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RESEAUX SUPRACONDUCTEURS ET NORMAUX

B. Pannetier
Centre de Recherches sur les Très Basses Températures, CNRS, BP 166 X,
38042 Grenoble-Cedex, France

Résumé : Cet article décrit quelques propriétés physiques importantes de

réseaux submicroniques de métaux supraconducteurs ou normaux en présence
d'un champ magnétique. Des oscillations quantiques ont été observées à la
fois sur les propriétés supraconductrices -température critique, susceptibilité

magnétique et aimantation- et sur les propriétés de transport
-magnetoresistance d'un métal normal-. L'origine de ces oscillations qui traduisent

un effet d'interférence quantique dans la structure du réseau est
discutée.

I - INTRODUCTION

L'étude théorique des réseaux de filaments supraconducteurs s'est
développée très rapidement, au début des années 80, dans le but de modéli-

ser les propriétés de matériaux composites, le point crucial étant le dia-
magnétisme associé aux boucles fermées dans des mélanges isolant-
supraconducteurs (1). La physique de ces systèmes s'est révélée par la
suite d'une très grande richesse puisqu'ils constituent à l'heure actuelle
l'un des systèmes modèles les plus purs pour l'étude de phénomènes

fondamentaux comme les effets de commensurabilité, de frustration, ou les
niveaux de Landau dans des structures nouvelles. En particulier, grâce aux

technologies modernes de microfabrication, des structures très variées
peuvent être étudiées : réseaux périodiques réguliers (2), self-similaires (3)

ou quasi périodiques (4).

Le phénomène essentiel est la quantification du flux magnétique

dont l'origine est la rigidité de la phase de la fonction d'onde. Cette

quantification se traduit, dans une simple boucle supraconductrice, par des

oscillations de la température critique TC(H) qui ont été observées pour la
première fois par Little et Parks (5) en 1962, permettant de mettre en évi-
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dence le quantum de flux supraconducteur <f>o hc/2e. Dans un

réseau étendu, cette quantification se manifeste par l'apparition d'un
réseau de vortex dont la période peut être commensurable ou incommensurable

avec la période du réseau selon l'intensité du champ magnétique appliqué.
La théorie champ moyen de Ginzburg-Landau (1) rend compte quantitativement
des structures fines associées à cette quantification : singularités sur

la courbe T-. (H) aux valeurs rationnelles T— *- du flux réduit (où cl) est

le flux magnétique traversant la cellule élémentaire du réseau).

La première partie de cet article décrit les principaux résultats
observés sur les réseaux périodiques supraconducteurs. L'analogie entre
les équations de Ginzburg-Landau et l'équation de Schrödinger permet de

relier de façon simple les effets propres à la supraconductivité au

problème des niveaux de Landau électroniques.

L'extension de cette étude aux réseaux de filaments normaux est

présentée en seconde partie. Le phénomène mis en jeu est le phénomène de

rétrodiffusion cohérente qui donne lieu, en régime de localisation faible,
à des effets d'interférences électroniques à l'échelle de plusieurs cellules

élémentaires du réseau. Les oscillations de magnetoresistance s'expliquent

quantitativement par le modèle d'Altshuler, Aronov et Spivak. Comme

nous le verrons, ces propriétés sont également reliées au spectre des

niveaux de Landau.

II - METHODE EXPERIMENTALE

Les échantillons considérés sont des réseaux de filaments submi-

croniques faits de divers matériaux évaporés : Al, In, Cu, Au, Mg. Un exemple

est montré sur la Fig. 1 qui représente une partie d'un réseau en nid
d'abeilles. Le réseau a été obtenu par simple evaporation du métal (1000 A

d'épaisseur) sur la surface plane d'un réseau de microcapillaires en verre
(2). Les autres réseaux utilisés dans ce travail ont été préparés suivant
les méthodes conventionnelles de microfabrication : gravure ionique réactive

de motifs d'aluminium définis par photolithographie et plus récemment

écriture directe par faisceau d'électrons suivi d'un procédé "lift-off" (6).
La largeur des lignes est typiquement 0,3 ym et la période des réseaux
varie de 1,6 y à 6 y.
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Les phénomènes physiques
étudiés sont des effets extrêmement

fins qui demandent une grande précision

instrumentale. Par exemple, les
oscillations quantiques de magnéto-

résistance dans les réseaux normaux

sont gouvernées par un effet d'interférence

autour des boucles du réseau

(effet de rëtrodiffusion cohérente).
L'amplitude maximum de ces oscillations

est reliée de façon simple aux

constantes fondamentales AR/R'Ve^R/lTh.

Pour les valeurs utiles (R <v< 1 fi)

cet ordre de grandeur est "-> IO--' dans

les meilleurs cas. Aux températures finies, cet effet de cohérence est
limité par les processus inélastiques qui introduisent une atténuation
supplémentaire "k, exp-L/L(j) où L est le périmètre des boucles élémentaires

(typiquement 9 ym) et La la longueur de cohérence de phase. Concrètement les
Q

mesures demandent une précision AR/R 'v» 10 Cette résolution est atteinte
en utilisant des ponts d'impédance équipés de transformateurs refroidis à

4,2 K. Un autre exemple est donné par les mesures magnétiques (6). La

précision demandée pour observer les variations d'aimantation d'un réseau dont

la masse n'est que de 5 yg doit atteindre 10 uem. Les mesures de dM'dT

font également appel à des composants conventionnels refroidis.

Fig. 1 : Partie d'un réseau en nid
d'abeille d'or. Le diamètre
intérieur des cellules est de 2 ym. Le
réseau contient 3.10& cellules.

III - RESEAUX SUPRACONDUCTEURS

1 - Ligne de transition supraconductrice

Au voisinage de la température critique Tc les propriétés d'équilibre

d'un supraconducteur de seconde espèce sont bien décrites par la
théorie de Ginzburg-Landau. En présence d'un champ magnétique, la ligne de

transition elle-même est donnée par la solution de l'équation linéarisée
qui peut s'écrire :

± »in En(H)
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où En(H) représente la valeur propre d'indice n de l'opérateur :

dVr + ¥ A)2 *a En(H)K-n (2)

Dans cette expression, ^n(r) est le paramètre d'ordre complexe décrivant
hcla phase supraconductrice, A le potentiel vecteur et <t>0 -z— le quantum

de flux supraconducteur. La longueur de cohérence supraconductrice est donnée

par :

5(I). _l_____ o,/X
L'équation (2) représente aussi l'équation de Schrödinger d'une particule

A, A,

de charge 2e et d'énergie Jl /2m£ Cette analogie est essentielle car elle
permet de relier les propriétés supraconductrices aux propriétés dynamiques

les plus générales d'un système d'électrons libres. Ainsi, le problème de

la quantification du flux magnétique dans un réseau supraconducteur et le
problème de la quantification des niveaux de Landau électroniques sont

décrits par les mêmes équations (7) et dépendent, dans les deux cas, des

conditions aux limites, donc de la topologie du réseau. Donnons quelques exemples

simples pour illustrer cette analogie.

Le supraconducteur massif de seconde espèce représente le cas

idéal d'un milieu parfaitement homogène. Les états propres de l'Equ. 2 ne

sont autres que les niveaux de Landau d'une particule libre sous champ ma-
4tt 1

gnétique En -r—(n+ -r-)H. La ligne de transition supraconductrice est représentée

par le niveau inférieur n 0. La solution correspondante constitue
l'état de vortex du supraconducteur de type II pour lequel la ligne de

transition est une simple droite au voisinage de Tc (Fig. 1).

*o Tr-T (4)
2TrC(0)

Un second exemple est donné par un anneau circulaire formé d'un
filament infiniment fin (section « Ç). Les fonctions propres obtenues sont
des fonctions d'ondes d'amplitude constante tpn exp(ni6) dont l'unicité
est assurée en imposant que l'indice n soit un entier. Les valeurs propres
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En(H) (-f- - n)2/R2 représentent
Yo

l'énergie cinétique de la particule

ou, pour le supraconducteur,
l'énergie associée aux courants

permanents circulant dans la boucle

fermée. Elles dépendent de

façon quadratique du flux magnétique

4> TR2H traversant l'anneau.
La ligne critique est donnée par
l'état de plus basse énergie :

Ç(0)"
Tç-T 1

—— -=- min H - n)" (5)

(a

n=0

(b

^
Fig. 2 : Etats propres de l'équation (2)
pour un milieu homogène (a) et un anneau
(b). La température critique supraconductrice

est donnée par le niveau inférieur
selon Eq. (1).

Le nombre quantique n s'ajuste en

fonction du champ magnétique de

façon à minimiser l'énergie. Il en

résulte une ligne périodique formée

de segments paraboliques.
Cette ligne, observée pour la
première fois par Little et Parks (5)

illustre le phénomène fondamental
de quantification du flux magnétique. La période magnétique correspond à un

quantum de flux (<|>0) dans la surface de la boucle et ne dépend pas du matériau.
Ce quantum 4>0 ¦ hc/2e est associé à la charge 2e des paires de Cooper. Les

propriétés du matériau n'interviennent que dans la longueur de cohérence Ç(0),
c'est-à-dire dans l'amplitude des oscillations de la température critique qui

est proportionnelle à Ç(0) /R2. Pour des valeurs typiques Ç(0) 1000 A et R

1 pm, l'ordre de grandeur de cette oscillation est de ATc/Tc **» 1 % • Les deux

exemples précédents fournissent les éléments nécessaires à la compréhension des

phénomènes de quantification dans un réseau supraconducteur étendu. Le calcul
détaillé des solutions de l'Equation 2 dans une géométrie de réseau quelconque

(réseau de filaments infiniment fins et interconnectés) fait appel au formalisme

développé par Alexander (1). Sans entrer dans le détail de ce calcul, l'analogie
mentionnée ci-dessus fournit l'essentiel du résultat. En effet, les états propres

de l'équation de Schrödinger ont été calculés, pour un réseau carré, par
Hofstadter (7). Le spectre d'énergie obtenu est montré sur la Fig. 3. Il repré-
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sente les niveau de Landau En(H) dans le
modèle des Liaisons Fortes. Ce spectre possède

un certain nombre de propriétés d'invariances

caractéristiques de la topologie, en

particulier l'ensemble du spectre est périodique

vis-à-vis des champs magnétiques. La

période magnétique correspond à <|>/4> 1,

C'est-à-dire 1 quantum de flux magnétique

par cellule élémentaire de réseau. Dans un

cristal réel, compte tenu de la taille de la
cellule élémentaire ('v 1 A), les champs

magnétiques requis pour observer le spectre
complet de ces niveaux de Landau sont de

l'ordre de 10 gauss, donc hors d'atteinte.
Cela explique pourquoi seule la partie bas

champ du spectre (.<S)/fy0 « 1) est observable

dans un cristal. Par contre, dans un

réseau supraconducteur artificiel où la
cellule élémentaire est de l'ordre du micron,
les phénomènes associés apparaissent à des

champs magnétiques de quelques gauss, très
faciles à mettre en oeuvre.

»Bbf.'i\\ ¦

TPÛ\\\
\\\

4m- mil
ar

h X%mxê\
èx^jx%H

(a)

\W

co 'C

oouz *X>
I i

12 I 3 2 3

I. 3 5 2 5 3 -0001

(b)

tu.

Fig. 3 : a) Etats propres de

l'équation 2 pour un réseau carré
infini. La ligne de transition
supraconductrice est donnée par
le bord inférieur du spectre,
b) Ligne de transition observée
dans un réseau supraconducteur.

D'après l'Equation 2, la ligne de

transition du réseau supraconducteur est
donnée par le bord du spectre, c'est-à-dire
par l'enveloppe inférieure de tous les
états En. Les niveaux d'énergie supérieure
sont associés à des états metastables de la phase supraconductrice. Cette courbe

a été mesurée pour la première fois avec une très grande précision dans un

réseau carré d'aluminium par des mesures résistives (2) puis magnétiques (6).

Les propriétés de cette courbe fractale résultent de l'effet de

frustration induit par le champ magnétique sur les niveaux d'énergie (i.e. la

température critique) Le paramètre de frustration est le flux réduit <)>/<J>0 :

Pour chaque nombre entier le système est non frustré et l'effet du champ magné-
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tique est nul. Chaque rationnel p/q correspond à un certain degré de frustration

dans le réseau, qui donne lieu à une configuration particulière de la fonction

d'onde et des supracourants.

2 - L'état mixte du réseau

La configuration de la fonction d'onde dans un réseau carré peut être
obtenue à partir des équations (non linéaires) de Ginzburg-Landau (8) pour les

valeurs rationnelles simples du flux magnétique <t>/<|>0 p/q avec q S 7. Du point
de vue physique, deux périodes spatiales entrent en compétition : la période

structurale a du réseau lui-même et la période magnétique £,H /ifT/H qui coïncide

avec celle du réseau idéal de vortex dans un milieu uniforme. Pour les

flux rationnels p/q, ces deux périodes sont commensurables. Il en résulte un ar

rangement périodique en supercellules dont la
taille est donnée par la période commune qa. Les

singularités qui apparaissent sur la ligne de

transition traduisent les conditions de

quantification dans ces supercellules. La Fig. 4

illustre le cas q 5. Les supracourants se referment

autour des "vortex" du système. Noter qu'en

aucun point le paramètre d'ordre ne s'annule.
Dans un réseau de fils, les "vortex" n'ont pas

de coeur. Autour de chaque cellule portant un

courant, la phase du paramètre d'ordre tourne de

2-iT et son amplitude est affaiblie. La répulsion
entre vortex qui donne lieu à l'arrangement
triangulaire des vortex d'Abrikosov conduit dans

le cas présent à une configuration extrêmement

sensible au paramètre de frustration du système.

En particulier, pour 4>/4>0 irrationnel (q •*¦<») la périodicité est totalement

perdue 9)

ll||||pil|IIISir-wt^iilliii|ir"«H|lHIIMIIIIII|

MiiiiiIiitataiiiiiiiiiBlliiii|,l»tl|iiii»i|H«M|

)||||ll|lWll||||||M|ll<«l|lll|||g||llll|rrtata.li

Wtaw|iiiiiiHllliiil™H,™iii»i|,"«,iiiilll^

¦r»H|lllllll|Hlwil|l|||g|||lll|l*HJllllMl|

i||||||g||||ll|rr»w|l|lllll|ll«HÏlll|||Hllllll

|iiiiiMlii«i|iiiiiiBiiiiiiiit-wiiiiiiiii"^|

.»M.wiilllil.mii>tt™ill

Fig. 4 : Configuration du
paramètre d'ordre \]> dans une
supercellule 5x5 pour
4>/4>0 1/5. L'amplitude de
est donnée par la largeur des
traits. Les flèches représentent

la circulation des
supracourants.

Comme la température critique T l'aimantation à l'équilibre dans

l'état mixte est déterminée par le spectre En(H) de la Fig. 2. La généralisation

du modèle d'Abrikosov au cas du réseau (8) conduit à l'expression suivante:
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M -
4.reA(H)(2K2-(Ì^)2) 2lT dH

"¦ lit dH

(±os2 dEn, 1

(6)

(a)

L'aimantation s'annule à la température critique TC(H) et présente une dependence

caractéristique en dTc/dH. L'une des quantités intéressantes du point de vue

expérimental est la dérivée de l'aimantation par rapport à la température dM/dT.

Le modèle ci-dessus montre que cette quantité est directement proportionnelle à

la dérivée du bord du spectre, donc à c. Cette propriété a été vérifiée pardH

l'expérience (6) (Fig. 5). La fonction
ß.(H) qui apparaît dans l'équation (6)

est l'analogue du paramètre ß»

d'Abrikosov : Ici, il dépend non seulement

de la fonction d'onde mais également

du champ magnétique (8).

IV - RESEAUX NORMAUX

Les effets d'interférence
dans les réseaux de métaux normaux ont

pour origine le phénomène de diffusion
multiple sur les impuretés. L'incidence

de ce phénomène sur les propriétés
de transport des métaux désordonnés a

été explicitée en 1981 par Altshuler,
Aronov et Spivak (A.A.S. Ref. 10) et
constitue la base de la compréhension

des effets de localisation faible
dans les métaux. Ces auteurs ont prédit

que la conductivité d'un
microcylindre de métal non supraconducteur
devait être une fonction périodique
du flux magnétique traversant le
cylindre. Selon A.A.S., ces oscillations,
dont la période a) 0 hc/2e est associée

à 2 fois la charge électronique

¦1 -

-2

] dM/dT(10"6u.e.m.)
* ¦ ..G-V-.;»

/ : * «

¦"¦"•*•
: y%-

¦ " '.' ' Vta-v-.'
*

"„•*»;£*
¦

(b)
H."

Fig. 5 : a) Dérivée du bord du spectre
de la Fig. 3. Noter que cette dérivée
présente une discontinuité pour chaque
valeur rationnelle de <S?/<t)0. b) Dérivée
de l'aimantation dM/dT d'un réseau carré

d'indium (Ref. 6).
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(2e) comme dans un supraconducteur, se produisent dans un système d'électrons
indépendants en présence de désordre faible. L'origine physique est le phénomène

très général de rétrodiffusion cohérente d'une onde dans un milieu aléatoire.

Il se révèle de façon particulière sur la magnetoresistance du fait du couplage

de la phase de la fonction d'onde électronique avec le champ magnétique.

L'effet prédit par A.A.S. a été observé dès 1981 par Sharvin sur un

microcylindre de magnésium (10). L'expérience de Sharvin est l'équivalent strict
de l'expérience de Little et Parks sur le microcylindre supraconducteur.

Formellement, les corrections quantiques de localisation faible
prédites par A.A.S. sont données par :

Aa(r) <^2- C(r,r)> (11)
TTV

où a est la conductivité de Drude, v la densité d'états et C(r,r) la composante

diagonale du Cooperon, lui-même donné par la solution de l'équation :

(iv-2!-,)2,-^ C(r,r') =X ô(r-r') (12)

Dans cette équation de diffusion, le Cooperon apparaît comme la probabilité
classique pour un électron de revenir à son point d'origine. Cette probabilité
mesure la contribution des chemins diffusifs fermés qui sont le point clé de la
compréhension des phénomènes de localisation faible (12). Il faut noter que les

grandeurs considérées ici sont des quantités moyennées sur le désordre.
Lorsqu'une moyenne d'ensemble est effectuée, tous les effets d'interférence directe
disparaissent, seuls subsistent les effets de rétrodiffusion cohérente associés

au double comptage des boucles fermées. Ce double comptage est concrétisé par

le terme de déphasage 2 x eA/tfc qui est à l'origine de la période hc/2e des

oscillations quantiques prédites par A.A.S. Il est clair que cette approximation
de moyenne d'ensemble, parfaitement justifiée dans un réseau étendu contenant

plusieurs millions de boucles, ne décrit pas la réalité des petits systèmes (13)

pour lesquels les effets d'interférence directe, associés à la période hc/e,
subsistent. Nous nous limiterons ici au domaine de validité de l'équation (12).

L'équation 12 présente des analogies formelles avec l'équation de
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Ginzburg-Landau avec cependant deux differences importantes : Le terme L.^ qui
2 • A

remplace -Ç introduit une longueur de cohérence imaginaire qui impose un

amortissement exponentielle de longueur caractéristique Li. L^ /Dt/ est la
longueur de cohérence de phase, c'est-à-dire la longueur sur laquelle un électron

garde la mémoire de sa phase. Le second point important est lié à la nature

de la grandeur physique mesurée. Introduisons à nouveau les états propres En

de l'opérateur de Schrödinger. On constate que les variations de magnetoresistance

mettent en jeu une combinaison de l'ensemble des états propres :

£* z î—7 (13)
R n En h- Lf2

alors que la température critique du supraconducteur ne met en jeu qu'un seul

état. Les conséquences de cette distribution sont très importantes et peuvent

être illustrées sur l'exemple de l'anneau simple.

Les états propres correspondant au cas de l'anneau sont des fonctions

quadratiques du nombre quantique n (Equation 5). Les corrections de magnéto-

résistance sont données par la sommation.

f " l -J—, —2 f" (14)
R n J_(-i_ _ n)2 + _-__XK X

<P

Si l'on se réfère à la Fig. 1, on voit que la magnetoresistance est fonction de

l'ensemble des niveaux d'énergie. Il est clair qu'aucune discontinuité ne se

produit aux croisements de niveaux puisque les niveaux sont également peuplés.
Au lieu de la courbe singulière de Little et Parks, nous avons ici une courbe

périodique parfaitement régulière, que ce soit en géométrie annulaire ou

cylindrique. Cet argument tient également dans le cas du réseau périodique et explique

l'absence totale de sous-harmoniques — 4

Le calcul détaillé pour un réseau périodique a été effectué par Douçot

et Rammal (14) qui ont développé un formalisme très général permettant le calcul
des effets de rétrodiffusion cohérente sur un réseau quelconque de filaments
unidimensionnels. Ce formalisme fournit, dans le cas de réseaux réguliers
simples comme le réseau carré ou le nid d'abeilles, une relation explicite pour
AR/R qui explique en détail les observations expérimentales (15,16) :
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R(OHM)

.57382

.573818

.573816

.573814

8.5

75

58

96

0.58

20 20 ¦10

106x__J__

R

10

METAL t
NORMAL a\

(Mg)

SUPRACONDUCTEUR

(In) *.°

60 OE

Fig. 6 : Magnetoresistance d'un
réseau en nid d'abeilles de Cu
à différentes températures.

-10
?c/3 Z+o/3
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Fig. 7 : Comparaison entre les
oscillations de magnetoresistance

d'un métal normal (en
haut) et de T d'un métal
supraconducteur (en bas). La période
est la même dans les 2 cas 4>0=

hc/2e.
- Périodicité en champ magnétique (Fig. 6).
La période 4> 4>0 a Pu être vérifiée avec

précision par comparaison avec un réseau supraconducteur (Fig. 7). Ce phénomène

d'oscillations quantiques présent dans des métaux variés (Cu, Au, Mg, Li)
confirme la généralité de l'effet A.A.S.

- Absence de singularité aux sous-harmoniques — <^0. Cette propriété, triviale à

haute température lorsque L, est plus petite que la taille d'une cellule, est

en réalité beaucoup plus subtile. En effet, en contraste avec le cas de la
transition supraconductrice liée à l'enveloppe du spectre de la Fig. 3, tous les
états participent ici de façon cohérente à la magnetoresistance aussi grande L^,

soit-elle. On observe effectivement une courbe parfaitement régulière à toutes

températures, que ce soit dans les réseaux hexagonaux ou carrés (17).

- Régimes asymptotiques. Selon l'importance relative des trois longueurs
caractéristiques : pas du réseau a, longueur magnétique S,u= /4>0/H" ou rayon de l'orbite

cyclotron et enfin longueur de cohérence La, plusieurs régimes limites
seront obtenus. Par exemple lorsque l„ et L, sont beaucoup plus grandes que a,
cela se produit à faible champ et à très basse température, le caractère discret
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Comparaison expérience

du réseau ne joue plus aucun rôle
Dans ce régime du continuum, la
magnetoresistance du réseau est
donnée par la limite 2D du film
homogène. Ce comportement asymptotique

est observé à très basse

température sur les échantillons
de magnésium (Fig. 8) dans

lesquels Lj, 13 ym » a (a 1.5 ni).

Dans ce régime, la cohérence est
maintenue à l'échelle de plusieurs
boucles.

(ligne accidentée)-théorie. Filaments
infiniment fins (points), filaments de largeur
finie (triangles). La ligne continue représente

la limite théorique 2D.

La Fig. 9 montre, pour différents jq
matériaux, les valeurs de L, déduites de

l'amplitude des oscillations de magnetoresistance

dans des réseaux en nid d'abeilles.

Les valeurs typiques vont de 13 ym

à 6 ym à basse température. Leur dépendance

en température permet de mettre en évidence

les contributions respectives des impuretés

magnétiques de l'interaction électron-
électron et de l'interaction électron-phonon. 1

l

Les valeurs mesurées dépassent largement les

valeurs usuelles reportées dans la littérature

(18). Il s'agit ici de matériaux très
purs pour lesquels le libre parcours moyen

électronique n'est limité que par l'épaisseur

du film (^ 1000 A). Les coefficients de

diffusion vont de 500 à 1000 cm2/sec, ce qui représente des valeurs tout à fait
inusuelles dans les études d'effets de localisation.
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Fig. 9 : Longueur de diffusion
inélastique mesurée pour Mg, Au
et Cu. L, représente la longueur
sur laquelle la cohérence de phase

est maintenue : 13 ym dans Mg.
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La saturation observée aux très basses températures est attribuée à

l'effet des impuretés magnétiques. Dans l'or pour lequel la température de Kondo

est de l'ordre de TR 1 K (Au-Fe) l'effet des impuretés magnétiques apparaît
clairement à la fois sur la résistance -par une remontée logarithmique qui

dépasse de deux ordres de grandeur l'anomalie de localisation faible- et sur La

qui présente une anomalie à Tj^ (Fig. 9).

V - CONCLUSION

L'étude des phénomènes de quantification dans les réseaux périodiques

supraconducteurs ou normaux permet de révéler un certain nombre de phénomènes

fondamentaux d'interférences liées à la topologie des réseaux. Ces systèmes

artificiels apparaissent maintenant comme des modèles purs pour l'étude de

propriétés très générales comme les effets de frustration, les niveaux de Landau

ou le spectre des excitations harmoniques dans des structures nouvelles (3 ,4)

comme les réseaux fractals (tamis de Sierpinski ou quasipériodiques (échelles
de Fibonacci ou réseaux de Peurose).
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