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Global and Eisenbud—Wigner time delay in
scattering theory

By W. O. Amrein and M. B. Cibils')

Department of Theoretical Physics, University of Geneva, CH - 1211 Geneve 4

(2. VIL 1986)

Abstract. We present a new method for proving the existence of the global time delay (defined
in terms of sojourn times) as well as its identity with the Eisenbud—Wigner time delay in
non-relativistic quantum scattering theory. We show that this method is applicable to scattering by
local potentials V(x), x € R>, that decay faster than |x|™* but need not be rotation invariant.

1. Introduction

This paper is concerned with the relation between two definitions of time
delay in non-relativistic quantum scattering theory. For motivations and ref-
erences regarding these definitions we refer to the review article [1].

Let (1) denote the phase shift, at the kinetic energy A, for scattering by a
spherically symmetric potential V in a given partial wave subspace. A simple
heuristic argument shows that the number 7(1) =2 d6(4)/dA may be interpreted
as the delay of the outgoing radial wave packet with respect to the corresponding
free wave packet. If S(A)=exp (2i6(A)) denotes the associated S-matrix, then
7(A) = —iS(A)* dS(A)/dA. The corresponding expression for a general (not
necessarily spherically symmetric) interaction is the operator

() = ~iS)* = S(3) )

acting on functions of the angular variables @ = (6, ¢). S(A) is the S-matrix at
energy A (acting on functions of the angles 6 and ¢), and 7(A) is called the
Eisenbud—Wigner time delay operator at energy A.

A physically somewhat more transparent definition of time delay uses the
concept of sojourn times. If i, denotes the (square-integrable) wave function at
time ¢ of a scattering state, then the real number

nw)= af |w@Pax >0
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may be interpreted as the total time spent by this state during its evolution inside
the ball B, of radius r centered at the origin (if v, is normalized to 1). The
function ¥, is a solution of the Schrodinger equation i dy,/dt = (P*+ V), (we
use units with iA=2m =1). If ¢, denotes a freely evolving wave packet, i.e. a
solution of i d¢,/dt = P*¢,, which is asymptotic to v, at ¢t = —, i.e. such that
lim (y, — ¢,) = 0 in the Hilbert space norm as t— —o, then the difference

wor=[ af weobds-[ af lomPax @

corresponds to the time delay for the ball B, for scattering initiated in the state ¢.
(In terms of the Mgller wave operator Q_ = lim exp [is(P> + V)] exp (—isP?) as
s— —, 1, is given as ¥, = Q_¢,, hence the quantity 7,(¢) is entirely determined
by ¢ = ¢,—). The global time delay for the initial state ¢ is defined as the limit of
1,(¢) as r— oo, if this limit exists, and will be denoted by 7..(¢).

The following mathematical problems then arise naturally: (i) Prove the
existence of the limit of 7,(¢) as r— » for a suitable class of initial states ¢, (ii)
study under what conditions this limit is equal to the expectation value in the
state ¢ of the family of operators {t(A)} defined by (1) (see Remark 2(b) further
on for a precise mathematical definition of this expectation value).

For spherically symmetric potentials, these problems have been solved by
restricting them to partial wave subspaces [2]-[4]. For non-spherically symmetric
potentials there are interesting results for cases where the sojourn time 7,(¢) is
replaced by some other quantity which may be interpreted as some approximate
kind of sojourn time [5] [6]; the expression (2) for 7,(¢) was treated in [7] by a
stationary method parts of which seem somewhat formal to us, and also in the
earlier papers [8] [9] in which the problem of the limit of 7,(¢) was studied at
fixed energy and required a suitable interpretation of the limiting procedure due
to the appearance of oscillating terms. We refer to the review [1] and to [2]-[9]
for additional references on time delay.

Our own approach is as follows. We use the observation made in [2] and [5]
that in many circumstances the quantity 7.(¢) may be expressed as follows in
terms of the scattering operator S: one defines

o9)= [ “dK(en, (S*ES — E)oy), 3)

where F, denotes the projection operator onto the set of states localized in the
ball B,, and (-, -) is the scalar product in the Hilbert space L*(R?), and has

.(¢) = lim 7,(¢) = lim 0,(¢) 4)
in the following sense: if one of the two limits exists, then so does the other one,

and the two limits are equal. By writing ¢, = UY¢, with U? = exp (—iP?t), and by
using the unitarity of S (i.e. $*S =1) and the fact that S and U? commute, the
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expression (3) for 0,(¢) may be rewritten as

o9)= (9.5 [ vrEUI 4 5]0) 5)

The (bounded) first operator in the commutator will be shown to have the
following asymptotic representation:

L USEUDdi=1 Hy" — idJdh+ o(%), (6)

where d/dA is the operator of differentiation with respect to the kinetic energy A
and H, = P

The first term on the r.h.s. of (6) commutes with §, the commutator of the
second term with § leads to the Eisenbud—Wigner time delay upon insertion into
(5), and the commutator of the last term with S converges to zero as r— ». Some
regularity conditions have to be imposed on the S-matrix or the scattering
amplitude in order to control this last commutator. The S-matrix is not required
to be derived from a local potential; the interaction may be of a more general
type, and it need not be invariant under the rotation group.

In Section 2 we establish the asymptotic representation (6) and in Section 3
we apply this result to the time delay problem in two-body scattering theory by
local short range interactions. More precisely we give sufficient conditions on the
potential V for the validity of (4) and of the above-mentioned regularity
conditions on the S-matrix. We think that these conditions are not optimal.
Further applications will be presented elsewhere. We give the proofs in n
dimensions, n =2, since they are essentially independent of n. The physically
interesting case is of course n = 3.

2. An asymptotic representation

We consider a non-relativistic (one-body) scattering system in » dimensions,
where n=2. We denote by (-,-) and ||-|| the scalar product and the norm
respectively, by Q=(Q,,...,Q,) and P=(P, ..., P,) the (self-adjoint) n-
component position and momentum operator respectively in the (complex)
Hilbert space % = L*(R"), and we set |Q|=(Q*)"*=(X%, Q)" and |P|=
(P?)? = (X}-, P?)"?. The vectors in ¥ (i.e. the wave functions) will be denoted
from now on by f or g. The domain of definition of a linear operator 7 in # will
be denoted by D(T) and its norm by ||T||.

If w and 6 are complex-valued functions defined on R” and [0, )
respectively, we denote by w(Q) and 6(|Q|) the operators of multiplication in
L*R") by w(x) and 6(|x|) respectively, and by 8(|P|) the operator of multiplica-
tion by O(Jk|) in the momentum representation of the wave functions:

[6(QDf1(x) = 6(IxD)f(x),  [FO(IP)fI(k) = 6([K)f (k), ()



484 W. O. Amrein and M. B. Cibils H.P.A.

where §= %g denotes the Fourier transform of ge L*(R"). In particular, if
6 = x0,1 is the characteristic function of the interval [0, 1], defined by xjo,1;(1) =1
if 0=u=1 and xp01(¥)=0 if u>1, then x| (|Q|/r) is nothing but the
orthogonal projection F, onto the subspace of states localized in the ball
B, ={xeR"||x|=r}:

oa(@Un 100 = (EN = (% M=

We also define 8+ :[0, ©)— C by 8-(u)=1— 6(u).

We denote by H,=P? the free Hamiltonian and by {U}},.x the associated
evolution group, i.e. U? = exp (—iHyt). For t € R we set W, = exp (iQ*) and let C,
be the following unitary operator (the classical approximation of U?):

(€Hm = @i exp (X )7(). ©)

(8)

By expressing UY as an integral operator in configuration space, it is easy to show
that (see e.g. [10] or [11], Lemma 3.16):

U? = C;Wll(4t)' (10)
Since for any f, g € ¥:
1 " /X (X
(@1, 04QDCe) = [ 407 (3, )e (5
= | anko(2K)F0E(0),

we have the identity
Cro(lQDC, = (2 [«] [P)). (11)

To obtain the asymptotic expansion (6), it suffices to use the expression (10) for
U? and to develop the factor W14 into a power series, i.e. to write

-cEh(Z)

For k =0, we denote by @, the set of all wave functions f € L*(R") such that
(i) fe D(|Q|), (ii) f has compact support in R"\{0} (i.e. there are numbers
0<a<b<w», depending on f, such that f(k)=0 for all ke R” such that
k| ¢ [a, b]). We define A, to be the symmetric operator

1 1 1

A= ( P-Q+Q-P— ) (12)
° 2 \[PP |P[*

with domain D(A,) = 9,, where P- Q=Y PO,

Theorem. Let 0:[0, ©)— [0, ) be a bounded continuously differentiable
function such that O(u)=1 in a neighbourhood of u=0 and 6(u)=0 in a
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neighbourhood of u =, or let 8 = x|,1). Then one has for all f, g € P,:

im [ (5 070 X)ut) - [0 aut. )

s r 2

= —3(f, Aog)- (13)
If 6 is C', it suffices to assume that f, g € 9, for some € >0.

Remark 1. The term involving A, in (13) corresponds to the term denoted
—id/dA in (6). To see this, it suffices to express (f, Apg) in the spectral
representation of H, and to observe that A,=2id/dA in that representation (see
[12], pp. 168-170). More precisely, we identify L*R") with L*([0, »),
L*($""); dA) in such a way that H, becomes multiplication by A, and we write f;
for the component of f at energy A (fy is a function of the angles on the unit
sphere $”~', obtained by expressing f in spherical polar coordinates in momen-
tum space, see [12], p. 170). We then have for f € # and g € 9;:

~36, Ag) =3 [ dA(f 2i578:) (149

2 )y a1
where (-, -)o denotes the scalar product in L*($"~") (the integral with respect to
the angles; we shall also write ||-||, for the norm in L*(S"7')). In (14), dg;/dA
denotes the distributional derivative of the vector-valued function A—g,. If g
satisfies the stronger condition g € 9,, then it belongs to D(A$), hence to the
domain of the (maximal) differential operator d%/dA?, so that the function A+— g,
is strongly continuously differentiable.

Remark 2. (a) In order to insert the asymptotic representation (13) into (5),
one has to require that f and Sf belong to %,. In other words there should be a
dense subset of 9, which is mapped into %, by S. This is the regularity condition
on § mentioned in the Introduction. In rough terms it means that the scattering
amplitude should be twice differentiable with respect to all variables (energy and
angles). See also Section 3.

(b) Since the scattering operator commutes with H,, it is decomposable in
the spectral representation of H,, i.e. given by a family {S(A)},>o of unitary
operators acting in L*(S""') in such a way that (Sf), = S(A)f,. From (5) and (13),
the unitarity of S and the fact that S*H;'2S = H; "> we obtain that, for each f
satisfying f € 9, and Sf € 9,:

0.(f) = lim 0,(f) = —3(f, $*[Ao, S1f). (15)
Formally, writing A, = 2i d/dA, this implies that
o-(f) = =i[ a(f, s{Z5Wh) = [ dAGs, c@hn (15)

Without having recourse to distributional derivatives, one can justify the
passage from (15) to (15') for example in the following situations. (i) If S(A) is
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strongly continuously differentiable with respect to A, so that dS(1)/dA is a
bounded operator in L*(S"""). (ii) If S(A) is strongly continuous in A; in fact one
may then write:

S(A+¢e)—S(A
(A+¢2)—S( )ﬁ = % [SA+ &)frre— SAA] - S + e)[% (Fase —ﬂ)],

£

and since A—f; and A—S(A)f, are continuously differentiable (see Remark 1)
and S(A) is continuous, each term on the r.h.s. is strongly convergent as € — 0, so
that dS(1)/dA is well defined on f;. (iii) If the set {ge ¥ |g € @, and Sg € D,}
contains all vectors of the form g, = n(A1)h with n € C5((0, ©)) and A belonging to
some dense subset J# of L*(S”~"). In this case, by choosing 7 such that n(1) =1
on some interval [a, b] = (0, ©), one obtains that A— S(A)h is strongly con-
tinuously differentiable on (a, b), for each h e #f. Hence dS(A)/dA defines a
(possibly unbounded) operator in L*(S"~") with dense domain independent of A.

Equation (15') gives a precise meaning to the statement that the global time

delay and the Eisenbud-Wigner time delay are identical (provided that the
equality (4) holds).

Remark 3. (a) Below we shall give a simple proof of the theorem for the
physically interesting case where 6 = x|o ;. We shall indicate the proof for the
case where 6 is C' in an appendix. We shall only show that the remainder term,
denoted by O(1/r) in (6), tends to zero as r—, i.e. that this term is o(1);
somewhat stronger conditions on f and Sf have to be imposed in order to estimate
this term as O(1/r).

(b) It suffices to prove (13) for g =f. The case g # f can then be obtained by
using the polarization identity for (f, Tg), where T is a linear operator in ¥ ([13],
Problem 1.6.13).

Proof of the theorem (for 6 = x|y, and n =3). (i) We use (10) and (11), then
make the change of variables t—s =r(2t)"' and set v =(2r)"' to find that

J:(f, U?*B(@)U?f) dt—[ (f W,,(4,)C*6(|QI)C Wl,(4,)f) dt

I
‘—"J (f, W;k/(m)e(_ |P|)W1/(4,)f) dt
0

1 ( |P|) )ds
—. 16
= | (rwse(T)war) S (16)
Furthermore we have

: f (v "(m)f) < 4VL 2| d"k9(|kl)lf(k)|2

4Vf dufd"km 6(u) |f(k)|* = B(u)du(f Hy'"2p), (17)

2
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where we have made the change of variables s +— u = |k|/s (for fixed k), and the
interchange of the order of 1ntegrat10n is justified since f(k) =0 in a neighbour-
hood of the origin.

The preceding two identities show that the L.h.s. of (13) (for g =f) is equal to

commi [ (o) (o)) a

(i1) To prove the theorem, we shall show that one may interchange the limit
and the integral in (18), by invoking the Lebesgue dominated convergence
theorem. This will be done in (iii) below. We assume this result for the moment,

take f € 9, < D(Q?) and 8 = Xpo,11 and write y for x| 1) for the sake of shortness.
We then have

k=3 [ S (rwir( )|
= LS (Do) - (e o(F))

=4 f d?s | HFEFQN W) - TN W) (19)

The integral over d"k is zero for small s (since f(k) = 0 near the origin) as well as
for large s (since f(k) =0 near infinity and Q7 is symmetric, i.e. (f, Q*f) =
(Q%, f)). Hence an integration by parts gives (using spherical polar coordinates
k= |k| ®=ko with o =k/|k| € §*"! and d"k = k"' dk dw):

A 4
K.(f)= —i—f ds logsd—f dkk™! Sn_ldw[- -]
[

=——| s" 'dslogs dw[f_(s—;)_)(@QZf)(sw) — (7Q%)(sm)f(sw)]

4 Jo gre
S ! [(tog [P1 £, Q%) - (@%, log [P )] @0)

Since Q =iV in momentum space, we have
[#(log [P| Q°f — Q log [P| £)](k)
= —log [K| (Af)(k) + A[log K| f(k)]
=2(Vlog [k|) - V/ (k) + (A log [k|)f (k)

=3 )+ 2 . 2 (1),

[K[* Ik

in other terms we have on @2:

(log [P)Q* — Q*log |P| = —5 (=2iP - Q + n — 2) = —2iA,

|l’|2
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(see eq. (5.79) of [12] for the last identity). This shows that the limit on the L.h.s.
of (13) (with g = f) exists and is equal to (—3)(f, Aof), as claimed.

(iii) It remains to prove the applicability of the Lebesgue dominated conver-
gence theorem to (18). For this we rewrite (18) (with 6 = x) as

k= tim g [ [t + (5] e

where I denotes the identity operator in #, and we shall repeatedly use the
Schwarz inequality |(g, £)| = ||g]| ||~]]-

Since 7~ '(W, — I)f converges strongly to iQ*f as t—0, we may choose a
number & >0 such that ||t (W, — I)f|| =2 ||Q?*f|| for all Te[-4, §]. We then
have

2|Q%f|| ifvs=é
| = o -nr|= 22)
5 IFIl if vs=é.

Since

M M = M =1 f HkeR"” 2
SX[o,l] p = X[o,1] sl or a €K, (23)

one has the following estimates:

UH)”f ‘tuoﬂ)w|wf

=|ma+QﬁWmU+QWﬂ

s N |P| Wosf

=

(7+Q)™!

= 1+ 0yl. @4)
||
It is well known that the norm of the operator [P|™*(I + Q%) ™' in L*(R") is finite if
n =3 (this is nothing but the fact, written after exchanging the role of P and Q,
that the Coulomb potential is bounded relative to H,= P, see e.g. [11], Example
8.9). Hence (22) and (24) imply that the integrand in (21) is bounded by a
constant independent of v and s, which is sufficient for applying the Lebesgue
dominated convergence theorem on any finite interval [0, s).

For s — = one needs a different estimate. For this we observe that, except for
a change of its sign, the integrand in (18) (and hence also that in (21)) remains
the same if 8 is replaced by 6~ =1— 6 (and hence x by y* =1— y in (21)). Thus
it suffices to show for example that

500 =1 | (Bt (B wer) | <4 ©3)

A}
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for some constant M (depending on f), all v>0, all s >0 and t =0, vs.
To prove (25), we observe that, similarly to (23):

o) =zia(M) 1

Hence, as in (24):

P
(3
= (2 Iewal ) =2 IBwyl @)

j= j=1
(see Lemma 5 in the Appendix for an explanation of the equality used in (27)).

Since P,= —id/dx;, we have [P, W] =2tW,Q;, so that the last term in (27) is
majorized by the expression

\)

(tpl) P wir | = I 12| ]

S

2 IW(Bf + 20,0l = 3 (1B +21d Q1)
=n(| IPLfIl+2vs | I, @8

since |t| = vs. Together with (22), this leads to the following upper bound for the
Lh.s. of (25): () if vs = 6:

E,.() =2 1%l In I IB1 £l + 205 [ QI 11,
(B) if vs=6:

L PA
vs

&) s% Ier = D[ 2 U1

[H LaFil

2l +2)/QIfll|

This implies (25) and thus completes the proof. W

3. Time delay

The result of our theorem, combined with the remarks already made, has the
following implication for the time delay:

Proposition 1. Consider a (one-body) scattermg system in the Hilbert space
= L*R"), n=2, with free Hamiltonian H,=P* and total Hamiltonian H.
Assume the existence of the wave operators Q, = s — lim exp (iHt) exp (—iHyt) as
t— % respectively, let S=Q7Q_ be the associated scattering operator and
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assume that S*S = 1. For g € ¥ and r >0, define

w(g)= [ dlIEe " g~ |IEe gl 29)

Let f € LXR") be such that (i) f € D5, (ii) Sf € B, (i)
lim [7,(f) — 0.()] =0, (30)

where 0,(f) is defined by (5).%) Then t,(f) converges to a finite limit as r— =, and
this limit is given in terms of the Eisenbud—-Wigner time delay in the sense specified
in Remark 2(b).

As an application of Proposition 1 we verify the existence of the time delay
in potential scattering, i.e. for H=H,+V, where V is the operator of
multiplication by a real-valued function v(x) which, for n =3, is essentially
required to decay faster than |x|™*. We denote by o, (H) the set of all positive
eigenvalues of the Hamiltonian H and by Ag the spherical Laplacian, i.e. the
restriction of the Laplace operator A to the unit sphere $*~' in R”. We denote
also by Ag the self-adjoint realization of the spherical Laplacian in L*($"7"); it is
well known that this operator has purely discrete spectrum (its eigenvalues are
{Il+n-2)|1=0,1,2,...}, the degeneracy of each eigenvalue is finite, and the
eigenfunctions are the surface spherical harmonics [14]).

Proposition 2. In # = L*(R"), n=2, let H,=P* and H = P>+ v(Q), where
v:R"— R has the form

v(x) = (1+ |x])” *[v(x) + v,(x)], (31)

where a > max {4, (n +5)/2}, v. € L*(R") and v, € LY(R") for some q satisfying
q=2 and q>n/2. Let € be the set of all functions g € L*(R") that have the
following form in the spectral representation of H, (see Remark 1):

g = p(A)h, (32)

where p :(0, ©)— [0, =) is three times continuously differentiable and has compact
support in (0, ©)\o; (H), and h is a (A-independent) vector in L*(S"*™") belonging
to the domain of definition of the spherical Laplacian Ag. Denote by & the set of
all finite linear combinations of functions in €. Then, for each fe€ %, the
generalized sequence {t,(f)},~, converges to a finite limit as r — %, and this limit is
given by the expression (15") (A+— S(A) is continuously differentiable).

Remarks. (i) The condition (32) on g means that the Fourier transform g (k)
of g factorizes into a function p(k*) of the square of the wave vector k times a
function k(@) of the angular variables o = k/|k|, with # € D(Ag). The function p

%) Notice that |o,(f)| < for each f € % and each r <, since the operator F, is Hy-smooth (see

e.g. [1]).
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is required to be zero in a neighbourhood of each positive eigenvalue of H
(o, (H) is formed of at most a discrete set of points [15]). (ii) By using the result
(J2) given in the proof below, one can see that the dense set & is a domain of
essential self-adjointness for the Eisenbud—Wigner time delay operator.

Proof. (i) The existence of the wave operators Q, their strong asymptotic
completeness and hence the unitarity of § are well known for the class of
potentials considered here (see e.g. [12]). To deduce Proposition 2 from
Proposition 1, it suffices to show that

(A) if fe &, then fe @, and Sf € 9D,

(B) the equation (30) is valid for each f € 9.

The validity of (B) and of part of (A) follows from results proved by Jensen
in [5]. We shall use two results from [5] which we cite as (J1) and (J2) and which
are special cases of Lemma 4.6 and Theorem 3.5 of [5] respectively, applied to
the class of potentials considered here (it suffices to assume a >4 for this). We
denote by A the infinitesimal generator of the dilation group in L*(R"), i.e.

A=3P-Q+Q-P), (33)

and we set U, = exp (—iHt) and U? = exp (—iH,t).
(J1) If geL*(R") satisfies ge D(A®) and ¢(Hy)g=g for some ¢¢€
C5((0, )), then

[ N, - vdgl i< (34)
and
| I - udglldr < G5)

(J2) The S-matrix S(A) is three times continuously differentiable in A on
(0, ©)\o, (H), where the derivatives are with respect to the operator norm.

(i) To prove (B), we follow [1]. We notice that, in the spectral repre-
sentation of H,, the operator (33) has the form

(Af)x = 2iA df,/dA + if;. (36)

Consequently, since the function p in the definition (32) of € is assumed to be
three times differentiable, f € & implies f € D(A?). By using also (J2), we see that
f €9 also implies Sf € D(A%). Since p has compact support in (0, ), it follows
that, if f € 9, the inequalities (34) and (35) are true for g =f and g = Sf.

Now, since Q_f =Q_S§*Sf = Q. Sf, we have

2.(f) = o.(f) = f_mdt[HEU,Q_sz — |EURFIP]

+ [ al| EUL.SfIP - | E USSP
0
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Both integrands converge to zero for each ¢t as r— », and their absolute values
can be majorized uniformly in r by

(IEUQ-f| + IEUXI) | IEULQ-fIl - |IEU |
=2|flIEUQ_f - EUf =2 |Ifll I(UQ- - U]
and
(IFEULQ. S|l + |EUSEID) | | E UL S = |FUCSE |
=2|IfIl UL+ = UDSEl
respectively. We saw above that for f € & these bounds belong to L'((—, 0); dt)
and L'((0, ); dt) respectively. Hence 7,(f) — 0,(f)— 0 as r— « by the Lebesgue
dominated convergence theorem.
(i) To prove (A), it suffices to verify that fe & implies f e D(Q?) and

Rf € D(Q?), where R=S — 1. Now in momentum space the operator Q?Z is just
the negative Laplacian:
82 n—1 2 A S
(FQ®) = —A8K) = (- 577 -
ok |kl o[kl |k
at least if g is a smooth function. When rewritten in the spectral representation of
H,, (37) becomes

)& o), ()

Lol e A o

2 — —_—— —_—
(Qg)""[ Vo tat e B
If g has the form (32), with p and A satisfying the assumptions specified below
(32), then clearly each term on the r.h.s of (38) belongs to LZ((0, ),
L*(8™"); dA), hence their sum defines a vector g in . Since Q7 is given by (38)
on smooth functions, one then has (use partial integration for the terms involving
d/dA and the self-adjointness of Ag):

Qf.8)=(f8) VfeH(R"),

where #(R") denotes the Schwartz space of infinitely differentiable functions of
rapid decrease. Thus, if g € €, then g belongs to the domain of the adjoint of
Qs Since Q7 is essentially self-adjoint on ¥(R"), this means that ge &
implies g € D(Q?). This proves the first part of (A).

For the second part, assume again that ge €. Since S(A) is three times
differentiable on (0, ®)\o, (H) and p has compact support in (0, ©)\o, (H), we
see that Sg (and hence also Rg) is in the domain of the first three operators in the
square bracket in (38) (viewed as operators in L*((0, ©), L*(§""!); dA).) To show
that Rg € D(Q?), it thus remains to prove that {—A"! Ag(Rg);}1>o0 determines a
vector in L*((0, ), L*(S""'); dA). This will be done in Lemmas 1-3 below by
applying a method based on Hilbert—Schmidt estimates introduced in [16]. W

For the remaining estimate, we set Z(A) = —Ag/A and define Z to be the
associated operator in # = L*(R"). In the spectral representation of H,, Z is
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given as (Zf), = —A~' Agf;,. From (38) and the relation A, = 2i d/dA, we see that,
formally:

Q2 = AOHOAO * YnHal + Z’ Yn = %(n - 2)2 (39)

We denote by %B(X) the set of all bounded, everywhere defined operators in the
Hilbert space J#, by %,() the set of all Hilbert—Schmidt operators in % and by
|| B||> the Hilbert-Schmidt norm of the operator B.

To each pair {n,,n,} of functions from (0,«) to C satisfying
Inell3 =[5 |ne(A)?PdA < (k=1,2), we associate an operator P(n,, 17,) in
B(L*(R™)) defined as follows in the spectral representation of Hy:

[PGn, ) =m0 G db, (40)

where the integral is a vector-valued integral in L*(S""') and Z denotes the
complex conjugate number to z in C. We set P(n)= P(n, n) and observe that
Inl|=2P(n) is the orthogonal projection onto the subspace

#(n)={f e LA(R") | f, = n(A)h for some h € L*($" ")} (41)
(see Proposition 6.9 of [12]).

Lemma 1. Let V and H be as in Proposition 2. Let 1n:(0, ©)— C be three
times continuously differentiable and of compact support in (0, ), and let
¢ € C5((0, »)) be such that ¢(A) =1 for all A in the support of n. Then, for each
teR, the closure of the densely defined operator ¢(H)VU}ZP(n) belongs to
B,(#), and

[ Nownyvuezenl. de<e @)

—Q0

Proof. (i) It follows from Lemma 2.31 of [12] that V(I + Q%) ¢(H,) and the
closure of ¢(H)[v.(Q) +v,(Q)] belong to B(¥) for each 6 =0. Since ¢(H,)
commutes with U? and Z, we have

¢(H)VUZP(n) = ¢(H)Vo(H))U;ZP(n),

which is well defined on the dense set

M(n)={f e L(R") |, =n(A)h +g, with
he D(Ag)c L*(S"™") and ge #(n)*). (43)

Next we notice that

2
(AgHpA, + YnH{_)-l)U?P(ﬂ) = E tIU?P(T],, n), (44)
1=0
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with

no() =22 () — 4n'(2) — 4An"(2),

m(A)=4in(2) +8idn'(A),  mx(d) =4An(A).

It follows in particular that the operator
P(H)V (AoHoAo + v, Ho YUIP(n) = ¢ (H)V ¢ (Ho)(AoHoAo + v,Ho YUIP(n)

is defined everywhere in % and bounded, for each ¢ € R. Since U°Z = ZU®, we
then obtain from (39) that, for f € M(n):

¢(H)VU;ZP(n)f = ¢(H)VQ*U;P(n)f
= ¢(H)V(AoHyAo + v, Hy YUP(n)f
= ¢(H)VQ*¢(Ho) U'P(n)f
— ¢(H)Vo(Ho)(AgHoAo + v, H5 YU P(n)f. (45)

Now the operator (44) is in B(¥), (§+ 6Q*)( +|Q|) “¢(H,) is a Hilbert-
Schmidt operator if o >(n+4)/2 and &, 6 =0 (see e.g. [12], Proposition 3.6),
and the closure of ¢(H)[v.(Q)+v,(Q)] is in (). Hence (45) implies that
¢(H)VU}ZP(n) has an extension belonging to %,(J).

(i) We now prove (42). By using the results of (i) above, one sees that it
suffices to show that, for a > (n +5)/2:

Ji= [+ 8,00 + 101U (o, Ml di < (46)
where /=0, 1, 2, 63=1, 6, =6,=0 and p,: (0, *)— C has compact support in
(0, %) and is (! + 1) times continuously differentiable, i.e. p, € C;'((0, «)).

To prove (46), we notice that, if w(Q) is a function of the position operator
Q, one can exactly calculate integrals of the form

Ge=[ 10 + 1) w(@UIP(y, B dr (7)

More precisely, these integrals can be expressed in terms of norms of the type
I 1x1"(1+ X)) ““w(x)[|Z2mn (O=v=k), [In|l3 and A"y Q)% with yeR (see
Lemma 6.11 of [12] for £ =0 and k = 1; the cases kK =2 and k =3 which are also
needed below are similar to the case k=1 but involve additional partial
integrations in (6.50) of [12]). For our purposes here, it is not necessary to know
exact expressions for the integrals (47), it suffices to observe that one obtains the
following bounds for these quantities:

k
Ge=c Wi Inll3 2 147y ™|13, (48)

m=0
where ¢, and y,,, are finite constants (depending on n) and y”(1) =d™y()/
dA™. In particular, let us take yw=p, and k=0,1,...,/+1 and use the
assumption that p, e C{T'((0, »)). It follows that there are finite constants Cj,
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(!=0,1,2; k=0,1,...,/+1), depending on n, p, and 7, such that for each
{=k:

||+ 10D 5w @UEP (o1, ml3de = G ey 49)

—oc

To deduce (46) from (49), we choose € > 0 such that € < min {%, a—(n+5)/2}
and define N, ,(x,y) to be the integral kernel in L*(R") of the Hilbert—Schmidt
operator B, ;= (I +|Q|)*“*<(I + 8,Q*)(I + |Q|) " *U’P(p;, n). We set

Kie EI Szl(l +S2)—l—e—l/2 ds
and use the Schwarz inequality in L*(R; dt) to obtain that

J?SKIEI dt(1+ t2)l+e+1/2 ||(I+ |Q|)--l-—e~—1/23t'1||%

1+t2 I+e+1/2 )
o af ool
Klf X (1+ |X|)2 |]V,,1(X Y)l

147 3
=3 dth'dn dr [( ) g ! 21e+1/2

(Y mnr] ™

By applying the Holder inequality with p=(3+¢€)7!, g=G—€) ' and p~' +
g '=1in L'(R x R” X R"; dt d"x d"y), one finds that

P 1/2+¢
= [ ai+y a0+ 1QD¢+B, ||

oc 1/2—e¢
A aa+eyia+ieh B (50)
Each of the square brackets on the r.h.s. of (50) is a sum of terms having the
form of the Lh.s. of (49), with w(x)=(1+ 6x*)(1+ |x[)7**'*>** and the
finiteness of the r.h.s. of (50) follows from (49). W

Lemma 2. Let V, H and 7 be as in Lemma 1. Then the closure of R*ZP(n)
belongs to B,( ).

Proof. Let ¢ be as in Lemma 1 and feJ(n) (see (43)). Then fe
D(R*ZP(n)), and

R*ZP(n)f = QX(Q, — Q)ZP(n)f = QL¢(H)(Q. — Q)P(H)ZP(n)f

= Q*¢(H) fx dtd% U7 U¢(H)ZP(n)f

= iQi[ fx dtU,’*‘q)(H)VU?ZP(n)] f.
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By Lemma 1, the integral in the square bracket defines a Hilbert—Schmidt
operator (use for instance Proposition 1.22 (b) of [12] in the Hilbert space
$B,()). Hence the densely defined operator R*ZP(n) is closable, and its closure
is in B,(L*(R")). W

Lemma 3. Let V, H and € be as in Proposition 2, and let g€ €. Then
Rg e D(Z).

Proof. (i) Let {e;} be an orthonormal basis of L*(S"~') formed of eigenvec-
tors of Ag, and let f, be defined by (f;), = n(4)ex, where 7 is a function satisfying
the hypotheses of Lemmas 1 and 2. Then, since {f,/||n|.+} is an orthonormal

basis of the range #(n) of P(n), the Hilbert—-Schmidt norm of the closure of
R*ZP(n) is given by

IR*ZP(n)||z =

1 = . i
Tl 2 IR 2P
= InlE | d2In)F 3, IR ZEectf <= 1

Hence Li_; ||[R(A)*Z(A)e||5 < for almost all AeT'(n)={u>0|n(u)#0}. By
varying 7 one finds that the preceding inequality holds for a.a. A > 0. This implies
that the operator R(A)*Z(A), defined on the dense set N of all finite linear
combinations of e, e, . . ., has an extension X (1) belonging to %B,(L*(S""")) (set
Bix = (e;, R(A)*Z(A)ex)o and notice that ¥ |B;x|* < ; hence the operator whose
matrix elements in the basis {e,} are B, is in B,(L*(S""")), see e.g. Proposition
3.4 of [12]). (51) implies that

IR*ZP(n)I3= |0 j dA (W) 1 XA)I2

= Inlf2 | da In(WP X2y <= (52)

(ii) Next let & € L*(S"""). Then, for each e € ¥:
(R(A)h, Z(A)e)o = (h, X(A)e)o = (X(R)*h, €)o.

This shows that R(A)h is in the domain of the adjoint of Z(4)|,. But
[Z(A)|4]* = Z(1), because Ag is essentially self-adjoint on & (since A contains a
basis of L*(S""') formed of eigenvectors of Ag). Hence R(A)h € D(Z(X)) and
Z(A)R(A)h = X(A)*h for almost all A > 0.

(iii) Now let g € &, i.e. g, = p(A)h as in (32). Observe that, by the result of
(ii):

(ZRg) = pMZ(MR(Mh = p(A)X(A)*h  a.e. (53)
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Thus
| arlzrenlis= | dilo@F Ixy all

< | arlo@)P Iy Il
The last expression is finite by (52), hence (53) defines a vector in L*((0, ),
L*(S"");dr). ®
Appendix

We indicate here a proof of the Theorem of Section 2 for the case where 6 is
a C'-function. We shall use the following simple facts.

Lemma 4 ([11], equations (3.34) and (3.63)). Let t,z€R and vy €|0, 1].

Then
le” =1 =277 |z]7, (54)
1
1_( “T_1)—iz|=2|z|. (55)

Lemma 5. One has D(|Q|) =V, D(Q,), and for f, g € D(|Q]):

= Ej:] (ij’ ng): (56)

—0T

lim = (f, (Wve — W)g) =i 2 (Q.f, O Wg). (57)

Proof. For h e D(|Q|), set h, = Fh, where F, is defined by (8), and notice
that 4, € D(Q?) and that |Q| h,— |Q| # and Q;h,— Q;k in the Hilbert space norm
as r— . The first two assertions now follow from the following set of identities:

(1QIf. 1QIg) =lim (|QI f;, QI &) = lim (£, Q’,)

F—>x

= lim 2 (. Q78 = Z lim (Q;f,, O;8,)

r—):x, ] | r—x

Ezl (Of, 0;8)

Equation (57) can be checked by writing the scalar products as integrals in L*(R")
and by applying Lemma 4 and the Lebesgue dominated convergence
theorem. W
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Assume now that the function 8 in the theorem is C' and let f € @,,. = 9,
for some € € (0, 1). The proof of (13) in this situation is similar to the proof given
in Section 2; a few steps will be done only formally, a rigorous justification is not

difficult. Part (i) of the proof remains unchanged. For part (ii), we use (18) and
(57) to obtain that

k=3 [ S (r wio(Bws)|
A5 aron) (o=
it 2[(%9(‘”)%( (F)r0r)]

where 6 (|P|/s) denotes the multiplication operator in momentum space by the
function 26(|k|/s)/3k;. Now

36 ([kl/s) _ K ,(M)=_ k;s dO(|k|/s)
ok, ks kP ds

By using (58) and the assumption that 8(0) =1, 8(«) =0, one finds that

0= w (b0 oMy (o). Lr-or)

=_Z[(f,Q.PF2-f)+(f >P - Qf)] —3(f, Aof).

The preceding identity completes part (ii) of the proof. For part (iii), we set
T = vs and rewrite the integrand in (18) as follows:

o (e=nr o) £ (oS o)

= ((w, ~ 1y, 9('—-;')(144 - I)f). (59)

The first and the second term are zero for s € (0, sy], for some s,>0 depending

on the support of f, and the absolute value of each of them is majorized, for
0<t=T1, by

(58)

)

1 !
5;,2 o [uen,f Q1+ 16~

el <6°)

Hence the Lebesgue dominated convergence theorem applies to these two terms
on (0, s,] for any s, <oc°. For the third term in (59) one has the following bound:

) o) Tl T

sl—e |PI£/2

2

+1Q)"*

T
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The first norm is bounded by ¢ || H||1’2 for some finite constant ¢ depending on € and
the support of 6; the second norm is finite since the operator |P|™<*( + |Q|)™“ is
in B(#) (apply Lemma 3.13 of [12]), and the third norm is majorized by
2|1 1Q| (I +|Q|)<f|l (use (54) with y =3). Consequently the Lebesgue dominated
convergence theorem applies also to the third term in (59) on (0, s,], for any
§i <o,

For large s, we use instead of (59) the same expression with 0 replaced by 6
(which, except for an overall sign, is equal to the expression (59)). The first two
terms are then zero for s =s,, for some s, < depending on the support of f, and
admit a bound similar to (60) for s <s,.

For the third term we obtain the following bounds, by using the argument
that led from (27) to (28):

() if T=1:

L (ow-nr, o-(Bow, —I)f)\

<Al )
<Sello*. [2 4"5:— | +2101].
B) if T=1:
~ | (o -5 04 ().~ )|
=5 | o ()| now—oni [£ | =T

=Zcllo*l-2 01| 5 21871+ 211071 |

It now suffices to observe that, by (54) with y =

1 1/2
Tl -Defl =201l =2 3 lwfIF]

which is finite because f € &; implies f € D(Q,P) (¥Q,f has the same support
asf). W
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