1-1 correspondence can be determined between
the Schrodinger wave equation for the 2-dimensional harmonic oscillator:

[ atOWO HOWO (2-7)
with
Hy = 3(p; + ©°xp) (2.8)

where we use the notation a for the bivector (a,,a,), and the Schrodinger
equatlon describing the interaction with a constant magnetic field B along the
Z-axis:

i 0,,Ym=HyYu (2.9
with
Hy = %(PM - eAM)2 = 1113, (2.10)

Let us notice that we have taken as unity the mass ~m. If we choose the so-called
gauge symmetric particular potential A® = —1f x B associated with the field B,
we have

A= —3Byy, A)=3Bxy (2.11)

and we get the hamiltonian (2.10) on the form:

2np2

4

e
Hy = %{P%/t + X%«l - eB(pryM - yMpo)} (2~ 12)

containing the terms associated with a 2-dimensional harmonic oscillator as well
as a term associated with the orbital angular momentum L,,.

Now, using the change of variables (2.5) on the coordinates together with the
corresponding transformations on the derivatives:

g, = 3 CU(XM a}’M —Ym axM)J

to

(%) = Rean 29(), 1)

Yo Ym

the equations (2.7)—(2.8) and (2.9) with (2.12) clearly are in a 1-1 correspon-
dence by taking

Yolto, X0, Yo) = Yar(tass Xt Yo A®) (2.14)

where we notice that we have no non-trivial phase factor.
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Let us point out that the correspondence is also realized for an arbitrary
potential other than the gauge symmetric one. Indeed, choosing another potential
A related to A5 by

A=A5+V), (2.15)

it is well-known (see [10] for example) that the equations containing respectively
the potentials A and A° are gauge invariant through the trivial (physically
speaking) change in the wave functions

Ym(A) = ey (A°). (2.16)

Then, finally, the correspondence with the wave function of the harmonic
oscillator reads in general

Yolto, X0, Yo) = e—ieATPM(tM, Xpm> Yms A.) (2.17)

3. Kinematical symmetries for the magnetic context

Let us first recall [8] that the MKI algebra of symmetries of the 2-
dimensional harmonic oscillator is s0(2) isomorphic to schr(2), the Schrodinger
algebra (or nonrelativistic conformal algebra) in two dimensions. It is generated

by

~ 33+ %
Co = 3[sin2wt (po wx3) — 2w cos2wt (Xo - Po — 1)), (3.1)
C? = 3[cos2wt (p5 — w°x3) + 2w sin2wt (Xo - Po — )],
Lo=Xopy, = YoPx, = (X0 X Po):, (3.2)

Pi= coswt p,,, + @ sinwt x, P2= coswt p,, + w sinwt y, }

K§ = sinwt p,, — @ coswt xo, K§ = sinwt p,, — @ coswt y, (3-3)

The operators (3.1), (3.2) and (3.3) respectively generate the algebras so(2, 1),
so(2) and the so-called Heisenberg algebra A (2).

Now, since the change of variables (2.5) is canonical, the MKI algebra of
symmetries of the Schrodinger equations (2.9)—(2.10) is isomorphic to the one for
the harmonic oscillator. Among the possible set of equations (2.8)—(2.10) with
equivalent but different potentials, the one with the potential A®=(2.11) is
privileged. Indeed the wave functions vy, and y,, are related by (2.14) and then
the generators are exactly obtained through the change of variables (2.5) only.
We then get the 1-1 correspondences:

HO(_)HM+ (I)LM, C(l)(—) Cll\'l) C(Z)@ C}zu, (3.4)
Lo Ly, (3.5)
le%(nx+Px)M: Pge%(ny-{'Py)M,

3.6
19%(Py_‘7ry)M!. K%e%(ﬂx_Px)M’ ( )
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where 7, and 7, are the expected Johnson—Lippmann [1] constants of motion

JT, =Py — WY1, ﬂy =pyM + WX g (37)

and P,, P, are other constants of motion

P, = cos 2wt(p,,, + wyy) — sin 2wt(p,,, — wxyy),

P, =sin 2wt(p,,, + wyy) + cos 2wt(p,,, — w 3:8)
With respect to the Johnson-Lippmann approach, this leads to additional
constants of motion which are C},, C3,, P, and P,. Such quantities have already
been obtained by Durand [4] by studying directly the symmetries of the equation
(2.9) using the Niederer method [7]. The interest of our presentation is that,
through a simple change of variables, we get immediately the same results
without tedious calculations.

Now, In order to obtain the symmetry generators for the equations
(2.9)—(2.10) with an arbitrary potential we have to transform, beside the change
of variables in the harmonic oscillator symmetry operators, these generators by
the function & = exp (—ieA) since the wave functions v, and y,,(A) correspond to
each other by (2.17). Then, if G, is a symmetry generator for the harmonic

oscillator, we obtain the corresponding symmetry generator for the equation (2.9)
with A = (2 15), on the form

G(XM7 P /I) = h_lGo(Xo(XM, Pum), P()(XM: Pm))h. (3.9

The symmetry generators for the Schrodinger equation in the magnetic case are
then obtained in a form independent on an explicit choice of the potential:

Hy = 3(pu — eAy)’ = 3113, )
= 3sin 2wt {11, 7, + I1, 7,} — cos 2t {11, , — 11, 7, }],
m=13[cos 20t {11, 7, + 11, 7, } + sin 2wt {11, 7, — 1, 7, }],

Ly =xpIL,, — yaIl,, + x5+ y3),  (3.10)
w, =11, — 20y, m, =11, + 2wxy,,
P, =cos2wt I1,,, —sin2ewt I1,, , P, =sin2wt I1,, + cos2wt I1,,,

These are the generators of the kinematical symmetries. Their commutation
relations are evidently obtained from the ones of the algebra
schr(2)=[s0(2, 1) ®s0(2)] O h(2) where so(2,1)={Hy, Cy, C3}, s0(2)=
{Ly} and h(2) = {~n,, 7, P, P,}.

The contents of the algebra h(2) has been examined [1], [4], [11] in connection
with creation (af, a;) and annihilation (a,,, a,) operators of the harmonic
oscillator in order to study the correspondence between the two problems.

Concerning again the kinematical symmetries (3.10), let us finally notice that
they correspond to coordinates transformations which leave the equations of

motion invariant. We get for the interaction with the magnetic field the
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transformations ¢' =t + 8¢, x ;= x5, + 6xp1, Y1 = Yur + Oy Where

Ot = ¢, sin 2wt + ¢, cos 2wt + b. A
0,,, = — w(c, cos 2wt — ¢, sin 2wt)x,; — w(c, sin 2wt + ¢, cos 2wt)yy,

— Oyy + a, + b, cos 2wt + b, sin 2wt, > (3.11)
Oyn = w(c, sin 2wt + ¢, cos 2wt)xy — w(c, cos 2wt — ¢, sin 2wt)yy,

+ 6,, +a, — b, sin2wt + b, cos 2wt, J

b, ¢y, ¢, 0, a,, a,, b, and b, being respectively associated with the generators
Hy, Cy, Ciy, Ly, 7, m,, P, and P,.

4. Dynamical symmetries for the magnetic context

The largest dynamical algebra [9] of symmetries of the 2-dimensional
harmonic oscillator is the fifteen dimensional algebra sp(4, R) Oh(2). It cor-
responds to the well-known degeneracy group of the harmonic oscillator. In terms
of the creation and annihilation operators given explicitly by

1 , 1 . ..
a; = ﬁ(wx()i —ipo),  @4= Vz—g(a’xm +ipo) (i,7=1,2) (4.1)

the generators of sp(4, R) O h(2) are obtained on the form

W [ [
T,-J,-=E{a,-, a}.}, C+,-,»=—2—{af, a;}, C,ijz _?{ai, a].} (42)

and
P =iV2wa], P.=-iV2wa,, (4.3)

the coefficients being chosen according to [5]. Let us notice that the four T;’s
generate u(2) and together with the six C,;’s they form sp(4, R) while the four
P.;’s plus the identity generator evidently generate h(2).

The generators (4.2) and (4.3) correspond to constants of motion for the
harmonic oscillator hamiltonian but taken when the time ¢ equals zero. In fact
since the commutation relations between the hamiltonian H,= (2.8) and the
generators (4.2) and (4.3) are

[Ho, T;]] =0, [Ho, Ciij] = izwc:tij:
[HO’ l:t] = :twpli;
we obtain the time dependent constants of motion on the form
T;(¢) = T;(0), Ciy(t) = enimtciij(o),
PL(t) = e¥'P,(0). 4.5)

(4.4)
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Among the operators (4.2)—(4.3) some are directly related to those of the MKI
algebra. In fact, we have

Hy=T, + Tx,, ]

Co:(t)=Cy 2 iC= Cin(t) + Cinl2), (4.6)

I
Ly=— (le - TZI):
w

Pj. =K xiPy=PL(2), Pjs = K§+iP§=P%(1).)

We then conclude that the kinematical algebra is completely contained in the
dynamical one and that six generators belonging to sp(4, R) cannot be associated
with any coordinate transformations.

Through the change of variables (2.5), we immediately see that in the magnetic
context, we get once again the dynamical algebra sp(4, R) O A, containing the
kinematical one generated by (3.10) and six additional generators obtained
through (3.9) from the generators T, — T5,, T12+ Toy, Coyy — Cins, C_yy— C_ss,
C,; and C,,,. Let us notice that these last symmetries cannot evidently be
determined by the Niederer method since they do not correspond to coordinate
transformations. In fact, in the work of Durand [4], they are obtained through the
supersymmetric context after the knowledge of the supersymmetry generators in
order to close the superalgebra. Here such operators are completely justified
without supersymmetric considerations but only by using completely the 1-1
correspondence.

5. Comments

Here we have considered the 2-dimensional context since along the z-axis the
particle moves freely. Nevertheless, Johnson and Lippmann [1] have considered
the 3-dimensional context and have used the symmetries associated with L,,, «,,
7, and p, in order to study the energy spectrum of the hamiltonian

H = 3(II3 + p2). (5.1)

These symmetries have recently [12] been completed by using the symmetry
properties [13] of the constant magnetic field. Let us only recall that the
corresponding symmetry algebra is

G={H, Ly, n,, n,, p., K.} (5.2)

when the wusual galilean coordinate transformations are considered, K,
corresponding to pure galilean transformations along the z-axis. It is easy to show
that we can now add the generators P,, P, given in (3.10): they also correspond to
coordinate transformations generalizing the usual galilean ones. We cannot add
the generators C), and C3, since, while they are constants of motion for the
hamiltonian H = (5.1), they do not correspond to kinematical symmetries and do
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not close under commutation. All these results were expected when analysed in
connection with the work of Boyer [14]. Indeed, the extension of the change of
variables (2.5) to three dimensions leads to an anisotropic harmonic oscillator
whose hamiltonian reads:

H,= %(P% . i wzxg +P(2)z)- (3:3)

From Boyer’s considerations [14], we then get an algebra isomorphic to
[so(2) @ ¢t,] O h(3), so(2) being generated by L,= (3.2), ¢, by H,=(5.3) and h(3)
by Py, P§, K, K3, p, and K, where C}, and C; do not appear.

Stimulating discussions with Prof. J. Beckers are cordially acknowledged.
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