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On the analysis of experimental signals for
evidence of deterministic chaos

By C. W. Simm, M. L. Sawley1), F. Skiff and A. Pochelon

Centre de Recherches en Physique des Plasmas, Association Euratom,
Confederation Suisse, Ecole Polytechnique Fédérale de Lausanne, 21, Av. des
Bains, CH-1007 Lausanne/Switzerland

(8. I. 1987)

Abstract. The application of the analysis methods of dissipative chaotic systems to experimental
signals is considered. After a brief review of definitions and the available measures of chaos,
comments are made on some of the algorithms available to analyse statistically chaotic systems. In
particular, the Grassberger-Procaccia algorithm for calculating the correlation dimension is seen to be

relatively well-suited for application to experimental signals. Several cautions regarding the use of this
algorithm, however, are elaborated through examples involving both numerically and experimentally
produced data. It is found that, despite the complications produced by extrinsic noise and finite
discrete data samples, it is possible to obtain consistent results.

1. Introduction

As new concepts and techniques appear in the study of deterministic chaos in
dissipative systems, it is natural to look for their application to physical systems.
In particular, since it has become clear that simple (in appearance) non-linear
model systems often have very complex dynamics, one might ask if the apparently
complex behaviour of certain physical systems may be adequately described by a

simple non-linear model. The various quantities used to characterize dynamical
chaos provide a first step toward the resolution of this question. This first
question is: can the chaotic dynamics of a simple system (small number of degrees
of freedom) be distinguished from that of an inherently complex system (one with
dynamics which fill a large dimensional phase space) through observation of a

single variable? If the answer is in the affirmative, the application of the
characterizations of dynamical chaos to experimental systems may be of interest.

In this paper, consideration is given to some of the problems involved in the
application of the measures of chaos used in the study of model systems to
experimental data. Section 2 gives a brief review of some basic definitions before
the characterizations commonly used for chaos are presented (Section 3). The
Kolmogorov entropy, Lyapunov exponents, and generalized dimensions are

') Present address: School of Physics, The University of Sydney, Australia.
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described and some interrelationships are noted. The problem of reconstructing
and characterizing an attractor from discrete data is considered with regard to the
available algorithms. The Grassberger-Procaccia algorithm, considered as the
most applicable, is described in Section 4. The role of various parameters is

described, and some comments are made on their selection and on the
interpretation of the results. Section 5 provides some mathematical examples
which serve as test cases for the algorithm, and considers the influence of noise
and filtering. Section 6 presents the numerical analysis of a model system (the
bipolar motor), an experimental study of which is reported in Section 7. For this
case, a comparison between theory and experiment is possible. Section 8

describes the application of the dimensional analysis to fluctuation measurements
of a tokamak plasma, while Section 9 contains some concluding comments.

Readers already familiar with the basic concepts of chaotic dynamical
systems may wish to begin with Section 4.

2. Definitions

Dynamical systems may be conveniently analysed by means of a
multidimensional phase space, in which to any state of a system at any time
corresponds a point. Therefore, to any motion of a system corresponds an orbit
or trajectory.

Given a set of initial conditions occupying a finite volume in phase space,
Liouville's theorem asserts the conservation in time of this volume for Hamiltonian
('conservative') dynamical systems. The theorem does not hold for dissipative
systems, for which there is generally a contraction of volume in phase space.

2.1. Attractors

If the asymptotic behaviour of a dissipative dynamical system is such that the
volume of initial conditions contracts to some subset of the phase space, then this
subset is called an 'attractor' [1, 2, 3]. The following examples illustrate this
behaviour [4, 5].

2.1.1. A zero-dimensional attractor. The damped harmonic oscillator,
described by the equation

d2d dd
dt2

+ Y
dt2 + y — +co2d 0 (2.1)

where y is the damping factor, is a simple example of a zero-dimensional
attractor. A typical trajectory in its phase space (6, 6) is shown in Fig. 1.

The trajectories corresponding to any set of initial conditions in the
two-dimensional phase space approach the point 6 6 0. Thus, the attractor is

zero-dimensional, corresponding to a time-independent solution.
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Figure 1

A typical trajectory of the damped harmonic oscillator in (0, 0) space.

S > 0

2.1.2. A one-dimensional attractor. The Van der Pol oscillator, a simple
model with a one-dimensional attractor, is obtained by introducing non-linear
damping in equation (2.1):

d2e r 02] dd
1-— I— +co2d 0 (2.2)dt -Yo

Typical trajectories in (8, 8) space are shown in Fig. 2. In this system,
trajectories tend toward a stable periodic orbit or limit cycle, which is an attractor
of dimension one.

2.2. Strange attractors

For many attractors, the attracting set can be very complicated, and even of
non-integer dimension. Sets of non-integer dimension have been termed 'fractal'
by Mandelbrot [6], and if they are attractors, they are said to be 'strange'. This
definition of a 'strange attractor' refers to its geometrical structure, and may be
refined in a more formal way [7].

Figure 2

Typical trajectories of the Van der Pol oscillator in (0, 6) space.

?e

cycleimit
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2.3. Chaotic attractors

The volume contraction corresponding to a dissipative dynamical system
does not necessarily contract lengths in all directions. In some directions they may
be stretched, as long as in others they are sufficiently contracted to reduce the
initial volume. Trajectories that are arbitrarily close initially may separate with
time, even on the attractor. In other words, chaotic motion is characterized by an
exponentially growing separation between nearby trajectories. This property is
called 'sensitive dependence on initial conditions', and attractors exhibiting this

property are termed 'chaotic'. It has to be noted that this dynamical characteristic
of the attractor is sometimes included in the definition of strange attractors,
though there exist strange attractors that are not chaotic [3, 7].

2.4. Deterministic chaos

Physical systems that can be described in terms of differential or difference
equations, for which future time behaviour can be calculated from given initial
conditions, are called 'deterministic'. It has been shown by Poincaré [8] and
Lorenz [9] that chaotic trajectories can be governed by simple sets of non-linear
differential or difference equations. In the following, 'deterministic chaos' will be
used to denote the irregular or chaotic motion which is generated by non-linear
deterministic systems. It should be noted that chaos is not necessarily restricted to
dynamical systems with a very large number of degrees of freedom: it can be
shown that three degrees of freedom suffice to generate chaotic behaviour [10].

3. Characterization of dynamical systems

It is of interest to know whether there exist criteria by which the chaotic
motion of deterministic systems can be distinguished from one another and from
random motion. Fourier analysis of an observable (for example) is very often
insufficient to provide such a distinction. Therefore, new methods have to be used
to characterize these systems [2]. In the following sections, we discuss three
important types of measures that are available to provide a useful characterization

of chaotic motion.

3.1. Kolmogorov entropy

For a chaotic system, trajectories arising from two initial conditions that are
different, but indistinguishable within a given defined precision, will become
distinguishable after a finite interval of time. Thus, in contrast to regular motion,
chaotic trajectories continually reveal new information about the system. The
mean rate of 'creation' of information is measured by the Kolmogorov (or metric)
entropy K, which provides a means of quantifying the degree to which a

dynamical system is chaotic [11]. K is zero for regular motion, infinite for random
systems, but is finite and positive for systems exhibiting deterministic chaos. A
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more complete description of the Kolmogorov entropy may be found in Refs. [15,
16, 20, 65].

3.2. Lyapunov exponents

The spectrum of Lyapunov (or characteristic) exponents [12] quantifies the

average stability properties of trajectories on an attractor. These stability
properties are determined by the response of the system to small perturbations. A
system can be stable to perturbations in some directions, but unstable in others.
For a system of dimension d, the spectrum of Lyapunov exponents X-„

i 1, d, provides a dynamical measure of the exponential rate of divergence
(or, convergence) of initially nearby trajectories, in d orthogonal directions.
Chaotic systems are characterized by the existence of at least one positive
Lyapunov exponent, while for regular systems all exponents are negative or zero.
A discussion of the calculation of the spectrum of Lyapunov exponents for a

chaotic system will be given in Section 6.3.

3.3. Generalized dimensions

The generalized dimensions [13], have recently become, due to the existence
of simple algorithms, the most common characterization of chaotic dynamical
systems. These dimensions provide a static measure of the properties of an
attractor.

3.3.1. The infinite number of generalized dimensions. Attractors can be
characterized by an infinite number of different generalized dimensions Dq, q > 0.

It has been asserted [14] that a complete knowledge of the set of dimensions Dq is

equivalent to a complete physical characterization of the attractor. To date, only
three different dimensions have been studied extensively: the Hausdorff dimension

D0, the information dimension Dx and the correlation dimension D2.
These generalized dimensions are defined as follows. Consider a strange

attractor embedded in an m-dimensional space, and let X;, i 1,..., N be a

finite section of a discretized trajectory on the attractor. Cover phase space with a
mesh of cells of size rm and let M(r) be the total number of cells containing points
of the series X,-. The probability pk of finding a point in the cell k is then given by

Pt=hm-y (3.1)

where Nk is the number of points in cell k. The infinite set of generalized
dimensions Dq that characterizes the inhomogeneous static structure of the
attractor is then defined through the q-th power of pk as [14, 15]

/MM

j log (t Pl
Dq lim k'1

(3.2)
(q - 1) r^o log r

with q > 0, but not necessarily integer
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For q 0, equation (3.2) becomes

D0=-hm— hm—7—— (3.3)
r->o log r ^o log r

which is the usual definition of the Hausdorff dimension (also denoted by D),
sometimes called the similarity or fractal dimension.

For q—>l, equation (3.2) becomes

Mir)
E Pk lOgP/c „, v

D, lim— -lim^ (3.4)
r-*o log r r^o log r

According to the theory of the measure of information [16], S(r) -
E^ii' PklogPk is the minimal information needed to locate a point on the
attractor with precision r. 5 has been called the 'information-theoretic entropy'
[17, 18], and therefore Dx (also denoted by a)-which is sensitive to the visiting
frequency on the attractor - is named the 'information dimension'.

If q 2, equation (3.2) becomes

log (T pi)
D2 hm -^ (3.5)

r^o log r

which is the definition of the correlation dimension (also denoted by v), that will
be treated in detail in Section 4.

The three commonly used dimensions are therefore defined as:

(3.6)

(3.7)

(3.8)

Generalized dimensions Dq with other integer q correspond to exponents
associated with ternary, quaternary and higher order correlation functions. It has
been shown [14] that the Dq are ordered such that Dq 3= Dq, for any q' > q, where
the equality sign holds only if the attractor is homogeneous. All generalized
dimensions are therefore bounded between D, the Hausdorff dimension, and Dx.
Specifically,

v^o^D (3.9)

3.3.2. Examples of the Hausdorff dimension. Consider first the Hausdorff
dimension of the following sets:

(1) a point ->M(r) 1 -» D 0

(2) a line of finite length -* M(r) ~ 1/r -^D l

D -/>,-.o
o lim Da

q-*l

v *Dq=2
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(3) a surface of finite area—» M(r) ~ 1/r2—» D 2

In each case, these results correspond to the standard definition of Euclidean
dimension.

As an application to a simple set of non-integer dimension, consider the
Cantor set, constructed by iteratively (i 0, 1, 2, deleting the middle third of
each remaining segment of a unit interval (see Fig. 3). In this case,

for i 0 r 1 M(r) 1

i l r i M(r) 2

2 r è M(r) 4.

In general, M(r) 2', r (\)', and thus D log 2/log 3 0.63. In terms of its
dimension, the Cantor set can be viewed as a geometrical object 'between a point
and a line'.

3.4. Relations between measures of chaos

It has been established that there exist relations between the three measures
described in the previous sections.

A knowledge of the spectrum of Lyapunov exponents can provide an upper
bound for the Kolmogorov entropy of a chaotic dynamical system. This is

obtained through the inequality [13, 19]:

K^Xr (3.10)

where A,+ are the positive Lyapunov exponents. For the case of equality in
equation (3.10), which often seems to hold [2], this relation is called the Pesin

identity [20].
A relation between the Lyapunov exponents and the Hausdorff dimension

has been suggested by Kaplan and Yorke [21]. They have defined a dimension,
which is denoted as DKY, via the Lyapunov exponents:

t X,

DKY=j + ^- (3.11)

0 1

1/3 2/3

Figure 3

0 Vg 2/9 V3 2/3 7/9
i 1 i 1 i 1

0 Vg 2/g 1/3 2/3 7/g
•—ii—i i—i i—i i—i i—i

Construction of the Cantor set.
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where; is the largest integer for which S{=i A, >0. (By convention, the exponents
are ordered such that A1-3=A2> • • • s=Ad.) Kaplan and Yorke have conjectured
that DKY is equal to the Hausdorff dimension D : this has been shown to hold for
many examples that have been considered (see, for example Refs. [13, 22]).

3.5. Reconstruction of an attractor

When dealing with experiments (as opposed to computer simulations), it is

generally not possible to have access to the m simultaneous signals necessary to
describe the trajectory in the m-dimensional phase space. Frequently, in fact, the
temporal dependence of only one scalar variable is monitored.

Fortunately, it has been shown to be possible to reconstruct certain
properties of an attractor in phase space from the time series of a single variable
[23, 24]. The principle behind the reconstruction method is to create a set of
m-dimensional vectors from a single time series *, =*(£,), i 1, Ns, with the x,
corresponding to measurements regularly spaced in time. This process is termed
'embedding' and m is called the 'embedding dimension'.

One possible method is to take (m — 1) successive derivatives x(t), x(t),
x(t), of x(t). Unfortunately, this procedure amplifies numerical errors. A
preferable method is to introduce a time lag p such that the m-dimensional
vectors have the form

X, [x(t,), x(u +p),..., x(t, + (m - l)p)] (3.12)

In principle, all three measures introduced in Sections 3.1.-3.3. - namely the
Kolmogorov entropy, the Lyapunov exponents and the generalized dimensions -
are accessible through this reconstruction (J. P. Eckmann 1986, private

communication). Nevertheless, it should be noted that in practice, the construction of
phase-space coordinates may not always be straightforward. This is because there
is no a priori knowledge of the most appropriate choice of parameters to be used
in the reconstruction of an attractor. Guidelines to assist in the choice of
parameters will be given in Section 4.2.

3.6. Comments on available algorithms

Two different types of data will be analysed in this paper, namely those
generated numerically and those from experiments involving real physical
systems. When dealing with the equations of a dynamical system, it is possible to
solve the evolution equations with an accuracy limited only by the precision of the
computer. Real physical experiments, however, yield data containing only a
restricted amount of information. This is due to the presence of noise, the
generally poor dynamical range of data acquisition systems and the fact that the
desired observables are not necessarily measurable. This basic difference may
restrict the application of algorithms which calculate the 'measures of chaos' for
experimental data. (For a more detailed survey of these problems, see Ref. [2].)
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There have been several attempts to develop algorithms for the calculation of
the Kolmogorov entropy that may be applied even to experimental data [25, 27].
However, these algorithms tend not to be robust, and therefore are very seldom
used to characterize signals from real physical systems.

The evaluation of the spectrum of Lyapunov exponents is based on the study
of the evolution of small perturbations of the physical system. An algorithm that
can be applied when the equations of motion governing the system are known, is
described in Section 6.3. For the case when the equations of motion are not
known, e.g. for experimental data, algorithms have recently been proposed by
several authors [28-31]. However, these algorithms require a great deal of care in
their application, even for numerically generated data.

The measurement of dimensions is the most straightforward method
applicable to experimental data. The Hausdorff and information dimensions, in
principle, may be calculated using the 'box-counting' algorithms introduced in
Section 3.3. Despite some improvements [32], such algorithms converge very
slowly even for low-dimensional attractors (D < 2), and do not converge for
higher dimensional attractors (D>2) [33]. However, the correlation dimension
has been shown to be accessible through recently developed algorithms [18, 34,
66]. These algorithms have been found to be sufficiently robust to be applied to
experimental data, and have consequently been extensively used in recent years.
Nevertheless, it should be stressed that in any given experiment, one deals with
discretized time series of finite resolution and finite length. Natural limits
therefore exist on the applicability of these algorithms. In the next section, a
detailed discussion on the application of the Grassberger-Procaccia algorithm is

presented.

4. The correlation dimension

4.1 The Grassberger-Procaccia algorithm

The algorithm developed by Grassberger and Procaccia for the calculation of
the correlation dimension v makes use of equation (3.5) with the following
evaluation:

M(,r)

2 pì — probability that a cell rm contains two points of the attractor

probability that the distance between those two points in less than r

lim —j (no- of pahs i, j such that \X, — X,\ < r)

-C(r)
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The correlation integral C(r) is defined by

C(r)-Jim—2 2 ö(r-|l,-Z,|) (4.1)
-V-»»_\ ;_i ;,(,;=i

where N is the number of m-dimensional vectors and 0 is the Heaviside step
function.

The correlation dimension is then given by

v^hm^^l (4.2)
r-^o log r

The algorithm therefore consists of counting the fraction of points of the
attractor contained in an m-dimensional hypersphere of radius r, averaged over
the attractor. A finite value of v indicates that this fraction is proportional to rv
for small r. A direct analogy to the volume of hyperspheres of integer dimension
can be drawn.

4.2. Algorithm application to a single time series

In practice, the correlation integral C(r) is plotted as a function of r on a

log-log graph for a range of values of the embedding dimension m. The slope of
the curves is called the correlation dimension v, if it converges for small r and for
a range of m values. The algorithm parameters have to be chosen carefully to
provide an appropriate reconstruction of the attractor.

4.2.1. The embedding dimension m. The correlation integral cannot increase
faster than rm for a given choice of embedding dimension m. As a result, the
slope of log C(r) vs log r curves will converge (if at all) to m rather than v, for
m < v. An adequate choice of the embedding dimension is m 2» v, and may even
be m 3- 2v + 1 [2, 24, 35]. If a value of m is chosen that is too large, convergence
problems result from poor statistics [34]. This difficulty arises because the number
of m-dimensional vectors that can be formed from a given set of data is too small.
Since v is normally not known beforehand, the most effective choice of m has to
be determined by trial and error. Typically, this is done systematically by
scanning m from small to large values and noticing the m value where the slopes
no longer increase with increasing m.

4.2.2. The meaningful range of r. The range of r, and therefore C(r) values
over which the slope described above can be measured is restricted. For large r,
nearly all the points on the attractor are correlated - in other words each

hypersphere of radius r contains almost the entire attractor - and C(r) tends
towards one. On the other hand, since the number of data points is limited, the
statistics for small r are poor and a large scatter in the values of C(r) results.
Therefore, there is only a restricted 'meaningful range of f in which the
distribution of distances between pairs of points is statistically useful [2].
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4.2.3. The time delay p. For proper reconstruction of the attractor from a

time series, the time delay p must also be chosen within certain bounds. If it is

too small, x(ti)~x(ti + p) — • • ¦ ~x(ti + (m - l)p), resulting in a strong compression

in the reconstructed attractor.
On the other hand, p should not be taken too large since distant values in the

same vector X, are uncorrelated, leading to a filling of the complete m-
dimensional phase space [34].

This indicates that p should be chosen to be less than t, but greater than
r/m, where t denotes the 'characteristic time' for the signal x(t). Here, t is

defined as the quarter-period for pseudo-periodic signals, or the e-folding time of
the auto-correlation function for broadband chaotic signals.

4.2.4. Number ofpoints Ns and sampling interval ts. In practice, the Ns data

points are acquired at a sampling interval ts. These parameters should be chosen

so as to yield sufficient resolution over the desired frequency range of the Fourier
spectrum of x(t). In addition, Ns must be large enough for the calculated values of
C(r) to be statistically adequate, especially for attractors of large dimension. This

may, for the investigation of experimental data, involve some compromise since
the parameters of the system should remain constant (to avoid transients) during
the total time Ns • ts for which data are recorded.

4.2.5. Avoiding spurious correlations. Calculation of the correlation integral
as defined in equation (4.1) may not lead to a reliable determination of the
correlation dimension if the value of Ns is too restricted. For certain values of r,
the value of C(r) may be overestimated, especially for large values of embedding
dimension m. As a result, there may not exist a sufficiently large range of r over
which C(r) scales like rv or, alternatively, a false value of the correlation
dimension may be deduced.

The origin of this overestimation has been shown [36] to be the correlations
that arise when vectors X, and Xj are considered, even though the time difference
|r, — tj\ is not large compared to the characteristic time.

If the total number of data points Ns is too limited, the correlation integral
will be dominated by these 'spurious' correlations. In other words, the spatial
structure of the attractor will be poorly represented due to the highly
nonuniform visiting of different regions of the attractor. This problem is more acute
when large embedding dimensions are considered due to the need for a larger
number of points to represent correctly the structure of the attractor.

In principle, these spurious correlations can be avoided by choosing A^
sufficiently large. However, in practice, this may not always be easily achieved. It
is usually more straightforward simply to avoid counting those pairs of vectors
that are close in time, by using a generalization of equation (4.1) [36]:

Ck(r) lim -2- 2* 2 0(r - I* - */l) (4-3)
N-rcojy i 1 j i +k
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Note that setting k 1 recovers the standard formulation of equation (4.1),
that is, Cx(r) C(r). In general, k should be chosen such that k • ts> t, the
values of Ck(r) saturating for k sufficiently large. This requirement is not too
restrictive, since it is still possible to satisfy k«N. Thus for correctly sampled
and treated time series data, the above modification is minor in terms of the total
number of pairs of vectors considered.

4.3. Implementation of the algorithm

All the experimental data analysed in this paper have been acquired using
Lecroy TR 8837 Camac analog-to-digital converters, yielding records of 8 bit
resolution and Ns 8192. To be consistent with the experimental cases, most
studies undertaken using mathematically generated data had the same acquisition
parameters.

The resolution in the correlation integral is given by the reciprocal of the
total number of distances \X; — Xj\ that are computed. To optimize this
resolution, and therefore to determine more accurately the values of Ck(r) for
small values of r, the correlation integral for a given data record was generally
calculated using the maximum number of points available. For an embedding
dimension m and time delay p, this enables N Ns - (m - 1) • p • t~l vectors to
be constructed. The total number of distances computed for the calculation of the
modified correlation integral Ck(r) is (N - k + 1)(N - k)/2. For typical values of
Ns 8192, m 10 and p Ats, this amount to 3.3256 x 107 distances for k 1 and
3.3182 X 107 for k 10. As indicated in the previous section, only a very slight
decrease in the total number of distances computed results therefore from the
modification of the correlation integral.

In order to calculate the correlation integral for such a large number of
vectors, an efficient numerical method is required.2) Although any suitable norm
can be used to compute |_¥, - X,\, we have chosen the Euclidean norm for our
analysis. Programs to calculate Ck(r) over the meaningful range of r, for specified
values of p and k and several values of m, have been written for three computer
systems that are available to us, i.e., PDP 11/60, CYBER 855 and CRAY
1S-2000. All programs were written in standard FORTRAN, and optimized for
each system. Use was made of the shifting and masking procedures available in
FORTRAN on each of the three compilers, to bin efficiently the computed
distances into geometric order [34]. Special attention was paid to vectorization of
the program used on the CRAY 1S-2000. Computation time for a standard case
with /Vs 8192, p Ats, k l, m 2-* 10 and 70 values of r was 34,000 sec

(single-user real time) for the PDP 11/60, 5000 CPU sec for the CYBER 855, and
300 CPU sec for the CRAY 1S-2000.

2) Some authors [37, 38] have reduced the computation time by summing over a small number
100) of randomly chosen values of the index ;'. This is suggested not to affect the computed

values of C(r). The resolution in C(r) is, however, still given by the total number of distances
computed: we have therefore preferred to maximize the number of computed distances by
summing over all values of indices i and / < i.
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5. Application of the Grassberger-Procaccia algorithm

5.1. Tests on known mathematical attractors

To test the implementation of the algorithm described above, time series
from mathematical systems with known attractors have been analysed. The
systems, all of which display chaotic behaviour, are discussed in order of
increasing dimension.

5.1.1. Two-dimensional maps. As a specific example, the Hénon map [39]
has been examined:

xn+x=y„ + l-ax2„
yn+x bxn

(5.1)

with a 1.4, 0 0.3
Figure 4(a) shows the result of plotting 104 successive points obtained by

iterating equation (5.1) from starting point x„ 0, y0 0. It can be verified that

o.

(a)
0 5

i i i i 1 1

08 0 0

0-

50
n

(b)
100

Figure 4
(a) The Hénon map; (b) 100 points of the a:-coordinate
displayed as X„ vs n (for clarity, the points have been
joined by straight line segments); (c) plot of the correlation

integral, yielding v 1.25 ± 0.1.
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initially close points diverge exponentially [40]. For the correlation analysis, 8192
successive points of the j:-coordinate have been acquired after the 1000th
iteration. Figure 4(b) displays the first 100 points of the record, joined by straight
line segments, in a x„ vs n plot that highlights the chaotic behaviour of the system.
Figure 4(c) shows the corresponding logarithmic plots of C(r) vs r, for four
consecutive values of m. (All logarithm plots in this paper are calculated using
base 10.) It can be seen that for increasing m, the slope of the C(r) vs r
converges, and yields a value of v 1.25 ±0.1. This result should be compared
with the values found in the literature: D 1.26 [22] and v 1.25 ±0.02
(obtained by analysing the attractor without reconstruction, using N 20,000)
[18].

We have undertaken a similar study for the Kaplan-Yorke map [21] (see
Table I).

5.1.2. Systems of first order differential equations. As an example of such a

system, the Lorenz model [9] has been studied:

x o(y — x)

y —y — xz + Rx (5.2)

z =xy — bz

with R 28, o 10, b f.
These three coupled non-linear equations have been integrated numerically

using a standard Runge-Kutta method, with adjustment of the integration time
step to provide the desired precision. After a time interval Af 10, 8192 vectors
(x, y, z) separated by time intervals ts 0.1 were recorded (see Figs. 5(a), (b)).
The z-coordinate was used for the present analysis. The characteristic time for
this record was calculated to be t —0.4. For the calculation of the correlation
integral, a time delay of p =0.4 was therefore used. The resulting logarithmic
plot of C(r) versus r, shown in Fig. 5(c), exhibits a saturation in slope yielding a

value of v 2.16 ± 0.3. This result should be compared with the tabulated values
of D 2.06 ± 0.01 [22] and v 2.05 ± 0.01 (using N 15,000) [18].

5.1.3. Summary of the results. The values of the correlation dimension that
have been found for the analysed mathematical systems are listed in Table I.

Taking into account the smaller number of points (Ns 8192) and the limited
(8 bit) resolution, the agreement between correlation dimensions is very good.

Table I
Comparison of the calculated values of the correlation dimension of known mathematical attractors,
with dimension values given in the literature.

AttraCt0r V[I81 W Dw VctaUCtaUated

Hénon 1.25 ±0.02 20,000 1.26 1.25 ±0.1
Kaplan-Yorke 1.42 ±0.02 15,000 1.431 1.4 ±0.25
Lorenz 2.05 ±0.01 15,000 2.06 ±0.01 2.16 ±0.3
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This provides confidence in our application of the algorithm to more complex,
and less studied, chaotic systems.

5.2. Separation of noise from deterministic chaos

Before applying the correlation algorithm to real data, the practical question
has to be raised as to whether v can be accurately determined from experimental
data, for which noise can be expected to smear the fractal structure of the strange
attractor.

Random noise can be considered to be the result of the superposition of a

very large number of independent oscillating modes. Therefore, if a noise signal
is analysed using the algorithm, it should have a very large dimension and C(r)
should always scale like rm (see Fig. 6).

In the case of low amplitude noise superimposed on a deterministic signal,
the existence of noise will not destroy the fractal structure, but will cause
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(a) Random noise signal, with (b) the corresponding plot of
the correlation integral, and (c) the slope of the C(r) vs r
curves as a function of embedding dimension m.

fuzziness on length scales that are smaller or equal to the noise amplitude [41]. In
other words,

C(r) « rm for r =£ rn

C(r) oc rv for r 5= r„
(5.7)

Figure 7 shows the example of the Hénon map x -component with added random
noise (signal-to-noise ratio 4.2%). Both 'length' scales can be identified, namely
the total data amplitude of 490 [a.u.], as well as the noise amplitude of 20 [a.u.]
indicated by the inflexion of the C(r) vs r curves. Therefore, the correlation
algorithm not only provides a tool to differentiate between random noise and
deterministic chaos, but may also supply information on the noise level of the

system.

5.3. The effect of data filtering

Any measurement of experimental signals is, to some extent, filtered due to
finite instrumental bandwidth. Often data are additionally filtered to remove
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Correlation analysis of the x-coordinate of the Hénon map
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noise and/or to satisfy the Nyquist acquisition frequency criterion. For the

interpretation of correlation dimensions obtained from experimental data, it is

therefore of crucial importance to know and, if possible, to quantify the effect of
filtering.

It appears intuitive that filtering may reduce the dimension of a signal by
removing information. However, it has recently been shown [42] that an increase
of dimension may result. This conclusion was reached by considering the simple
example of a single-pole low-pass filter, but might still be valid for more
complicated multi-pole filters. Further studies are necessary to elucidate the effect
of data filtering.

6. The bipolar motor: theoretical study

A dipole magnet placed in a linearly polarized, oscillating magnetic field
forms a dynamical system exhibiting both periodic and chaotic motions. It may
therefore serve as a simple mathematical model for analysing the behaviour and

techniques described in the previous sections.
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In this section, the motion of a bipolar motor is mathematically described by
the solutions of a set of non-linear differential equations. The dependence of the
character of the motion, as a function of the amplitude of the driving field is
illustrated. It is shown that this system follows a period-doubling route to chaos.
The spectrum of Lyapunov exponents is calculated, and their usefulness in
characterizing the chaotic motion of a bipolar motor is demonstrated.

The mathematical model of the bipolar motor is also used to support
statements made in Section 5. The reconstruction of an attractor using delay
coordinates is illustrated, demonstrating the consequences of good, and
inappropriate, choices of the parameters used in the reconstruction. The application
of the algorithm for calculation of the correlation dimension is also studied.

6.1. Equation of motion

The equation of motion for a dipole magnet in a linearly polarized magnetic
field oscillating at frequency co is

0 + y0+/sino cos o>f 0 (6.1)

Here, we have assumed that the damping force is proportional to the angular
velocity 8 of the magnet, with a damping coefficient y. The static coefficient of
damping is thus assumed to be zero. The amplitude of the driving force is

/ pBw/I, where ß and / are, respectively, the magnetic moment and moment of
inertia of the magnet, and Bw is the amplitude of the oscillating magnetic field.
Equation (6.1) can be written in terms of three autonomous first order differential
equations:

0 Q

Ù -r-Q-F sind cost (6.2)

i l
where T y /co and F =f /co2.

6.2. Numerical solutions

The three coupled equations (6.2) have been integrated, as was the Lorenz
system discussed in Section 5.1.2, using a standard Runge-Kutta method. Three
typical solutions are shown in Fig. 8. These solutions were obtained using a value
of T 0.4 and initial conditions: 0 0, Q 1 and t 0. The solutions displayed
in Figs. 8(a) and 8(b) for F 1.5 and 2.0, show that after an initial transient
phase, the behaviour of the magnet settles into a rotational motion, with a

superimposed higher frequency oscillation. For Fig. 8(a), the period of the high
frequency oscillation is half the period of the driving force, i.e. Ar n. The
solution shown in Fig. 8(b) has a period of twice that of Fig. 8(a). The solution
displayed in Fig. 8(c) for F 2.5, exhibits non-periodic behaviour throughout the
time interval shown. Integration over much longer time intervals has indicated



528 C. W. Simm, M. L. Sawley, F. Skiff and A. Pochelon H. P. A.

2

100

a)
i 1

e 2

100

(b)

c-50
150 200

F=1.5

F =2.0

F 2.5

Figure 8

Three typical solutions of the equation of motion of the bipolar motor, for T 0 4 and (st) F 1 5 (b)
F 2.0 and (c) F 2.5.
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that the motion of the magnet for this choice of parameters remains chaotic, with
no tendency toward periodicity.

These three different types of behaviour exhibited by the bipolar motor can
be displayed in several alternative fashions. Figure 9 shows the Fourier spectrumof Q(t) for each of the three values of F The chaotic motion is characterized by a
broad spectrum and, correspondingly, a rapidly decaying auto-correlation
function.

Another instructive method of displaying the motion of the magnet is via
a Poincaré section [5, 15] of the three dimensional space (0, Q, t). This is
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Fourier spectra of the three time signals shown in

Fig. 8.

constructed by plotting (8[mod2ji], Q) each period of the driving force,
Ar 2nn for integer n, after the decay of transients. In such a representation,
periodic motion at the same frequency as the driving force is exhibited as a single
point and period-doubled motion as two points. More complex motion, in
particular chaotic behaviour, results in a more intricate Poincaré plot. Figure 10

shows the Poincaré plot corresponding to F 2.5. This plot demonstrates that
even though the temporal behaviour of motion appears chaotic (Fig. 8(c)), the
corresponding Poincaré plot exhibits a regular pattern. This representation for
chaotic motion thus yields a convenient means of viewing the attractor associated
with the motion after the decay of transients. The Poincaré plot shown in Fig. 10

displays the characteristic 'stretching' and 'folding' of phase space associated with
strange attractors [15].

6.3. Lyapunov exponents

An analysis of the temporal dependence of the solution of equation (6.2), for
given values of the parameters Y and F, yields information about the behaviour of
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Figure 10

Poincaré plot corresponding to the case T 0.4, F 2.5, shown in Figs. 8(c) and 9(c). To avoid
transients, the points plotted correspond to the 6000 cycles following the first 50 cycles of the driving
force.

the bipolar motor. For a more detailed investigation of how the character of the
motion depends on the choice of parameters, the representations discussed in the

previous section are rather inconvenient. A more straightforward means of
distinguishing between periodic and chaotic motions may be obtained through the

spectrum of Lyapunov exponents.
In general, if the non-linear equations of motion governing the system are

known, the Lyapunov exponents may be calculated by linearizing the equations
and studying the evolution of small perturbations over long time intervals. For a
set of autonomous equations of order d, consideration of d orthogonal perturbation

vectors enables the calculation of the spectrum of Lyapunov exponents,
X, 3= X2 2= • • • & Xd.

For the bipolar motor, the spectrum of Lyapunov exponents has been
calculated from the equations of motion (6.2). These equations may be written in
the form:

X J(X), (6.3)

where X (8, Q, t). The evolution of perturbation vectors f, in the tangent space
at X(t) is governed by the first variational equations:

f, T(X(t))Ì, (6.4)

where T is the Jacobian matrix of J:

T —3 I F ¦ cos 8 ¦ cos r
dx V o -t - F • sin sin t (6.5)
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The mean exponential growth (decay) of the perturbation vector f, yields the
Lyapunov exponent

"*XMm\l- (6-6)

Integration of equation (6.4) over long times leads to a divergence of the
magnitudes of the perturbation vectors and an inability to distinguish between
their directions, in the presence of a direction of rapid growth. To avoid these
problems, the perturbation vectors are periodically re-orthonormalized by the
Gram-Schmidt procedure [43]. This allows one vector to seek the direction of
most rapid local growth (corresponding to Xx), the second vector to seek the
second most rapidly growing direction (corresponding to X2), and so on.

For the present calculations, equation (6.3) was first integrated over a time
interval Ar 5000 (i.e. 796 cycles of the driving force) to avoid transient
behaviour that occurs particularly in the sensitive regions of transition between
periodic and chaotic motion. The evolution of the vectors f,- was then determined
over the following time interval Ar 5000. This proved to be a sufficiently long
time interval to ensure convergence of the Lyapunov exponents derived from
equation (6.6). The exponents thus determined were found to be independent of
the choice of X(0) and f,(0) as is expected.

Two features of the present system prove of benefit in the calculation of the
Lyapunov exponents. Firstly, since the trace of the Jacobian matrix in equation
(6.5) is constant, it follows [43] that

2A,=Tr(T) -r (6.7)

Secondly it has been shown [44, 45] that at least one of the Lyapunov exponents
vanishes, unless the orbit X(t) ends on a fixed point. These two features provide
checks on the calculated exponents, or alternatively, allow the spectrum of
Lyapunov exponents to be determined from the knowledge of only one non-zero
exponent. Our calculations showed that the two methods produced the same
results. Therefore, in order to minimize computational time, only the largest
exponent was generally calculated using equation (6.6).

Figure 11 shows the dependence of the three Lyapunov exponents calculated
for T 0.4, varying F by steps of 0.05 within the range 1.0 « F =£ 87.0. This figure
shows the presence of bands of chaos (i.e., where Xx >0) separated by regions of
periodic solutions. Within each of the six major bands of chaos shown in Fig. 11

are numerous small regions of periodic solutions: the number of these regions
apparent in Fig. 11 is limited by the resolution in F.

A detailed study of the onset of chaos that occurs at the beginning of each

major band has revealed a period-doubling route to chaos. Preceding each band
occurs a number of values of F for which Xx X2 0, which we denote by F1// for
the nth values of the mth band. The beginning of the first band is shown more
clearly in the expanded view plotted in Fig. 12. (It is instructive to compare this
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Spectrum of the Lyapunov exponents for the bipolar motor, with T 0.4 and 1.0 =£ F «87.0.

diagram with Fig. 3 of [46] for the Rössler system [47] which also exhibits a

period doubling route to chaos.) Comparing Figs. 8 and 12 it can be seen that the
value of F chosen for Fig. 8(a), 1.5 <F\, is before period doubling; is after one
period doubling for Fig. 8(b), with F|<2.0<F.;; and is after the transition to
chaos for Fig. 8(c), with 2.5 > Fl. An analysis of the relationship between
different values of F\ is given in the Appendix. It is interesting to note that Fig.
11 shows that FT^m2.

It can be seen from Fig. 8(a) that in the periodic region preceeding Fl the

system exhibits rotative motion, with superimposed oscillations at twice the
driving frequency. This is the usual region of operation of a bipolar motor. In the

periodic region preceeding F2, however, the superimposed oscillations have the

same frequency as the driving force. The resultant motion of the system is then

one of vibration. In fact, it can be shown that in the periodic region preceeding
Ff, the motion is rotation if m is odd and vibration if m is even. This point is

illustrated in Fig. 13. Note that the average angular velocity of rotation is

constant (=1), and is not greater for larger values of F for which rotation occurs.
Using the Kaplan-Yorke conjecture, the Hausdorff dimension DKY may be

calculated from the spectrum of Lyapunov exponents using equation (3.12). The

rr,

-0.4-

1
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5 2

1 1

25

Figure 12

Expanded view of the beginning of the first band of chaos in Fig. 11.
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dependence of DKY on the amplitude of the driving force is shown in Fig. 14. For
chaotic motion, 2 < DKY < 3, while for periodic motion DKY 1.

6.4. Reconstruction of the attractor

For the mathematical system described by equation (6.2), it is possible to
have access to the three-dimensional vector that describes the state of the system
at any time. It is therefore straightforward, for given values of T and F, to
construct a Poincaré plot of the attractor, as shown in Fig. 10. Time series data
obtained from numerical integration of equation (6.2) may, however, also be
used to elucidate some of the salient features in the reconstruction of the attractor
from a single time series, as described in Section 4.

For these studies the time series 8(t) was used. Parameter values T 0.4 and
F 2.5 were chosen, for which the motion of the system is chaotic. The
characteristic time for this time series was calculated to be t 1.5. Reconstructed
Poincaré plots of the attractor were obtained by plotting (8(t), 8(t + p)) each

period of the driving force, for various values of the time delay p. Three
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Figure 13

Four periodic solutions of the equation of motion of the bipolar motor, for T 0.4 and (a) F
F 15, (c) F 28 and (d) F 44, showing rotational and vibrational behaviour.

6, (b)
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representative plots are shown in Fig. 15. These show the effect of the choice of p
on the reconstruction, as described in Section 4.2.3. For Fig. 15(a), p « t, which
results in a severe compression of the attractor along the line 0(r + p) 0(r),
while Fig. 15(c) shows that for p » r the reconstructed attractor appears to fill
completely the phase space. As may be ascertained by comparing Fig. 15(b) with
Fig. 10, the attractor is faithfully reconstructed for p-x.

rr HT

i- -1

Figure 14

Dependence of DKY on the amplitude of the driving force F.
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Figure 15

Reconstruction of the attractor for for a chaotic signal (V 0.4, F 2.5), for different choices of the
time delay: (a) p 0.02.T (p « r), (b) p 0.5.T (p — t) and (c) p 20;r (p » r). To avoid transients,
the points plotted correspond to the 2000 cycles following the first 10 cycles of the driving force.

6.5. Correlation dimension

The correlation dimension v has been calculated for various parameter
values (r, F) for which chaotic motion is observed. Although v can be obtained
from the attractor without the need of reconstruction, we have chosen to analyse,
in general, reconstructed data in order to illustrate the usefulness of this
procedure. In general, the time series Q(r) was chosen for this study, since it
displays a smaller low frequency component, and therefore can be represented
more accurately by samples of restricted bit resolution. To conform with the
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experimental data considered in Section 7, each record consisted of 8192 samples
with 8 bit resolution.

Figures 16(a)-(c) show examples of logarithmic plots of C(r) versus r,
calculated for a data record with T 0.4, F 2.5 and a sampling interval of
ts 0.1. Curves corresponding to three different values of the time delay are
shown, namely, p =0.1, 1, 10. Significant differences can be noted between the
curves calculated for different values of p.

For both p 0.1 and p l, the slope appears to saturate, with increasing
embedding dimension m, over a large range of small r. However, the saturation
value for p — 0.1 is 2.0 ± 0.1, whereas for p 1 a value of 2.4 ±0.1 is obtained.
The correlation dimension calculated using the non-reconstructed attractor (with
N 20,000 and IO"16 precision) is v 2.28 ± 0.05, while the Hausdorff dimension
using the Kaplan-Yorke conjecture is DKY 2.35 ± 0.02. This fact suggests that
the choice of p « r has led to an under-estimate of the correlation dimension, due
to a poor reconstruction of the attractor. We have found it to be generally true
that for p « t, there is a slow convergence of slope necessitating the use of
excessively large (for the given finite value of Ns) values of embedding dimension
to obtain saturation. The resultant saturation value of the slope gives an
unreliable estimate of the correlation dimension. It may be noted on comparing
Figs. 16(a) and (b), that saturation occurs for p 1 for m s* 4, while for p 0.1
saturation is observed only for m s* 8.
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Figure 16

Logarithmic plots of C.(r) vs r (T 0.4, F 2.5, ts 0.1) for (a) p 0.1, (b) p 1 and (e) p 10. For
comparison, Cw(r) vs r is plotted in (d) for the case p 10, shown in Fig. 16(c).
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For p 10, Fig. 16(c) shows strong evidence of a plateau in C(r) for a range
of values of r. This feature is ascribed to the effect of 'spurious' correlations

discussed in Section 4.2.5. This explanation is supported by the graph
shown in Fig. 17. Plotted in this graph is the number of correlations fy, such that
\Xt - Xj\ < r0 (for m 5, p 10 and log10 r0 1.5), versus the differenceJr, - tj\

separating the times at which the first components of vectors Xt and Xj were
recorded. If the attractor was sampled uniformly, Ny should be linearly
proportional to N • ts — |r, - t,\. However, Fig. 17 shows a highly disproportiate
number of correlations Nq for which |r, —1,\ < t. This feature can be eliminated by
considering the modified correlation integral defined in equation (4.3). A
logarithmic plot of Cw(r) versus r, calculated from the same data with p 10, is

shown in Fig. 16(d). The curves shown in this figure exhibit a linear relationship,
even for the largest values of m considered. No saturation in slope is observable,
however. This is consistent with the choice of p » t, as discussed in Section 4.2.3.

The effect of the choice of the sampling time has also been extensively
studied. In general, ts can be chosen within a wide range of values, with the
correct value of v being determined, provided an appropriate value of p is used.
However, if ts » t, then an excessively large value of p must be chosen, leading
to a false value of v. Conversely, if ts is too small, the total sampling time Ns • ts

may not be sufficiently large to provide an adequate description of the attractor.
In principle, the optimum choice for the sampling time ts is a value less than r,
but greater than r/m; provided, of course, that the dynamical system under study
is statistically steady throughout the entire time interval during which data is

being recorded.

N
U 60-

100

80

^h.

«¦"«il

Figure 17
Number of correlation _V„ such that \Xt - X,\ < r0 (for m 5, p 10 and logm r0 1.5), versus the
difference |r, - tt\ separating the times at which the first components of vectors Xt and X, were
recorded.
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In conclusion, it should be stressed that an incorrect application of the
Grassberger-Procaccia algorithm can lead to a false determination of the
correlation dimension. We have found this to be particularly true if an attractor
reconstructed from a single time series is considered. A judicious choice of
parameter values, as discussed in Section 4.2, is essential for the correct value of
v to be determined.

7. Experimental study

7.1. Apparatus

An experimental model of the bipolar motor system [48, 49] has been
constructed. A small permanent magnet, with li — 1.7 Amp • m2 and /~6x
10_6kg-m2 was suspended in a linearly polarized magnetic field (^„«0.037)
created by passing an oscillating current through a pair of Helmholtz coils. The
magnet was restricted to rotate in a direction orthogonal to its magnetic axis by a
pair of roller bearings. A Hall probe was placed near the magnet with its axis
perpendicular to the direction of polarization of the oscillating field. This gave a

measure of the position of the magnet —cos 8 (although, since the magnet
produces an imperfect dipole field, higher order harmonics were also apparent in
the measurements). A small pick-up coil was placed at 0 180° relative to the
Hall probe. This provided a measure of the velocity of the magnet —sin 0 • 0. A
schematic diagram of the model is shown in Fig. 18.

For the measurements described here, the frequency of the oscillating field
was fixed at co/2n 2 Hz. The strength of the field, and therefore the torque
exerted on the magnet, was varied by adjusting the amplitude of the oscillating
current passing through the Helmholtz coils. The damping of the motion of the

magnet

W
w

Hall probe

Figure 18

pick-up coils

Helmholtz coils

Schematic diagram of the experimental model of the bipolar motor.
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magnet was provided by the inherent friction in the roller bearings. Unfortunately,

this friction may not be well modelled by a force proportional to 0 as
assumed in equation (6.1). There exists a non-negligible static coefficient of friction
in addition to the velocity-dependent component. Although this experimental
model could be considerably refined, both in terms of the frictional damping and
in terms of the quantities measured (direct measurements of 8 and 0 would be

preferable for comparison with the theoretical study of Section 6), it was found to
be adequate for the illustrative purposes of the present work.

Data from the Hall probe and pick-up coil were digitized into records of 8192

samples, using a sampling frequency of 100 Hz and 8 bit resolution. Because of
their nature, the signals from the pick-up coil (being rather 'spikey', with a
concentration of values near zero) were not very amenable to accurate digitization

with the limited bit resolution available. We shall therefore concentrate our
discussion on the analysis of results from the Hall probe, these being sufficient for
the application of the Grassberger-Procaccia algorithm.

7.2. Time series data

Figure 19 shows the signals recorded by the Hall probe, after the decay of
transients, for eight of the ten different values of the strength of the driving force
F considered. These signals demonstrate that the experimental system has a
behaviour that is qualitatively similar to that of the mathematical solutions
described in Section 6. For example, the motion of the magnet is periodic (with
the same period as the driving force) for F 16; period doubled for F 6.4; and
chaotic for F 25.6.

A more quantitative comparison for the bipolar motor system may be
obtained by examining the values of F for which the different types of motion are
observed. Analysis of the unforced motion of the magnet after an initial impulse
gives an estimation of T 0.4 ±0.1. Thus direct comparison of the experimental
results with the calculations of Section 6 are possible. It should be noted,
however, that due to imperfections in the experimental system (for example,
slight drifts in the amplitude of the oscillating current passing through the
Helmholtz coils), it should be expected that the fine structure of Fig. 11 will not
be observable. (See Ref. [50] for a discussion of the effect of noise on the
behaviour of the Logistic map.)

Comparing the behaviour of the experimental system shown in Fig. 19 with
that predicted by the Lyapunov exponents plotted in Fig. 11, a rather close
association of the presence of periodic and chaotic motions can be made. In
particular, all (except two) values of F for which the experiment shows
periodic/chaotic motion fall into calculated periodic/chaotic bands. The periodic
motion observed for F 16 is single-period rotation, while for F 6.4 and 35.2 is

period-doubled vibration, in agreement with Fig. 11 as discussed in Section 6.

7.3. Correlation dimension

The correlation integral has been calculated from the experimental traces of
cos 0 for those values of F for which the motion of the bipolar motor was chaotic.
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Figure 19

Signals recorded by the Hall probe (cos 0), for eight values of F, showing periodic (P) and chaotic
(C) behaviour.

Logarithmic plots of C(r) versus r are shown in Fig. 20 for three representative
values of F Saturation of the slopes for increasing embedding dimension m can
be observed. Table II shows the values of the correlation dimension v calculated
from the experimental data for several values of F. Also shown in Table II are
theoretical values of the correlation dimension and of the Hausdorff dimension
calculated using the Kaplan-Yorke conjecture.

7.4 Conclusions

In making the comparison between theory and experiment for the bipolar
motor some hopefully general features have emerged. Even with a crude
experimental realization and an idealized theory (at least regarding damping) the

qualitative agreement is good, not only concerning the types of motion observed
but also concerning the values of the forcing parameter for which they are
observed (particularly for small F).
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2.5 Logarithmic plots of C,(r) vs r for (a) F 3.2, (b)
F 25.6 and (c) F 70.4.

Table II
Experimentally and theoretically determined values of the correlation dimension v, and the Hausdorff
dimension DKY, calculated for the bipolar motor with different values of F The values of v,h have
been determined from a non-reconstructed attractor using N 20,000.

F V* exp V,h «KY

3.2 2.5 ±0.3 2.29 ±0.08 2.36
26 2.6 ±0.3 2.39 ± 0.07 2.41
42 2.9 ±0.3 2.42 ± 0.08 2.42
48 2.5 ±0.3 1.0 1.0
70 2.6 ±0.3 2.43 ±0.11 2.40
80 2.2 ±0.3 2.35 ±0.14 2.44
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The dimensions calculated from the experimental data are reasonably close

to the values obtained from numerical data, except where there is disagreement
on the type of motion. This introduces the main hazard of a comparison, namely
the sensitive dependence of the dynamics on the control parameters. From Fig.
11 it is evident that the Lyapunov exponents are very sensitive to changes in F.

Nevertheless, as in a graphic representation of finite resolution, the general
regions of chaotic and regular motion are evident. It is not clear as yet just how
precise and constant system parameters need to be before detailed comparison is

possible. However, the present study has shown that it is possible, with the
available number of data points and resolution, to determine the correlation
dimension of an experimental system if it is sufficiently small.

8. Analysis of broadband plasma fluctuations

In the following section, we examine the broadband fluctuations arising in a

tokamak plasma.
A tokamak is a toroidal plasma confinement device in which the plasma is

produced and heated by a toroidal current, and maintained in a toroidal magnetic
field. This produces a closed confinement well, formed of magnetic field helixes
located on concentric magnetic flux surfaces.

The experimentally measured confinement properties of such a structure are
by a factor 50 to 100 times lower than expected from classical diffusion processes.
The plasma is subject to instabilities, evidenced by the measured turbulent
fluctuations, which are believed to be the cause of the degradation of confinement
[51].

At the lower frequencies, typically in the kilohertz range, a tokamak
discharge exhibits coherent fluctuations (Aco/co«l) which are mainly due to
large-scale helical structures undergoing a global rotation. This type of activity,
usually called Mirnov activity, has been extensively studied and is known to have

essentially no effect on the measured confinement properties of the discharge,
provided its amplitude remains small.

In this section, we will concentrate on the higher frequency broadband
fluctuations, suspected to be linked with the observed confinement degradation
[52]. Since a tokamak plasma is a system possessing a very large number of
degrees of freedom, it is pertinent to ask whether the broadband fluctuations
display any low dimensional behaviour. Any means of characterizing these
fluctuations more specifically than by their spectral characteristics may provide
clues to the underlying dynamics.

8.1. The TCA tokamak

TCA is a circular cross-section tokamak with a minor radius a 0.18 m and a

major radius R =0.61 m [53, 54]. The data analysed here have all been obtained
from ohmically heated plasmas, with the following typical parameters: toroidal
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magnetic field BT 1.5T, plasma current /p 120kA, line-averaged electron
density he 3. IO19 m-3 and electron temperature on axis 7^(0) 800 eV. The
temporal evolution of a typical discharge is shown in Fig. 21. Three different
diagnostics are employed to measure the broadband magnetic and density
broadband fluctuations [55].

(i) Two triple magnetic probes, located 180° toroidally apart, one on the
top, the other on the outer equator, measure the three components of
the magnetic field in the shadow of the limiters. We examine here the
poloidal field fluctuations be.

(ii) A triple Langmuir probe, also placed in the shadow of the limiters,
measures the local fluctuations in the scrape-off layer. The probe is

located in the equatorial plane, toroidally opposite to the limiter [56,
57]. Both fluctuations of the ion saturation current is and the floating
potential Vf have been analysed in the present study.

(iii) An imaging diagnostic based on the phase contrast method [58], yields
line-integrated density fluctuations J he dl along selected vertical chords.
The chords are selected by displacing the detectors in the image plane.
To reduce the influence of the low-frequency component of the
fluctuations, these signals were filtered below 20 kHz.

The signals from each of the above diagnostics have been sampled in general
at a frequency of 2 MHz, with a total number of data points Ns 8192, and hence

'pN
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-2
50"
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neCio19 m 3J
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Figure 21

The temporal evolution of a typical discharge of the TCA tokamak.
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a total sampling time » 4 ms. This record length is short in comparison to the

flat-top duration of TCA discharges, which lasts up to 150 ms.

8.2. Raw data

The correlation algorithm has been applied to all the signals mentioned
above, even though in the following only four representative ones are shown: be,
is and J he dl in discharges without a significant level of Mirnov oscillations, and
for comparison, be in discharges exhibiting measurable Mirnov activity. The data

were recorded for a variety of TCA discharges, over a wide range of plasma
conditions and at different times during the discharge.

Figure 22 shows the first 500 lis of the time behaviour of each of the above

signals, acquired during the current flat-top of the discharge. The low frequency
oscillations associated with the Mirnov activity are clearly visible in the second
trace. In the is signal, a significant low-frequency component is noticeable, being
due to the good low-frequency response of the Langmuir probe system.

The power spectra of these signals, shown in Fig. 23, are all extremely broad,
with no indication of the presence of well-defined high-frequency peaks. In Fig.
23(b), the low-frequency Mirnov oscillation peak is clearly visible, whereas the
effect of the high-pass filter at 20 kHz on the J he dl signal is seen in Fig. 23(c).

(-O

.-Q

»• —

ie=

500100 300 400200
t Cms:

Figure 22
First 500 f*s of the measured signals for fluctuations in poloidal magnetic field b„ (a) without and (b)
with a significant level of Mirnov activity, (c) ion saturation current I, and (d) chord-averaged density
J n. dl.
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Figure 23
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Power spectra of (a) be, (b) bH with Mirnov, (c) i, and (d) J n, dl.

8.3 Correlation dimension

As measured from the autocorrelation function, the characteristic time t of
these fluctuation signals is rather short, about 2-5 fis. For the construction of the
required m-dimensional vectors, a time delay of p 2 lis was therefore generally
chosen for signals obtained from magnetic probes and the phase-contrast
diagnostic. A larger value, for example p 5 lis, appeared more suitable for
Langmuir probe data, and for magnetic probe data obtained from discharges with
a measurable level of Mirnov activity, due to the larger low-frequency component
in these signals.

Figure 24 shows the logarithmic plots of Cx(r) versus r for embedding
dimension 2=£m =£ 12, for the above signals. Due to the finite value of Ns, it was
observed that for m > 10 there does not exist a significant range of r for which the
slope of Cx(r) vs r is constant.

In Figs. 24(a) and (d), no evidence of saturation qf the slope with m can be
observed. However, Figs. 24(b) and (c), that is, be in a discharge with a

significant level of Mirnov oscillations and the Langmuir probe data, exhibit
evidence of a plateau for increasing values of m. The differences between the
Cx(r) vs r plots for the various signals are a consequence of the differences in the
level of the low-frequency component of the signals.

It may be shown that the origin of the observed plateau are the spurious
correlations mentioned in Section 4.2.5. To illustrate this fact, it is appropriate to
consider Ck(r) with k ^ 5. Figure 25 shows the logarithmic plots of Cx0(r) versus

r, for the same data as used in Fig. 24. There is clearly no saturation in slopes for
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Figure 24
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Logarithmic plot of C,(r) vs r for (a) be, (b) b„ + Mirnov, (c) is and (d) J he dl.

increasing values of m for any of the signals. This is confirmed by Fig. 26, in
which is plotted a graph of the slope of log Cx0(r) vs log r, as a function of m, for
the magnetic probe data without significant Mirnov level. The slope is equal to
the embedding dimension up to the largest value of m considered. Similar
behaviour is observed for the other data.

The same analysis has been performed on signals recorded at different times
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Logarithmic plot of ClQ(r) vs for (a) £>„, (b) b0 + Mirnov, (c) is and (d) J he dl.
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10

Figure 26

Slope of log Cw(r) vs log rasa function of the embedding dimension m, for be as shown in Fig. 25(a).

during the current flat-top, as well as during the ramp-up phase of the plasma
current. For none of the large sample of data was any clear indication of
saturation observed.

In addition, studies have been undertaken to investigate the effect of the
choice of sampling time. Fluctuation data were recorded, with ts 2a~5Lis,

a 0, 6, maintaining the same value of Ns 8192 and the same sampling
start time in the discharge. For most of the values of ts considered, similar results
to those presented above were obtained, provided that the effect of spurious
correlations was recognized and avoided. However, for the shortest sampling
time (corresponding to a sampling frequency of 32 MHz), the number of available
data points was too restricted to yield any finite region of r for which the slope of
C(r) versus r was constant. These observations are in accordance with the choice
of the optimum value of ts discussed in Section 6.5. Thus, contrary to the results
of other workers [59], no evidence for a measurably low value of v has been
observed by utilizing very short sampling times.

We therefore conclude, from the present study of broadband fluctuations in
the TCA tokamak, that there is no evidence for an attractor of low dimension
[55, 60, 61]. Preliminary studies by other workers [62, 63] have shown indications
of similar behaviour.

8.4. Conclusions

There exist two basic interpretations of the results obtained from the
analysis of the tokamak data. The first interpretation is that the broadband
fluctuations are associated with a high-dimensional system, v > 10 for the
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available resolution. This suggests that the fluctuations result from a system
having a large number of degrees of freedom. This is in agreement with the
traditional picture of plasma turbulence [51]. The observation of extremely broad
fluctuation spectra, with no coherent modes at frequencies above that of the
Mirnov oscillations and their low order harmonics, is consistent with this

interpretation.
An alternative interpretation is that the fluctuations are associated with a

transient system (of either high or low dimension). It is not evident that the
tokamak is in an equilibrium state (despite the constancy of all the measured

quantities) during the sampling of the fluctuations. The algorithm for calculating
the correlation dimension assumes that transients have decayed before the data
are acquired. The dimensional analysis of such a transient system would be

meaningless.

9. Conclusion

The goal of determining a non-linear model from the observation and

analysis of chaotic dynamics is clearly a long way off. Nevertheless, it is evident
that the application of correlation dimension analysis to experimental data is

possible despite the complications introduced by sampled data and extrinsic
noise. The bipolar motor and tokamak fluctuation dynamics have surprisingly
similar Fourier spectra (with a change of frequency scale), but are readily
distinguished by their correlation dimension. For the bipolar motor, a degree of
comparison between theory and experiment was found possible despite the
approximate nature of the model.

However, it has become clear that considerable care is required in the
application of the Grassberger-Procaccia algorithm. Not only the parameters of
the algorithm itself, but also those involved in the acquisition and reconstruction
of an attractor often have a limited range of validity. These problems may be the
cause of some of the diversity of results reported in the analysis of tokamak
fluctuations. Recently, a thermodynamic formulation which provides a density
/(A) of the continuous spectrum of exponents A on the attractor has been found
useful for application to experimental systems [67, 68]. Though related directly to
the generalized dimensions, the /(A) curve may be more accessible from
experimental data.
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Appendix

The bipolar motor: transition to chaos

In Section 6.3, the Lyapunov exponents were calculated for the mathematical
model of the bipolar motor, as a function of the amplitude of the driving force F
Figure 11 shows the existence of a series of values of F for which Xx A2 0, at
the beginning of each major band of chaos. These values, F™, n 1, 2,. °°,
for each band m, separate regions of increasing order of period doubling that the
motion of the system exhibits during its transition to chaos.

Values of F\, which precede the first band of chaos, are:

F\ 1.892

Fi 2.256

F\ 2.30885
F\ 2.320155
î (A-l)

FX 2.322568

Fl 2.323091

Fi 2.323207

This series of numbers converge, i.e.,

F'-F1
lim-f —^ 0 4.68 ±0.05 (A.2)

It is important to note that <5, called the Feigenbaum number [64], is a universal
constant, its value being independent of the specific equations governing the

period-doubling route to chaos.
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