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On the statistical interpretation of quantum
mechanics

By Hans Rudolf Tschudi')
(27. TI1. 1986, rev. 18. VII. 1986)

Abstract. A fundamental feature of physical statements is their universality: A theoretical
prediction concerning measured observable values of a concrete physical system is likewise valid for
every equal and equally prepared system. The predictions relate immediately to the infinite ensemble
of equally prepared, equal systems and to the single concrete system only as far as it is a part of the
ensemble. This implies a statistical interpretation of physical theories.

The physical experiment and the relationship between experimental and theoretical statements
are analysed in the frame work of this statistical interpretation. It is shown that no general
measurement problem occurs there. This problem and other ‘fundamental’ problems of quantum
mechanics originate from the erroneous dogma that the wave function is a property of the physical
object concretely present. _

Finally, the problem of hidden variables in quantum mechanics is discussed. It is shown, under
very general and natural assumptions, that quantum mechanical predictions cannot be reproduced by
classical theories.

The author is convinced that the understanding of the quantum formalism concerns every
physicist and should not be just the reserve of a few specialists. He has made a special effort to explain
clearly the essential ideas, avoiding unnecessary technical sophistication. This paper is addressed to
every interested physicist.

1. Introduction

More than 50 years after the formulation of quantum mechanics, the
interpretation of a pure state (the wave function) still remains contested. The
many different opinions concerning this topic may be divided into two groups: ‘(I)
The Statistical Interpretation (of the quantum mechanical formalism), according to
which a pure state (and hence also a general state) provides a description of
certain statistical properties of an ensemble of similarly prepared systems, but
need not provide a complete description of an individual system’ and ‘(II)
Interpretations which assert that a pure state provides a complete and exhaustive
description of an individual system (e.g., an electron)’ [1, p. 360]. For the sake of
brevity, we designate by Copenhagen Interpretation every interpretation contain-
ing assumption (II) although this definition may not always do justice to the
historical facts.

It is a characteristic feature of the Copenhagen interpretation that so-called
fundamental problems occur — most notably the measurement problem. L. E.
Ballentine [1] shows that these difficulties are direct consequences of assumption
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(IT) and that no such problems occur in the statistical interpretation. He argues,
furthermore, that assumption (II) is by no means necessary for the interpretation
of the quantum mechanical formalism and concludes that it should be dropped.
We share this opinion. But we think, moreover, that accepting or rejecting
assumptions (I) or (II) should rely upon better foundations than on mere
arguments of convenience.

The present work aims to indicate a more fundamental foundation of the
statistical interpretation. This foundation is based on a discussion of the
characteristics of physical statements and on an analysis of the manner a concrete
material system is described by physical theories (Section 2.1). It is shown that
every state — and hence also a pure state — corresponds to a preparation instruc-
tion and, therefore, to an infinite ensemble of similarly prepared, similar systems
(Section 2.5). We indicate how ‘measurement problems’ emerge from the
erroneous assumption (II) and that no measurement problems occur in the
statistical interpretation (Section 2.6).

The epistemological structure of the physical experiment and its function in
the physical description of nature are analyzed in Section 2.1. It is shown that the
preparation of the state of a system and the subsequent registration of an
observable value are two distinct parts of an experiment. These different parts
must satisfy different demands and they should not be merged into one diffuse
notion ‘measurement’. Preparation and registration are explained in detail using
as examples the preparation of pure spin states and the registration of spin by an
inhomogeneous magnetic field (Section 2.4).

The considerations of Section 2.1 are formalized in Section 2.2. This
formalization leads to a general formal scheme (GFS) of quantitative physical
theories corresponding to the axioms I to IV of Mackey’s axiomatics of quantum
mechanics [2]. Quantum and classical theories are special cases of the GFS -
equipped, of course, with additional structures (Section 2.3).

The GFS includes quantum mechanics in its statistical interpretation.
Physical objects appear there real and body-like, in contrast to the dual
wave-particles of the Copenhagen interpretation. But they partially evade human
manipulation so far as only probability statements about their future behaviour
are possible. Statistical predictions also occur in classical theories but are caused
there merely by unprecisely defined initial conditions. The question arises
whether the statistical character of quantum mechanical statements can be
reduced — as in classical physics —to inaccuracies of the preparation of initial
conditions. Can quantum mechanical predictions be obtained from classical
theories where an average of certain hidden variables has been taken?

The contributions to this problem of hidden variables in quantum theories
are very controversial. They extend from von Neumann’s proof that no dispersion
free quantum state exists [1, p. 374] to explicit constructions of hidden variable
models [3, 4, 5, 6]. We will not add new mathematical or formal points of view to
the problem. But our analysis of the general structure of quantitative physical
theories allows us to indicate precisely under which circumstances hidden variable
models are possible and why these conditions are inappropriate (Section 3).
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Our proof that no reasonable hidden variable models are possible (except for
the case of quantum theories the Hilbert space of which is two dimensional)
closely follows an important paper of Kochen and Specker [7]. Some objections
raised against this proof by Belinfante [8] and Bell [9] are criticized.

2. The conceptual foundation of the statistical interpretation of quantum
mechanics

2.1. Measurement, experiment, observable, state

The most typical trait of physical thinking consists of interpreting an
individual observation as a special instance of a general law. As an example, let
us consider an observation like ‘There was a thunderstorm in Zurich on August
15th 1985 at 5 p.m.” A physicist will not take place or time of the thunderstorm as
essential for its occurrence but rather given meteorological facts always producing
thunderstorms when they occur. He expects nature to follow causal laws which
can be formulated without explicit reference to historical or geographical
circumstances. The causes can be realized — in principle — by anybody anywhere
at any time and always yield, if realized, the same consequences. As the validity
of causal laws is asserted for all future situations where they apply, these laws
have the logical form of universal predictions.

The universality of physical predictions has a simple but important conse-
quence: If something is affirmed for an actually performed measurement it is
simultaneously asserted for each other similar measurement. Physical statements
refer, therefore, to classes of similar measurements and to a measurement at
present in performance only as far as it is considered as an element of such a
class. Let us call a class of similar measurements an experiment. The most general
universal prediction for an experiment is the prediction of relative frequencies of
the possible results of the single measurements — therefore a statistical prediction
with respect to the single measurement. These statistical predictions may also
contain deterministic laws as special cases: The relative frequency of the
deterministic result equals one.

For the sake of clarity, one should precisely distinguish between experi-
ments, notions and statements referring to experiments on the one hand, and
measurements, their notions and statements on the other hand. We call notions
and statements referring to the logical level of experiment theoretical, those
referring to actually performed measurements concrete or material. Notions used
for the description of other (theoretical or material) notions are clearly not
material. In many cases, the same expression may be used theoretically or
materially depending on the context (‘Copper has good heat conductivity’ but
‘This is a piece of copper’). We will see in Section 2.5 that notions such as ‘state’,
‘wave function’, ‘observable’ are all theoretical — properties of experiments and
not of concrete actual measuerments. Therefore, we do not agree with the
Copenhagen interpretation of quantum mechanics asserting that a wave function
is a complete description of a concretely present material system.
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Physical predictions are typically quantitative. The predict numerical values
of observables in comparison with given standard units. Materially, an observable
corresponds to a prescribed series of measurement actions effected in a concrete
measurement in order to ascertain the value of the observable. Let us call this
ascertainment a registration of the observable value.

A useful physical theory should correctly predict the values of certain
observables for a given experiment. These predictions are tested in actually
performed measurements. Physical predictions can never be proved by the results
of measurements because of their universality but at most refuted [10]. In
general, such a refutation cannot be achieved by a single experiment because
most theories contain empirical parameters such as masses, charges etc. But this
complication is of no importance for the present considerations.

Physical predictions on a physical system § have the logical form of univeral
implications: ‘At all places, at any time, and for any observer the implication
@(S)—gq 1s valid’. @(S) denotes the causes, initial and boundary conditions
imposed on the system S, or the sfate of the system. The asserted consequences g
consists in predictions of the observable values. We call the realization of a
certain state of a concrete material system its preparation. To a state corresponds
one or several preparation instructions, to an observable one or several
registration INSIructions.

A measurement which can be confronted with a theoretical prediction
divides, in a natural way, into two parts:

measurement

preparation registration
(of the state) (of the value of an observable)

First of all, one must realize the state @ of the system S. Then one has to
determine the value of the observable and confront it with the prediction g. In
the case of statistical predictions, several measurements are necessary for a
decisive confrontation.

The preparation of a state and the subsequent registration of the observable
value are logically different parts of a measuerment. Both parts are necessary.
Unfortunately, this distinction is not always made” and both notions are merged
into one diffuse notion ‘measurement’. This is the cause of much trouble in the
discussion of the measurement problem in quantum mechanics. We will say more
about the meaning of preparation and registration in Section 2.4. A survey of the
terminology used is given in Table I.

*) A short and incomplete survey on this subject: Heisenberg implicitly refers to the mentioned
distinction [11, p. 15, 19] but takes the registration to be insignificant. Pauli distinguishes
between measurements of the first kind — where ‘an immediate repetition of the measurement of
the same quantity yields the same value as the first measurement’ — and of the second kind
where this is not true [12, p. 72, 73]. However, these different kinds of measurements are not
seen in our context. We owe the clear distinction between the different functions of preparation
and registration to K. Popper [13, p. 25].
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Table I
A survey of the terminology used in the present work
state observable
theoretical physical experiment a given state an observable
notion system OO W v 5 ) (E:piXs )
corresponds to corresponds to
a preparation a registration
instruction instruction
material concrete, values of an
notion material observable
system (10 m/sec)
realization measurement preparation registration
on a mater-
ial system

2.2. A general formal scheme of quantitative physical theories

We may formalize the content of the last section in the following manner:
Basic notions of quantitative physical theories are observables A, B, ...
corresponding to registration instructions and states ¢, v, ... corresponding to
preparation instructions. A prediction attaches a real probability measure
W, »(A) to the observable A and to the state ¢. The quantity W indicates the
relative frequency with which the registered value of the observable A falls into
the interval A if the system is prepared according to the instruction @. In other
words, the theoretical prediction W, , and the result of concrete measurements
are connected as follows: The values a,, a,,...,a, of the observable A
registered on physical systems prepared according to instruction ¢ should form a
random test of the statistical ensemble W, .

The following postulates of separation augment the economy of description:

SI: Observables separate states. Two states ¢, y are identical if the
corresponding probability measures W, ,, and W, , are equal for every observ-
able A.

SII: States separate observables. Two observables A, B can be identified if
W, .o = Wp, for all states g.

This general formal scheme (GFS) of quantitative physical theories cor-
responds to the axioms I-1V of Mackey’s axiomatics of quantum mechanics [2].

W is a real probability measure allowing for additional structures. It is
possible in a natural way to define real functions of observables and convex linear
combinations of states. Let f:R — R denote a real Borel function (i.e. the full
inverse image f~'(A) of every measurable set A is again a measurable set). The
real function f(A) of an observable A is then defined by

Wiar.o(B) = W, o(f71(A)) (2.1)

for each state . A registration of an observable A yielding the value a is,
therefore, by definition also a registration of f(A) with value f(a).
Secondly, let us choose a countable sequence of states {¢;} of a physical
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system and a countable sequence {p,} of real numbers such that
0<p;<1 and 2, p,=1 (2.2)
j=1
The convex linear combination

D pWa e =Wa, (2.3)
j=1

is again a probability measure for each observable A and determines a state ¢ as
a convex linear combination of states contained in the set {¢;}. That ¢ is a
convex linear combination of states ¢; signifies — in practice for measurements —
that every sample of the statistical ensemble @ can be split up into samples of the
states ;. The number p; indicates the relative frequency with which the
registered values fall into the sample belonging to the ensemble ;. By the way, it
may not always be meaningful to interpret the convex linear combination ¢ in the
sense that the system is in the state ¢; with probability p;: The preparation
instruction corresponding to ¢ must not have any relations to preparation
instructions for the states ¢; (consider for instance Gibbs states!).

The given purely formal description of physical theories is by no means
exhaustive. An understanding of physical theories as black boxes spitting out
probability measures would be far too narrow. A theory interpreted this way
could only and strictly be applied to the experiment for which it was designed.
There would be no foundation for an extension to other even very similar
situations. But it is a decisive strength of physical theories that — besides the
prognoses for the group of experiments they should explain — they also give hints
on how to attack different physical questions or even exhibit principles valid for
all physical theories. General relativity is a deep and fundamental theory for
these reasons and not because an extraordinarily large number of experiments
exists whose outcomes are correctly predicted.

2.3. Quantum and classical theories as examples of the GFS

The GFS provides observables and states only on a symbolic level. In order
to be able to compute probability measures one needs a developed theory. In
such a theory, states and observables correspond to well defined mathematical
objects and there exist explicit instructions how to calculate the probability
measure W, . Quantum and classical theories are examples [2].

In the quantum mechanical description of a system with a finite number of
degrees of freedom, the set of pure states forms a Hilbert space, general states ¢
correspond to density matrices p,, observables A to selfadjoint operators A on
the Hilbert space. The real probability measure W, , is calculated as follows

W4 o(A) =Trace (p,Ei(A)) (2.4)

where E;(-) is the spectral decomposition of A.
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Two quantum mechanical observables whose spectral decompositions do not
commute cannot be simultaneously predicted exactly for all pure states. A
classical theory is, on the other hand, formally most simply characterized by the
condition that all states are convex linear combinations of atomic states. In an
atomic state, all observables attain sharp values. One presumes, in other words,
that the system can be prepared in such a way that the values of all observables
can be predicted with certainty — and that every preparation can be formally
considered as convex linear combination of such dispersion free preparations.
Observables appear as real functions on the atomic states, general states as
probability measures on the set of atomic states.

A classical theory is, therefore, a triplet (G, F, Z) where
— the set of atomic states forms the phase space G. G must be a measure space.
— F represents a family of real functions on the phase space . Each observable A
corresponds to a real function A € F.
— Z denotes the set of probability measures on G. A general state @ corresponds
to a probability measure u, € Z. Atomic states correspond to measures
concentrated on one point.

The predictions W, , are calculated according to the formula
Wao®)= [ e Adu, =, (A7'8) 2.5)

X 1s the characteristic function of the interval A € R, the set A'A is the full
inverse image of the set A under the function A (i.e. the set of all points in G
whose image under A lies in A). If the observable A is represented by the
function A then the function f e A corresponds to the observable f(A) because of
the identity A™'o f~' = (fo A)™"

It is characteristic that the notion state plays no important role in classical
physics. Having the example of planetary motions in view, it seems natural to
consider a classical system as a system in an atomic state and only to mention the
support of the point measure (not the measure itself). This support already
contains the whole information about the state of the system. The measure space
structure does not appear explicitly. One only speaks of the observables whose
sharply predicted values appear as real functions of the point support of the
atomic measure (the initial conditions) and time.

2.4. More about preparation and registration

Let us explain preparation and registration in more detail with the aid of the
Einstein—Podolsky—Rosen (EPR) thought experiment and of a quantum mechan-
ical model of spin measurement. Let us first consider Bohm’s version [14, p.
614ff] of the EPR experiment [15]: Two spin-1/2 particles are bound into an
unstable state of total spin 0 and disintegrate under conservation of the total spin.
No physical interaction between the two particles persists after disintegation. We
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confine ourselves to a description of the spin space of the particles represented as
a tensor product C* ® C? of two spin-1/2 spaces.
The spin variables of particles I and II have the form

si=5;®1, s;'=1®s;, j=1,2,3 (2.6)

and the state y of total spin 0 is given by
v=Vi(y.®y_—y_®y,) (2.7)

{y,, w_} being any orthonormal basis of C>. The expectation value of the
observables s; in the state y equals

(v, 5;¥) = 2((¥+, s5%+) + (Y, ;%)) = 2 Tracess;. (2.8)

The spin state of each particle after separation is, therefore, described by the
density matrix

30 )

It is worthwhile to inquire in greater detail into the transition from the total
system to its separated parts. The fact that we consider the two particles as
separated means that we want to describe physically the system of the two
particles exclusively by observables of the form A'® 1" and 1'® A". Observ-
ables corresponding to correlations between the two partial systems are not
contained in these sets. Correlations may nevertheless exist but they are
neglected and they can be neglected exactly if there are no physical interactions
between the particles. The set of observables {A'® 1", 1'® A"} no longer
suffices to separate all states of the tensor product space #' ® #"'. These states are
divided according to separation postulat SI into classes of states, equivalent with
respect to the reduced set of observables considered. Each of these classes
contains an element of the form p'® p'" solely determined if the sets of
observables A' and A" separate all pure states of the Hilbert spaces %' and 3"
The density matrices p', p" denote the states of the particles I and II if they are
taken as isolated systems.

Several disintegrations are now observed and the experiment is arranged in
such a way that one always gets a pair of particles I and II belonging to each other
and moving in positive and negative x-direction. The z-spin component of each
I-particle is registered. This is, at the same time, also a registration of the z-spin
component of the corresponding II-particle because the spins of the two particles
deriving from the same disintegration are strictly anticorrelated.

We now have the following situation: All II-particles together belong to a
spin state described by the density matrix (2.9). As it was explained in Section
2.2, each sample belonging to the mixture p can be decomposed into samples to
the pure states ¢, and ¥_. Owing to the strict spin anticorrelation, this
decomposition can be achieved for II-particles by registrations of the correspond-
ing spin components on the I-particles — even without physically disturbing the
II-particles.
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The preparation of a pure spin state is done by separation and filtering. First,
the II-particles are sorted out following the desired characteristic. Then one
eliminates the undesired ones. The filtering may be achieved by an absorbing
screen put into the particle path and a suitable timing. But it also may be done
without machinery using the total Il-particle jet for an experiment allowing,
however, for only a part of the registrations made.

It we change the direction of the Stern—Gerlach magnet and measure the
y-spin component of the I-particles we do not change anything on the II-particles.
They still belong to the ensemble whose spin state is described by the density
matrix (2.9). However, we are now able to decompose the sample belonging to
the mixture p into two subsamples to eigenstates of the si'-observable and to
prepare a pure s,-state by filtering. One has to decide, obviously, which
characteristic (s, or s,) one wants to sort out into subsamples. Each separation
yields a different pure state which cannot be decomposed further.

We see that the possibilities of preparation are here restricted. The
(generalized) Heisenberg uncertainty relations are statements on what kind of
preparations are possible. No such restrictions exist for registrations. We may
consider the registration of the z-spin component on particle I also as a
registration of the corresponding observable of particle II because of the strict
spin anticorrelation and register, in addition, the y-spin component of particle II.
Similarly, one can construct an apparatus registering sharply position and
momentum of a mass point at the same time [1, §3].

The principles of separation and filtering in order to prepare an ensemble
with certain properties was used implicitely at an other place in our example. The
decay is isotropic. The particles I and II belonging to one another and moving in
positive and negative x direction are sorted out by a system of impervious screens
and diaphragms.

The simple — and for us natural — explanation of preparation is clearly only
possible within the scheme of the statistical interpretation of quantum mechanics.
Each interpretation understanding a pure state as a property ‘pinned’ on a
concrete material system gets into serious difficulties by the EPR thought
experiment. For it must admit the II-particle to be in a pure state after the
registration of a spin component on particle I. Which state depends on which spin
component was registered on particle I although no physical interaction between
the two particles exists at that time.

These difficulties seem to originate from the fact that two systems, admittedly
free at the moment of registration on particle I, were formerly in interaction and
that certain correlations persist. The notion ‘free system’ becomes, therefore,
problematic for this non statistical interpretation of pure states. There are,
indeed, people pretending that this consideration shows the impossibility of
separated, free systems in quantum mechanics:’> Each piece of matter — even if it

) See for instance B. d’Espagnat [16, p. 84ff]. However, his ‘démonstration de la nonséparabilité
quantique’ rests essentially on the assumption that the representation of a state by a density
matrix is unique. This is true if sufficiently many selfadjoint operators (for instance all
projections) are considered to be observables. But this assumption is, as we have seen, not
satisfied if two non interacting systems are taken to be separated.
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is now separated for the sake of a measurement — was once in interaction with the
rest of the universe and correlations persist from that former interaction.

We must object to this triumph of holism that the possibility of isolating a
piece of matter independently of its position and its history and the possibility of
preparing it into well defined initial and boundary conditions is a fundamental
methodoligical principle of physics which constitute essentially the character of
physical statements. These presuppositions cannot be cancelled in a later stage of
theory formation. One cannot dispense with the possibility of realizing free
systems in physics neither practically nor theoretically.

Let us now discuss preparation and registration using as an example the
measurement of spin with an inhomogeneous magnetic field. We take the model
of the Stern—Gerlach experiment from references [14, p. 593ff.] and [2, §2]. The
model is discussed there in the Schrodinger picture. We solve it in the Heisenberg
picture — the picture corresponding to the conceptual structure of the GFS. In the
GFS, states denote preparation instructions (for instance of certain initial
conditions of mechanical systems) which show, by their nature, no time
evolution. In the Heisenberg picture, the meaning of preparation and registration
becomes especially clear.

The model of the Stern—Gerlach experiment consists in exposing neutral

spin-1/2 particles to an infinitely extended, inhomogeneous magnetic field of the
form

B=6()-6(T—1t)-(0,0,x,B") with B’'=const. (2.10)

i.e. the magnetic field acts only during the time interval [0, 7). The Hamilton
operator of the particle in the external magnetic field is then given by

2 2

H=L —u,B) =L —60:)- 6(T - 1) - bxys, (2.11)
2m 2m
where
n=ys, b=yB'>0. (2.12)

The magnetic moment p of the particle is proportional to the particle spin s, the
magnetic field finite in time but infinite in space. Although a magnetic field
constant in time but confined to a finite region in space would be more realistic,
the problem could then not be solved in the same explicit manner as the present
one. Our conclusions concerning registration and preparation are not altered by
the simplifying assumptions.

We now must integrate the Heisenberg equations

dA i
— =—_[H \
= [H, A] (2.13)
for the observables x, p, s with regard to the commutation relations

[pj» Pc] =0, [xj» x| =0

[s;, pe] =0, [s;, ] =0 j,k=1,2,3 (2.14)

h
[pjs Xi] = ? O
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and the equations

ih
51857 = —8,8, = 55 (+cycl.)

(2.15)
si=h/4 j=1,2,3
valid for spin-1/2 operators. We first obtain the equations
x=p/m (2.16)
p1 = const., p; = const., s; = const. (2.17)
D2=0(t)- 6(T —1t) - bs, (2.18)
and from these equations
x2(t) = - (p2(0) + Tbss) — L s3 + x,(0) (2.19)
m 2m

fort=T.

This operator equation signifies that a registration of x, at a time ¢ = T is also
a registration of the observable represented by the right-hand side of the equation
with identical measuring results. The observable s has only the values +#/2. If
we prepare the particle by a system of diaphragms and screens in such a way that
the absolute values of the observables p,(0), x,(0) are smaller than ép,/2, 0x,/2
(where, obviously, the Heisenberg uncertainty relations must be satisfied) and if
we choose the parameters ¢, T, dp,, Ox, such that

Op, <K hbT _ (2.20)
and
Ox,+ hbT?
_ mox; bT</2 2.21)

then the possible values of the observable x,(¢) fall into two disjoint regions
corresponding unambiguously to the measured values #/2, —#/2 of the observ-
able s;. A detection of the particles in one of the two disjoint x,-regions signifies
a registration of its s;-component.

The Stern—Gerlach magnet will, in fact, split up a thin particle jet into two
thin jets of well defined particle spin. The time evolution described assures this
separation independently of the initial spin state of the particles. This 1s exactly
what a registration should yield namely to determine the observable value at the
moment of registration independently of the history of the system and therefore
independently of its state, as well.

If the particles are not detected but the particle detectors are simply replaced
by apertures then the Stern—Gerlach magnet acts as a preparation apparatus for
spin polarized particles. The apparatus is even optimized in so far as the intensity
of a jet, already ss-polarized, will not be weakened, the observable s; being
conserved. Again, preparation occurs in two steps: Separation with respect to the
desired property (in this case by spatial separation) and filtering (elimination of
the undesired particles).
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In general we cannot predict in which of the two partial jets a particle will
appear after having entered the Stern—Gerlach apparatus. But we know that the
value of the spin component s; is +#f/2 if the particle appears in the
corresponding partial jet. This kind of questioning is characteristic for prepara-
tion. Characteristic for registration is the statement that the particle has appeared
in the jet of +#/2 particles. Its further future does not matter.

It 1s easy to determine and integrate the equations of motion of the
observables s, 5,. The equations of motion are

§1(5) = 0()O(T — £)bx(¢)s,(¢) (2.22a)
$,(t) = —0()0(T — £)bx3(t)s (). (2.22b)

x5(t) denotes the free motion of the particle in absence of the external magnetic
field

)= é 5(0) + x5(0). (2.23)
Integration of the equations of motion yields

51(¢) = 5,(0) cos A(¢) + 5,(0) sin A(¢) (2.24a)

53() = —5,(0) sin A(t) + 5,0 cos () ' €10 T (2.24b)
with

At) = 5—; p-(0) + btx,(0). (2.25)

We do not further discuss these operator equations but only remark that the time
evolution mixes the spin components s,(0) and s,(0) in a complicated manner.

2.5. A pure state is not a property of a concrete material system

The considerations of Section 2.1 contain a very general argument against
the opinion that a pure state provides a complete and exhaustive description of an
individual system. We are now going on to elaborate the argument more in detail.

The universality of physical statements (the requirement of independence
from position, time, and observer) leads to a remarkable and total disappearance
of individual traits in these statements. We already mentioned that each physical
prediction valid for a concrete piece of matter is also valid for every other similar
and similarly prepared piece of matter. It relates to the whole ensemble of
similarly prepared systems. All elements of this ensemble are identical as far as
the physical prediction is concerned. Referring to this, they have no individual
properties.

Preparations and registrations can be carried out following universal and
generally valid instructions. Physical systems can be characterized by universal
instructions such as, for instance, for the purification of copper, for the
construction of a pendulum, or for the generation of a jet of electrons. No proper
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names are really needed for these instructions. If proper names occur, they can
be removed: The unit of time is no longer attached to the rotation of earth but
defined by the number of oscillations of the light of a certain spectral line. The
instructions of how to build an apparatus producing the light and allowing for the
expression of a unknown time interval as a multiple of the light’s period can be
given without reference to proper names.

Clearly, physical statements on individuals are possible. But then their
individuality is no object. In physical cosmology, the universe is not considered to
be an individual but an example of a certain class of systems described by a world
model. It has no physical consequences that our universe is the only known
example. In scientific explorations of living beings, their individual properties,
their history, figure at most as disturbances impairing the reproducibility of the
results — disturbances which must be reduced as much as possible by suitable
preparations and standartisations.

These abstractions from all individuality make the physical description of
nature indirect and mediate in a particular way. Physical statements and the
occurring expressions refer directly to physical systems, to experiments, to
preparation and registration instructions. These notions can be conceived as
classes of concrete material sytstems, of measurements, of preparations, and
registrations on each of them. They refer to concrete material systems,
measurements and so on, only as far as they appear as members of the
corresponding classes.

One should not consider, therefore, physical observables (energy, momen-
tum, position of a point mass) and given states (the ground state of a hydrogen
atom) as properties of a concrete material system, as labels fixed to each of them.
Properties of concrete material systems can be only the possible outcomes of
registrations, the measured values of observables.* ‘Velocity of 10 m/sec’ is a
property of a real body i.e. the statement ‘This body has a velocity of 10 m/sec’ is
a meaningful sentence. ‘Velocity’ is not the property of a concrete body but a
theoretical notion. What could be the meaning of a sentence like “This body has a
velocity’? That it 1s not at rest? The sentence is then short for ‘This body has a
velocity different from zero’ — again a statement about measured values of an
observable. Or that ‘velocity’ represents an observable measurable on a body?
But this is a statement on the notion ‘body’ not on ‘this body here’, a real object.
Another example: ‘Colour’ is not a property of a concretely present body but
‘red’, ‘green’, ‘blue’ are.

These remarks would hardly be necessary if one could not read sentences
like ‘A point mass in a pure momentum state has no position’. The corresponding
correct statement 1s that *A point mass in a momentum eigenstate can be found
with equal probability anywhere in space and, as a consequence, its position

%) I am conscious that I do not use a precise linguistic terminology. I do not feel that it is a suitable
place here to describe an exact terminology of speaking about language (see for instance [17] for
this purpose).
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cannot be predicted’. This is clearly different from ‘having no position’: A man is
not unwealthy if he is not able to predict the amount of its wealth.

A given state is a symbol of a preparation instruction. In a developed theory,
a state can also be considered as a symbol for all possible predictions of the results
of observable registrations in virtue of the function ¢ — W , .. The sentence “This
body is in the state ¢’, means that the body was subject to the corresponding
preparation process, that it belongs to the ensemble of similarly prepared bodies
represented by the symbol @, and that the prediction W, , is asserted for the
observable A. ‘The state ¢’ is not a property of ‘this concrete body here’ like ‘the
velocity of 10 m/sec’. This interpretation might be defendable if the sentence
‘This body is in the state @’, can be considered to be synonymous to ‘The
observable A, has the value a,, A, has the value a,, . . ., for this body’, i.e. if all
observables can be sharply predicted.

This is the case for a system in a classical atomic state. But even then we
must refuse as unsuitable the opinion that a pure state provides a complete and
exhaustive description of an individual system. It mistakes the epistemological
status of the notion ‘state’: A state corresponds to a preparation instruction and,
therefore, to an ensemble of similarly prepared systems. For the non-dispersion
free states of quantum mechanics, the Copenhagen interpretation leads to the
known problems and paradoxes whereas no such problems occur in the statistical
interpretation. This is briefly illustrated in the following section using the
measurement problem as an example.

2.6. Some remarks on the problem of measurement in quantum mechanics

Once the fact is accepted that physical properties allow for a symbolic
representation in some mathematical language no ‘fundamental’ measurement
problem occurs in the GFS and, therefore, neither in classical physics nor in the
statistical interpretation of quantum mechanics. Physical observables are measur-
able quantities by definition. What does —in the framework of the GFS - the
statement mean that W, (A) is the probability to find the registered value of the
observable A 1n the interval A if the system is prepared in the state ¢? Firstly,
that there exists, in fact, at least one apparatus suitable for the registration of A
and, secondly, that the values registered with it form a sample of the statistical
ensemble W, .(-). The first part is almost tautological. What sense could be
attributed to an observable for which no registration procedure exists? The
definition of an observable must include instructions how it can be registered — at
least on principle. The second part does not concern the possibility of registration
as such, but the theoretical predictions.

Analogous reflections are valid for preparation. There must exist, at least on
principle, preparation instructions for all states theoretically pretended to be
preparable. It makes little sense to introduce principally unpreparable states into
a theory.

An entirely different question is why a given apparatus allows a suitable
preparation or registration. Such a discussion can be held theoretically only on
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the level of a developed theory. Our model of the Stern—Gerlach apparatus is an
example of this. It might seem to be unsatisfactory at first sight if we do not
include a detailed theoretical description of the impervious screens and diaphr-
agms forming the particle jets or of the particle detector in our model of spin
registration. But it is enough to assure empirically that a given apparatus is a
suitable preparation or registration device and it is not necessary to have a
detailed insight into how it works. It suffices to ascertain empirically that
diaphragms made from empirically rigid metal sheets sort out a ray of light which
can be split up into its colours by a glass prism and that a photographic plate (or
the eye!) are suitable light detectors. Such empirical knowledge is, however,
indispensable for methodological reasons: Only the above-mentioned means
allow us to develop and to test theories like Maxwell’s theory of light or theories
concerning the structure of matter and the interaction between light and matter.
Only then i1s a theoretical understanding of the mechanisms acting in photo-
graphic plates or glass prisms possible.

How do ‘fundamental’ measurement problems occur in the Copenhagen
interpretation? Due to the idea that a pure state is attached to the single concrete
system, preparation can no longer be understood as separation and filtering
process on the ensemble. The preparation of a pure state must be treated on the
level of the single particle. The difficulties arising appear especially clear and
paradoxical in the EPR thought experiment which we have already mentioned.
Registration problems occur for all pure states not being eigenstates of the
corresponding observable because the pure state relates then to more than one
value of the observable. One has, therefore, to pack the statistical dispersion of
the values into the single concrete system which then becomes the carrier of
contradictory properties. These undesirable consequences are valid not only for
microscopic but also for macroscopic systems by reason of the superposition
principle (Schrodinger’s cat paradox).

We must forgo further discussions of the measurement problem as well as an
appreciation of the literature dealing with it. The interested reader may consult
Ballentine’s well written article [1, §4].

3. The problem of hidden variables, Kochen and Specker’s theorem

In classical theories, simultaneous sharp predictions for all observables are
possible (the system is then in an atomic state) and statistical statements are mere
consequences of an inaccurate preparation. In a quantum theory, there are no
atomic states. Classical theories connect causes and effects in a more rigid manner
than quantum theories — deterministic classic statements are stronger than the
probability statements of quantum theories. It is, therefore, an interesting
question whether the statistical character of quantum mechanical predictions is
intrinsic, not reducible to inaccuracies of preparation.

In other words: Let us assume that a quantum mechanical description of a
physical system is given. Is there a classical theory yielding the same probability
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predictions for all observables and states of interest as the quantum theory
considered? The classical theory may contain parameters which principally cannot
be controlled and which one has to average over. Such a theory is called a
classical model (with hidden variables) of the quantum theory.

A classical model of a quantum theory should respect the epistemological
structure of the GFS. Therefore, we define such a model to be a classical theory
(G, F, Z) — as described in Section 2.3 — with a mapping from the operators of
the quantum theory into the measurable real functions on the phase space G

A—>F,eF (3.1a)

and a mapping from the density matrices p of the quantum theory into probability
measures on G

p—>u,€”Z (3.1b)
such that
W4 ,(A) = trace pE4(A) = u,(F;'(A)). (3.1¢c)

(We no longer discern between states and density matrices, observables and
operators). Moreover, the observable f(A) shall always be represented by the
function f ° F, if A is represented by the function F,:

Ff(A)szFA' (3.1d)

The following conception lies behind this definition: Each quantum state
corresponds to a classical mixed state which is interpreted as a probability
distribution over atomic states. A classical system always is in an atomic state, but
one does not know in which one. Hidden variables specify the actually realized
classical state.

Such classical models do not exist. This is shown by

Kochen and Specker’s theorem. There is no classical model (in the sense of
conditions (3.1)) of a quantum theory whose Hilbert space has a dimension
higher than two, if a sufficient number of operators are observables.

Proof. As a preparation, let us determine the structure of classical discrete
observables. An observable is discrete if it has only a finite or countably infinite
number of different values a,, a,,..., a,,.... Discrete observables lead in
classical models to a partition of the phase space. To each value a; of the
observable A corresponds a subset M; of the phase space G

GoM=A""[a]) j=1,2,...,n,... (3.2)
The sets M, being the total inverse images of the disjoint sets [a;] are disjoint
M,NM, =0 if j+#k (3.3)

and they cover the total phase space

UM =G. (3.4)
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The discrete observable A has, therefore, the following classical representation

A(p) = 2. ajx(p) (3.5)

J

for p € G where y;(p) denotes the characteristic function of M;. A question (a
discrete observable with the two observable values a, =0 and a, = 1) corresponds
to a characteristic function.

We show now that no classical model of the spin variables of a particle of
spin one exists. The Hilbert space of these spin variables is isomorphic to C°.
Observables are represented by Hermitian 3 X 3 matrices if a fixed orthonormal
basis is chosen. The commutation relations of the spin components

J=#M, [(e, M), (e’,M)]=i(e v e', M) (3.6)

imply the following matrix representation of the components of M [18]: Let us
denote by {e;, e,, e;} the unit vectors indicating the directions of the axes of a
right handed Cartesian coordinate frame in R>. There exists then an orthonormal
basis ¥, ¥,, W3 of C? such that

S[01 0 (0 -0
(el,M)=\/; 10 1]}, (ez,M)=\/; i 0 -il
010 0 i 0
10 0
e, M)=[0 0 0]. | (3.7)
00 -1

Using this matrix representation of spin components one easily verifies that the
opeators

P(Se))=1—(Se;, M)*, j=1,2,3 (3.8)
satisfy the relationships

P(Se;)P(Se,) = 6, P(Se)) (3.9)

P(Se;) + P(Se;) + P(Se;) =1 (3.10)

for any orthogonal matrix § with det S =+1. The projections P(Se;) can be
considered as function of an observable Ag for each right trihedral
{Se,, Se,, Se;}:

As=a,P(Se,) +a,P(Se;) +azP(Se;) with a,<a,<a; (3.11)
and

P(Se;) =fi(As), j=1,2,3 (3.12)
for instance

(As — ay)(As —a3)
(a1 — az)(a; — a3) l

P(Se)) = fi(As) = (3.13)
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We therefore relate a projection P(e) to each direction e € R® in such a way
that the properties (3.9, 10, 12) are valid for every right trihedral {Se,, Se,, Se;}.
The projection P(e) corresponds to the question: Does the spin component
(e, M) have the value zero?

There is no classical model for this set {P(e)} of quantum mechanical
observables. Suppose that such a model exists. The projection P(e) is then
represented by a characteristic function

Xe: G—{0, 1}. (3.14)
It follows from equations (3.5, 1d, 9, 12) that
Xe](p) +Xez(p) +Xe3(p) = 1 (3' 15)

for all points p of the phase space G and for each orthogonal trihedral {e,, e,, es}.
But the existence of functions satisfying equations (3.14,15) is prohibited by
Gleason’s theorem [19] which can be formulated as follows for our purposes:

Gleasons theorem: There exists a positive symmetric matrix R with trace
1 for each non negative function ((e) on the unit sphere satisfying the
condition fB(e;) + B(e;) + B(es) =1 for each orthogonal right trihedral {e;, e,, €3}
such that B(e) = (e, Re).

Equation (3.15) can, therefore, not be satisfied by characteristic functions
having only 0 and 1 as functional values. QED

Kochen and Specker show by a direct and elegant proof that the equations
(3.14,15) are contradictory without the use of Gleason’s deep and difficult
theorem [7]. One only needs a finite number of trihedrals (at most 39 with 109
different directions [20]) to get a contradiction. They also construct a classical
model for the spin variables of a spin-1/2 particle (a different model is given in
[6]). The above construction breaks down in the case of two dimensions: A
characteristic function on the unit circle satisfying equations analogous to (3.15)
can be given freely on a quadrant.

Finally, let us consider circumstances under which hidden variable models
are possible.

First of all, classical models may become possible if the relationship (3.1a) is
weakened to

A—>F,,€eF (3.16)

i.e. if the classical representative of an observable also depends on the quantum
state p. Bohm’s hydrodynamic interpretation of quantum mechanics [3, 4, 5] has
this feature. However nothing is gained with this weaker relationship. On the
contrary, the mapping (3.16) means that the mathematical representation of an
observable — and also of the time evolution of the observables — depends on the
manner the system was prepared. The fact that the properties of concrete physical
systems (namely the values of its observables) can be determined independently
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of the system’s history by given registration devices is no longer expressed by the
formal structure of the classical model.

That the time evolution of the observables depends on the state is even
worse. The conceptual separation of the physical description into a law of motion
and initial conditions corresponds to the idea that physical systems are objective
entities, provided with a fixed structure, which may carry different properties or
properties changing with time. In the theoretical description of physical systems
(for instance within the framework of non-relativistic quantum mechanics), the
algebra of observables — above all the form of the Hamiltonian — characterizes the
general nature of the system. The state determines the accidental set of properties
actually realized. This distinction allows to speak of hydrogen atoms being in
different states. Otherwise, one would be forced to consider hydrogen atoms in
s — states and hydrogen atoms in p — states to be totally different entities.

A ‘classical model’ mixing up observables and states in the above manner
misses the very heart of the physical description of nature. In comparison with
this conceptual clumsiness, it is of minor importance that Bohm’s hydrodynamic
model of quantum mechanics is not a classical model in our sense because it
violates condition (3.1d).

Belinfante [8] and Bell [9] point out a tacit assumption in the construction of
the set { P(e)} which they criticize: Each projection P(e) can be considered as a
function of an observable Ag in many different ways

P(e) =f(As) =f(As) ="~ (3.17)

all corresponding to different registration devices for the same observable P(e).
Belinfante and Bell argue now that it is natural to represent different registration
devices of the same quantum mechanical observable by different observables of
the classical model - these classical observables having the peculiar feature to
yield the same probability distribution for all states preparable in reality.”)

Is it really natural to do so? In fact, classical models become possible if one
allows for a splitting up of quantum mechanical observables into several classical
observables. This is easily shown by the following construction, a slight
adaptation of an argument given by Kochen and Specker: Choose a subset 0’ of
the set 0 of all observables you are interested in in such a way that every
observable A €0 can be obtained as a real function f(A') of an observable
A’ €0'. Choose the space R” as the phase space G of the system. The observable
A’ is represented by the real function A':R” — R which depends linearly on the
coordinate belonging to A’ and is independent of all other coordinates, A is
represented by the function fo A’. The state g is represented by the product

°)  Actually, Belinfante and Bell formulate their objections slightly differently. They argue that the
result of the registration of an observable may depend on the registration device used. However
this conception implies that the observable value ceases to be an objective property of the
inquired system alone — an idea which particularly lacks attractivity in connection with classical
hidden variable models. The essential assumption is, in any case, that the observables f(Ay) and
[#(Ag), identical from the quantum mechanical point of view, should be represented by
different functions of the classical model.
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measurc

n W4 o(0). (3.18)

A'el’

In this classical model, no relationships exist between observables except that
an observable may be a real function of another one. This model is not much
more than a list of the occurring probability measures arranged into the formal
structure of a classical theory. However, science is more than a mere list of
observations. The difference exactly lies in the neglected relationships between
observables.

The above-mentioned argument appears now less satisfactory. If it is used
without restrictions one is inevitably led to the trivial classical model just
described. Therefore, at least certain different registration devices of a quantum
observable should be represented by the same observable of the classical model.
We know from theoretical insight into the registration methods which differences
between registration devices are irrelevant and when two essentially different
apparatuses register the same observable. These arguments are questioned if
quantum observables are split up — and one should have reasons why they might
be mistaken.

Every splitting up of quantum observables weakens the structure of the
theoretical description. It invalidates structural equations between observables of
the type (3.17) and is a step towards the undesirable trivial classical model.
Kochen and Specker’s theorem shows that classical models are possible only at
the price of such a weakening.

4. Classical models are incomplete

We have shown in the last section that there are, in general, no reasonable
classical models of quantum theories respecting the epistemological structure of
the GFS. Quantum mechanics is remarkably unimportant for the proof. The
mapping (3.1), the notions ‘real function of an observable’, ‘sum of real functions
of the same observable’, ‘projection’ can already be entirely formulated in the
GFS. We only need quantum mechanics to assure the existence of the set { P(e)}
of projections with the properties (3.10, 12). What we have shown, in fact, is that
there is a system of observables in the GFS which can be described in quantum
mechanics but not in classical physics —and which corresponds to observable
properties of real physical systems [7, § 4].

This is a remarkable answer to the question ‘Can Quantum Mechanical
Description of Physical Reality Be Considered Complete?’, the title of the
famous paper of Einstein, Podolsky, and Rosen [15] where the authors show that
a pure quantum state can hardly be taken as the complete physical description of
an individual material physical system. From our point of view, the question of
completeness must be asked differently. We explained in Section 2.5 why we
never consider a state as the property of an individual concrete system (even not



Vol. 60, 1987  Statistical interpretation of quantum mechanics 383

in classical theories) — not to speak of a ‘complete description’. We propose to
call a class of physical theories complete if it allows for the formulation of any
system of prognoses relevant in the field covered by the mentioned class of
theories. We think that non-relativistic quantum mechanics of physical systems
with a finite number of degrees of freedom is complete in this sense — we showed
that classical theories are incomplete.

We conclude that nature reveals principally incalculable elements even in the
field of physics. Quantum processes are intrinsically indeterministic — only prob-
ability predictions are in general possible. This fact is opposed to expectations in
classical physics most pertinently expressed by Laplace’s demon: A demon once
knowing the forces between all atoms of the universe and their positions and
velocities at a given moment could calculate the whole history of the universe, its
earliest past and its most distant future. Kochen and Specker’s theorem shows
that this conception of the physical world is too narrow, that already - or
just — the most simple physical systems behave differently. There are sets of
observables corresponding to real physical phenomena which cannot be predicted
in the manner of classical physics. Relationships of the kind of Heisenberg’s
uncertainty principle determine absolute frontiers of human command of nature.
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