Zeitschrift: Helvetica Physica Acta

Band: 60 (1987)

Heft: 2

Artikel: Détection sélective et à distance de la pollution par LIDAR

Autor: Wolf, J.-P. / Wöste, L.

DOI: https://doi.org/10.5169/seals-115851

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

DETECTION SELECTIVE ET A DISTANCE DE LA POLLUTION PAR LIDAR

J.-P. Wolf and L. Wöste, Institut de Physique Expérimentale, EPFL, CH-1015 Lausanne, Switzerland

<u>Résumé</u>: Une station LIDAR (Light Detection And Ranging) mobile a été construite pour mesurer à distance les concentrations de NO_X , SO_2 et O_3 . Le fonctionnement est basé sur le principe de l'absorption différentielle et utilise un laser excimer pompant 2 colorants. Les premières mesures sur le terrain ont été effectuées. La limite de détection est estimée à $^{\circ}$ 10 ppb, et ceci jusqu'à des distances de l'ordre de 3 km.

Introduction

Les méthodes actuelles de détection de la pollution (fluorescence UV, spectrométrie IR, chimie luminescence,...) bien que sophistiquées, ont le désavantage d'être très locales et ponctuelles dans le temps. Or, la pollution de l'air est essentiellement dynamique, non seulement du point de vue des phénomènes de transport (vents, ascendances thermiques, ...) mais aussi des très nombreuses réactions chimiques et photochimiques. Cette constante évolution de l'atmosphère et de la concentration de ses composants rend inefficaces les techniques classiques. Les forêts dans le Valais constituent un exemple typique de ce manque d'analyse à grande échelle et en permanence. En effet, le rôle de la pollution dans la destruction progressive des forêts valaisannes n'a toujours pas pu être déterminée d'une manière précise. Le système Lidar (Light Detection And Ranging) mobile que nous avons réalisé aujourd'hui avec le soutien du Fonds National permet de faire point par point, sur des distances de plusieurs kilomètres, des mesures sélectives de concentration de polluants (de l'ordre de la dizaine de ppb), et ceci d'une manière interactive (i.e. sans avoir besoin de prélever des échantillons comme pour les procédés classiques).

Le procédé Lidar

Lorsqu'un faisceau laser traverse l'atmosphère, il est diffusé dans toutes les directions par les particules présentes dans l'air. Cette diffusion 162 Wolf and Wöste H.P.A.

se fait essentiellement par diffusion Rayleigh sur les molécules N₂ et O₂, et par diffusion Mie sur les aérosols (poussières,...). De par la grande concentration d'aérosols, c'est la diffusion de type Mie qui prédomine à basse altitude. Remarquons également qu'une partie du faisceau est diffusée vers l'arrière et peut ainsi être collectée par un télescope placé concentriquement à celui-ci (figure la). La lumière est ensuite focalisée sur un photomultiplicateur au travers d'un filtre spectral adapté à la longueur d'onde du laser.

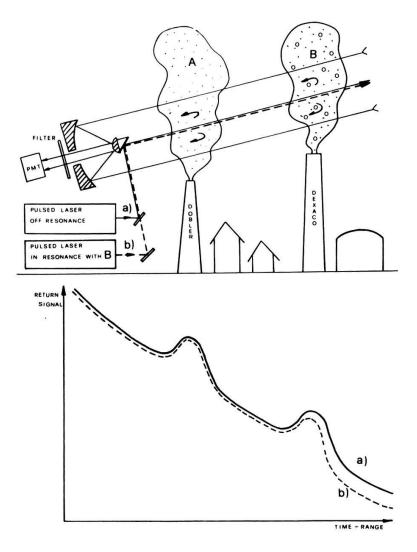


Fig. 1: Principe de l'absorption différentielle.

Si le laser utilisé est pulsé, on peut mesurer le signal de rétrodiffusion en fonction du temps, et donc disposer de la résolution spatiale. C'est la raison pour laquelle ce procédé se nomme LIDAR [1,2], par analogie avec RADAR (Radio Detection And Ranging). L'intensité du signal rétrodiffusé (fig. 1) obéit à l'équation suivante (en négligeant les diffusions multiples):

$$M(R,\lambda) = M_{O}(\lambda) \frac{A}{R^{2}} \cdot \Delta R \quad \xi(R,\lambda) \cdot n_{S}(R) \left[\frac{d\sigma(\lambda)}{d\Omega} \right]_{\pi} \quad e^{-2\int_{0}^{R} \kappa(\lambda,R) dR}$$

où M (R,λ) est le nombre de photons provenant de la position R, $M_O(\lambda)$ le nombre de photons émis par le laser à la longueur d'onde λ , ΔR la résolution du système, A l'aire du miroir primaire du télescope, $\xi\left(R,\lambda\right)$ l'efficacité de détection, $n_S(R)$ la concentration d'aérosols, $\frac{d\sigma(\lambda)}{d\Omega}$ la section efficace différentielle de rétrodiffusion et $\kappa\left(\lambda,R\right)$ le coefficient d'extinction atmosphérique.

Cette intensité diminue donc en fonction de la distance, essentiellement à cause de l'abaissement de l'angle solide formé par $\frac{A}{R^2}$. Notons cependant que le nombre de photons rétrodiffusés M (R,λ) dépend de la concentration d'aérosols $n_s(R)$ et qu'ainsi il est possible de déterminer la concentration d'aérosols en fonction de la distance.

On désire cependant mesurer la concentration des polluants dans l'atmosphère d'une manière <u>sélective</u>. Pour ce faire, on utilise les propriétés spectroscopiques des molécules que l'on veut détecter. La figure 2 représente le

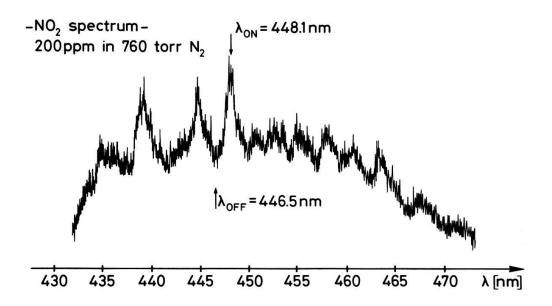


Fig. 2.

spectre d'absorption du NO $_2$ obtenu au laboratoire par spectroscopie optoacoustique [3]. On remarque que pour certaines longueurs d'onde (p. ex. λ_{ON}) le NO $_2$ absorbe fortement ($\kappa=18,2~{\rm cm}^{-1}~{\rm atm}^{-1}$) et qu'au contraire pour d'autres (λ_{OFF}) il absorbe peu ($\kappa=10,2~{\rm atm}^{-1}~{\rm cm}^{-1}$). Considérons donc deux

lasers de longueur d'onde λ_{ON} et λ_{OFF} respectivement, dont les pulses sont envoyés conjointement dans l'atmosphère (cf. fig. la et lb). Si λ_{ON} et λ_{OFF} sont suffisamment proches, la première cheminée (qui ne contient pas de NO₂) provoque la même augmentation du signal P(R, λ) (car n_S(R) augmente) pour les deux pulses. Par contre, la deuxième cheminée qui émet du NO₂ provoquera une absorption du signal rétrodiffusé de longueur d'onde λ_{ON} . En divisant les deux signaux reçus et en utilisant la loi de Beer (fig. 3), on obtient la concentration c de NO₂ d'une manière spécifique, en fonction de la distance.

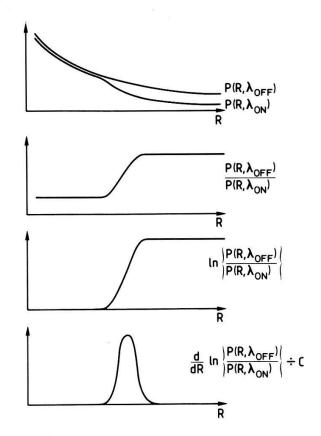


Fig. 3: "Du signal reçu à la concentration de polluant"

Il suffit ensuite de balayer le champ de vision et le laser par un miroir plan pour réaliser une véritable carte géographique (mapping) de la concentration de NO2. Cette technique est appelée technique de <u>l'absorption différentielle</u> [4] (DIAL). Il est bien clair qu'en choisissant deux autres longueurs d'onde, on peut mesurer la concentration d'un autre type de polluant, par exemple SO2 ou O3. La figure 4 présente une liste (non exhaustive) de quelques molécules détectables par le procédé DIAL. Notons que les trois polluants les plus discutés actuellement, le NO2, le SO2 et 1'O3, peuvent être mesurés avec des lasers à colorant (avec ou sans doubleur de fréquence). Remarquons également

Species		Wavelength	Absorption coefficient	Type of Laser
Name	Formula	λ[μ m]	<pre>κ [cm⁻¹ atm⁻¹]</pre>	
Nitrogen dioxide	NO ₂	0.448	18.2	DYE LASER
Sulfur dioxide	so ₂	0.300	35	DYE LASER + SHG
Ozone	03	0.2914	32	DYE LASER + SHG
Ozone	03	9.504	14	co ₂
Ammonia	NH ₃	9.220	120	co,
Benzene	с ₆ н ₆	9.643	2.3	co ₂
Ethylene	C2H4	10.532	36	co ₂
Butene	С ₄ Н ₈	10.787	3.5	co ₂
Freon 11	CC1 ₃ F	9.220	33.5	co ₂
Freon 12	CC1 ₂ F ₂	10.653	30	co ₂
Freon 113	c ₂ c1 ₃ F ₃	9.604	20.8	co ₂
Methanol	сн ₃ он	9.675	24.1	co ₂
Trichlorethylene	с ₂ нс1 ₃	10.591	15	co ₂
Water vapor	н ₂ 0	10.247	0.0008	co ₂

Fig. 4: Liste des principaux polluants détectables.

que les autres molécules sont détectées de préférence dans l'infrarouge ($^{\circ}$ 9 μ m \rightarrow 11 μ m) avec un laser $^{\circ}$ C0. Ce sont ces considérations, parmi d'autres que nous verrons plus loin, qui nous ont amené à choisir un système laser basé sur un Excimer. En effet, outre la possibilité de pomper les colorants entre $^{\circ}$ 320 nm et 1 μ m (le plus large spectre actuel), le laser excimer utilisé peut être converti en un laser $^{\circ}$ C0 accordable sans modifications importantes. Le système laser choisi permet donc de couvrir, le cas échéant, la liste présentée en entier.

Mesures préliminaires

Quelques mesures préliminaires ont été effectuées avec un laser Nd:Yag, avant que l'excimer et les deux colorants ne soient livrés. La figure 5 montre un signal Lidar typique : La décroissance en 1/R² d'abord est constituée par la rétrodiffusé par l'atmosphère. Le pic représente un nuage qui se trouvait

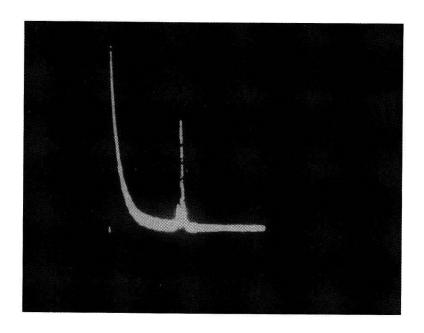


Fig. 5: Signal de rétrodiffusion d'un nuage à 4 km.

sur le chemin du laser, à environ 4 km. Des mesures s'apparentant à la technique DIAL ont également été testées, sur un cas de figure, l'acétone. Nous avons choisi cette molécule spécifiquement car elle absorbe fortement la 4ème harmonique du Yag (266 nm) et pratiquement pas la 3ème (355 nm). Un vaporisateur était placé à environ 60 mètres du système pour la circonstance. Les résultats, moyennés par un box-car, sont présentés à la figure 6.

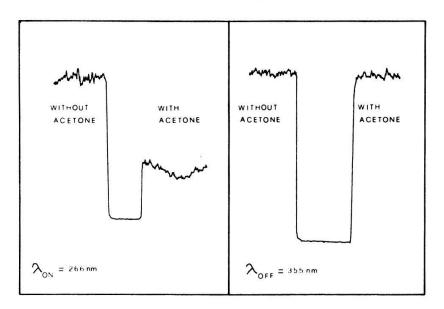


Fig. 6: Mesure à 2 longueurs d'onde de l'absorption de l'acétone.

Montage expérimental définitif

La construction du système DIAL pour la mesure sélective à distance du NO_2 , SO_2 et O_3 que nous avons entrepris est aujourd'hui achevée. Le schéma de principe du système est proposé à la figure 7.

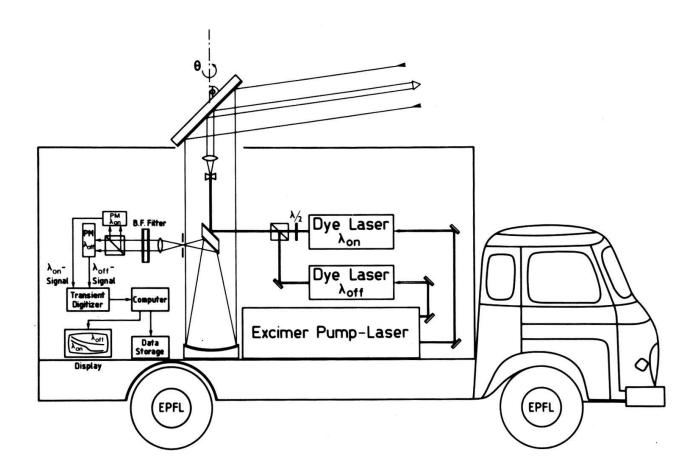


Fig. 7: Montage expérimental.

Le laser excimer (XeCl) fournit une énergie de 0,4 J par pulse à 308 nm. Il dispose d'un haut taux de répétition (80 Hz) et de deux sorties, lui permettant de pomper deux lasers à colorant simultanément. L'un deux est ajusté sur la longueur d'onde absorbée $\lambda_{\rm ON}$ (448.1 nm pour NO₂) et l'autre sur la longueur d'onde non absorbée $\lambda_{\rm OFF}$ (446.5 nm pour NO₂). Le colorant utilisé est le Coumarin 2 ; l'énergie développée par pulse par chacun des lasers accordables est d'environ 20 mJ. La durée des pulses est comprise entre 15 et 20 nS. La combinaison des faisceaux se fait en jouant sur la polarisation au travers

168 Wolf and Wöste H.P.A.

d'un prisme de Glan. Un scrambler est utilisé à la sortie du prisme pour éviter tout effet de polarisation dans l'atmosphère.

A la réception, la lumière rétrodiffusée est collectée par un télescope de 42 cm de diamètre, et focalisée sur un diaphragme pour limiter le champ de vision. La séparation des deux longueurs d'onde et la rejection de la lumière solaire se fait par l'intermédiaire d'un filtre biréfringent (étalon). La largeur à mi-hauteur des deux pics est de 1.5 Å et la transmission d'environ 25%. Ce filtre a la particularité de polariser $\lambda_{\rm ON}$ linéairement dans une direction et $\lambda_{\rm OFF}$ dans la direction perpendiculaire. Il est ensuite facile de les séparer en utilisant un prisme de Glan. La conversion du signal optique en signal électronique est assurée par des photomultiplicateurs (EMI 9829 QA), spécialement sélectionnés pour leur linéarité. La conversion analogique-digitale est assurée par deux analyseurs de transitoires rapides (100 MHz - 8 bit), et les data ainsi obtenues sont traitées par un microprocesseur. Un avantage décisif du système est constitué par la mesure simultanée (i.e. à chaque shot) du signal absorbé et du signal de référence, ce qui permet d'éliminer les fluctuations atmosphériques [5].

Notons que le champ d'investigation peut être balayé sur 360° horizontalement de 90° verticalement à l'aide d'un miroir plan, et qu'un "mapping" de la concentration des polluants est, par conséquent, réalisable. Un souci constant de compacité lors de la réalisation du système a permis de l'intégrer dans un camion de charge maximale inférieure à 3 tonnes. Il est bien clair qu'en effet, un tel système n'a de raison d'être que s'il est mobile.

Résultats et conclusion

Les premières campagnes de mesure avec le système définitif se sont terminées avec succès. Elles ont été effectuées aux abords de plusieurs usines chimiques. Un des résultats typiques obtenus est représenté à la figure 8. Ces mesures ont été effectuées à environ 23 heures, par un temps clair (attenuation atmosphérique de l'ordre de 0,3 km⁻¹), avec un léger vent (1 15 km/h), dans l'axe du laser. Des mesures diurnes sont prévues dans le futur, utilisant un système de compression de la dynamique par modulation de gain des photomultiplicateurs. Les détecteurs ne sont alors utilisés que lorsque le laser

est en fonction, supprimant les effets d'offset dus à la lumière solaire. Pour des raisons informatiques, ces résultats ont été obtenus en alternant $\lambda_{\rm ON}$ et $\lambda_{\rm OFF}$, mais la mesure simultanée des signaux devrait pouvoir être effectuée dans un proche avenir. Les figures 8a) et 8b) représentent respectivement les signaux rétrodiffusés pour $\lambda_{\rm ON}$ et $\lambda_{\rm OFF}$. La cheminée émettant le NO est localisée à 175 m du système Lidar. La résolution du système, dans cet exemple,

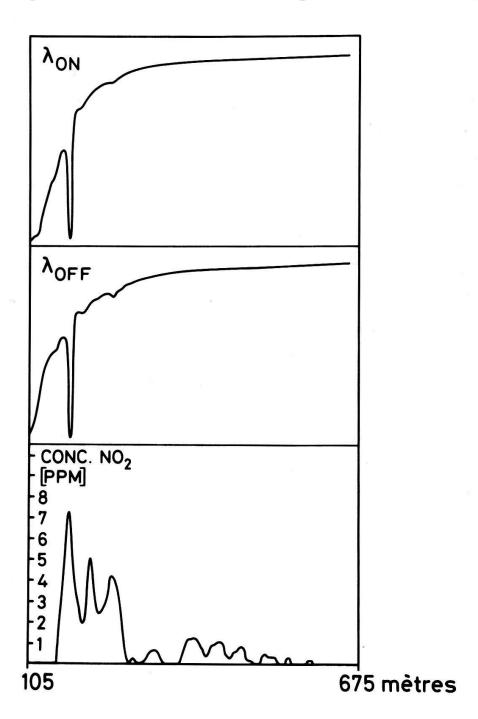


Fig. 8 : a) Signal obtenu pour une longueur d'onde absorbée par NO_2 (λ_{ON}) . b) Signal obtenu par une longueur d'onde non absorbée par NO_2 (λ_{OFF}) . c) Concentration de NO_2 en fonction de la distance, après traitement des données.

170 Wolf and Wöste H.P.A.

est de 3 mètres. Le traitement des données effectué, on obtient la concentration de NO₂ en fonction de la distance, figure 8c). La bonne qualité des signaux obtenus permettent d'estimer la limite de détection à environ 1 ppm·m, soit une dizaine de ppb avec une résolution de 100 mètres, ceci jusqu'à des distances de plusieurs kilomètres. Cette qualité est essentiellement obtenue grâce au taux de répétition élevé du laser excimer, en comparaison par exemple avec les mesures de K. Rothe en 1974 (~ 100 fois plus haut) [6]. Les 1000 coups moyennés en 12 secondes font bien apparaître l'effet du vent, donnant lieu à 3 maxima de concentration. D'autres mesures de ce type sont en cours et une analyse tridimensionnelle de la concentration de NO₂ est prévue dans un proche avenir.

Nous espèrons, par nos mesures, contribuer à la détection de sources polluantes mal connues et à une sensibilisation de l'opinion aux problèmes d'environnement.

Réréfrences

- [1] E.D. Hinkley, "Laser Monitoring of the Atmosphere", Springer-Verlag, Berlin, Heidelberg, New York (1976).
- [2] A.I. Carswell, Can. J. Phys. **61**, 378 (1983).
- [3] S. Bernegger, P.L. Meyer, M.W. Sigrist, Helvetica Physica Acta 58, 829 (1985).
- [4] J. Werner, K.W. Rothe, H. Walther, Appl. Phys. B 32, 113 (1983).
- [5] N. Menyuk and D.K. Killinger, Opt. Letters 6, 301 (1981).
- [6] K.W. Rothe, U. Brinkmann, H. Walther, Appl. Phys. 4, 181 (1974).