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THE KOSTERLITZ-THOULESS TRANSITION

IN JOSEPHSON JUNCTION ARRAYS

Ch. Leemann, Ph. Lerch, R, Theron and P, Martinoli
Institut de Physique, Université de Neuchatel, 2000 Neuchétel, Switzerland

Abstract : A study of the ac response of square two-dimensional arrays of
proximity effect Josephson junctions as a function of temperature, frequency
and applied transverse magnetic field is presented. As a function of magnetic
field, both the real and the imaginary part of the array's conductance exhi-
bit clear structures at fields corresponding to rational numbers of flux
quanta per unit cell of the array. At an integer number of flux quanta per
unit cell, the temperature and frequency dependence of the conductance show
that the superconducting to normal transition of the array can be described

by the Kosterlitz-Thouless theory and by its extension to finite frequencies.

I Introduction

The Kosterlitz-Thouless (KT) theory of phase transitions [1,2], applied
to a two-dimensional (2D) superconductor [3], is based on a description of
the superconductor in terms of fluctuations in the phase of its order parame-
ter. At low temperatures the relevant phase fluctuations are slowly varying
functions of position. As the temperature increases, thermal fluctuations in
the phase result in topological excitations in the form of bound pairs of
vortices of opposite circulation (vortex-antivortex pairs). The transition to
the normal state is triggered by the unbinding of these vortex pairs, i.e.
the creation of free vortices at a critical temperature T,. The most ob-
vious consequence of such a transition is the appearance of a dc resistance

with a characteristic temperature dependence [4-8] above T.. Another mani-
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festation of the KT transition is the crossover in behavior one observes in
the sample's current-voltage characteristics in the vicinity of Tp [7,9].
In the transition region the dynamics of vortex excitations has unique featu-
res which can be seen in experiments probing the response of 2D systems expo-
sed to ac driving fields [10,11]. In particular, measurements of the complex
dynamic sheet conductance allow to verify two important theoretical predic-
tions : the temperature dependence of the complex dielectric constant, and
the anomalous temperature dependence of the free vortex correlation length
above T.. In this paper we report measurements of the complex conductance
of proximity-coupled 2D arrays of Josephson junctions [12] . In section II we
introduce the basic concepts of the KT transition. Section III is dedicated
to array physics. We discuss the relationship between arrays and the XY mo-
del, some vortex dynamics and magnetic field effects, Our experimental proce-
dures and results are presented in section IV. The results are analyzed with-
in the theoretical framework of sections II and III. Section V contains our

conclusions.

II. Basic features of the KT transition

Consider the classical XY model : a reqular lattice of spins on the
XY-plane. The spins are subject to nearest neighbor interactions and are free
to rotate about an axis perpendicular to the XY-plane. The ith spin is des-
cribed by ¢j, the angle it makes with a fixed direction in the XY-plane.

The Hamiltonian of the system is given by

H = -J(%j)cos (¢j - ¢i) " (1)

where the sum is over all pairs of spins and J (positive) is the coupling
energy. Except at zero temperature, where all the spins are aligned, there is
no conventional long-range order in the spin system and thus a vanishing
spontaneous magnetization [13]. In fact, at any non-zero temperature spin wa-
ves (i.e. long wavelength excitations of the spins) lead, at large enough di-
stances, to uncorrelated spins. On the other hand, at sufficiently low tempe-

ratures, we are not in the presence of liquid-like short range order. Wegner
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[14] found that the spin-spin correlation function decays algebraically, with

a temperature dependent exponent n(T) = kBT/ZnJ :

<cos (¢j - ¢i)> a r.._n(T) (2)

ij 2

where Tjj is the distance between the lattice sites i and j. Intuitively,
one expects some type of phase transition from a low temperature phase chara-
cterized by the quasi long-range order described by (2) to a high temperature
liquid-like phase characterized by an exponentially decaying correlation
function. This phase transition was investigated by Kosterlitz and Thouless
in 1972 [1] by taking into account the effects of thermally excited vorti-
ces. A vortex (antivortex) is defined as a configuration of the ¢; such
that the sum of the phase changes along a closed path is 2n (-2n). The energy

E, of an isolated vortex can be computed from (1) and is given by

E, = ™d log L/a . (3)

where L is the system size and a the lattice parameter. For the interaction
energy Ep of a vortex-antivortex pair with cores separated by a distance r,
one finds

Ep = 27J log r/a . (4)

Notice that in general Ep<<EV, the thermal excitation probability is
therefore larger for bound pairs than for single vortices. A rough estimate
[1} of the KT transition temperature T, can be obtained by computing the
free energy F=E,-TS of a single vortex excitation and by requiring that at
T=T, there is a spontaneous nucleation of free vortices, i.e. F(Tg)=0.
This leads to kgTo®nd/2. The correct value for T, is obtained by taking
into account the presence of bound pairs and their interaction. The inter-
action between the constituents of a pair of size rg is reduced ("renor-
malized") by an amount e(rg), due to the presence of pairs of size r<rg. The
calculation of renormalized quantities, which is the main scope of the
theory, is based on the KT scaling equations [1]. The physical interpretation

of e(r) becomes obvious by making an analogy with the 2D Coulomb
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gas, where electric charges also interact logarithmically [1,6,15]. In the 2D
Coulomb gas analoqgue, e(r) describes the scale dependent screening proper-
ties of a dielectric medium consisting of electric dipoles (corresponding to
the vortex-antivortex pairs in the XY model) of different size.

Thus we have the following picture for the KT-transition : at low tem-
peratures there are thermal excitations in the form of spin waves and bound

vortex-antivortex pairs. At a transition temperature T, given by

2kgT, = Jg g \ (5)

where Jg = J/e. is the renormalized coupling energy and e, the dielec-
tric constant at infinite scale e(«), pairs of largest separation (r + =) un-
bind. The resulting free vortex excitations (corresponding to free electric
charges in the 2D Coulomb gas analogue) destroy the quasi long-range order
existing below T.. Above T, one is dealing whith a liquid-like phase cha-
racterized by a correlation function of the form

-r. ./E.(T)
<cos (¢j— ¢i)> @ oE W& " (6)

The correlation length £,(T) has an unusual temperature dependence reflecting

the peculiar nature of the KT transition. It is given by [2]

172
b[T - T¢]
EL(T) ~ae , (7)

where b is a nonuniversal constant of order unity. Physically, £,(T) is a

measure of the average separation of free vortices. The free vortex areal

; X ; ; -2
density n. is therefore approximately given by n. ~ £, (M.

III. 2D Arrays

a) Connection with the XY model

Large two-dimensional arrays of superconducting weak links constitute a

very appealing physical realization of the XY model. With modern photolitho-
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graphic techniques it is possible to fabricate large regular lattices of su-
perconducting (S) islands. The individual islands are Josephson  coupled
through an insulator (I) forming arrays of SIS junctions [16] or through a
normal metal (N), forming proximity effect SNS arrays [17-19]. In arrays
where the geometrical and physical properties of the individual junctions are
sufficiently uniform, fluctuations in the magnitude of the superconducting
order parameter are largely suppressed well below the BCS transition of the
individual islands. On the other hand, 2D fluctuations in the phase of the
order parameter are still important. The phase difference (¢; - ¢;)
between two sites and its time evolution are governed by the Josephson equa-

tions. The supercurrent flowing between islands i and j is given by
i o= 1C(T) sin (¢j— ¢i) §

S

where i (T) is the critical current of the junction. The voltage across the

barrier is

" d
Vs e (.~ §.) i
2e dt ¢J by
With these two expressions the interaction energy Eij = fisth of the
islands i and j becomes :
hig(T)
- 1 - cos(¢, - ¢. . 8)
ij=—5— [ 65 - 0;)] (

Summing over all pairs <ij> we obtain the same Hamiltonian as in (1), with a

coupling energy

Hic(T)
2e

: (9)

The phase of the superconducting order parameter corresponds to the spin-an-
gle variable of the XY model. With (5), the universal KT prediction for the

transition temperature becomes

ic(Tc) BekB

~ 27 nA/K . (10)
ecle

Since the coupling energy in (9) is temperature dependent, the statistical
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mechanics of the system is conveniently described in terms of a dimensionless
temperature parameter T = kBT/J = ZekBT/(ﬁiC(T)) [20]. In particular it is T
and not T, which enters expression (7) for £,.

There is one important limitation to the isomorphism between the XY mo-
del and 2D arrays. In 2D arrays, as in all 2D superconductors, the vortex-
antivortex interaction no longer depends logarithmically on the separation
distance at distances larger than the effective penetration depth A [21]. It
turns out, however, that at T,, AT ~2cmK [20]; in the interesting tempe-

rature region A is therefore a macroscopic length scale.

b) Vortex dynamics in arrays

The dynamical properties of the KT transition were studied by
Ambegaokar et al [22,23]. An important result of their model is that the
vortex response to an applied field of angular frequency w is controlled by a
frequency dependent length r == (14D/w)}/?, where D is the vortex diffusion
constant. Bound vortex pairs of size larger than r, do not respond to the
applied field, whereas the response of the smaller pairs (r<r,) is descri-
bed by a complex dielectric constant which is derived from the static KT di-

electric constant e(r) in the following way [22,23] :

Re e(w) = e(ry)

Im e(w) %-(r de) (11)

dr’ |r=r

According to the physical interpretation of §+(T), at finite frequencies the

vortex unbinding transition will be seen at a temperature T, such that

ro= E(T) . (12)

By making use of the 2D Coulomb gas analogue, the contribution, e, of the
free vortex charges to the dielectric constant above T, can be written in

the form

- i 47 Gv (13)
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where cv=(e/h)rniC(T)[az/gi(T)] is the free vortex conductivity [12], propor-
tional to ng = E;z(T), and r, is the resistance of an individual junction.

In the experiments reported below (section IV), the physical quantity
of interest is the complex sheet impedance, Zp(w,T) of the array. It is rela-

ted to the complex vortex dielectric constant e(w,T) by
Zo(w,T) = iwlyge(w,T) (14)
where Lgg = H/(2eio(T)) is the sheet kinetic inductance of the array and

e(w,T) e'(w,T) + ie"(w,T) with, according to Egs. (11) and (12),
e'(w,T) = e(ry,) and e"(w,T) = ﬂ/&[rw(de/dr)lrzr ] + 4n oy/w.
w

1]

c) Magnetic field effects

A magnetic field g, perpendicular to the plane of the array, introduces
vortices with a tendency to form a reqular 2D lattice, the lattice parameter
being controlled by the magnitude of B. The interaction of the field-induced
vortices with the periodic pinning potential provided by the array leads to
commensurate (C) and incommensurate (I) vortex phases. The array can now be
described by a uniformly frustrated lattice spin model [24-27], with a Hamil-
tonian

H = cos(¢j = e Ai') (15)

B J(%‘j> J

where the argument of the cosine is the gauge-invariant phase difference bet-
ween islands i and j, ¢0Aij/(2n) is the line integral of the vector po-
tential A from site i to site Jj and ¢o is the superconducting flux quantum
The Aij's satisfy the condition @ Aij.—.Z‘th, where the sum is over all the
links in an elementary cell and f, the frustration parameter, represents the
magnetic flux per elementary cell in units of ¢4 F:Baz/¢0. If the magne-
tic field is uniform, f is a constant over the entire array. Quite clearly,
the Hamiltonian (15) is periodic in f with period 1. Furthermore, as f chan-
ges, the energy of the system goes through a series of local minima, corre-
sponding to rational values of f (C-vortex phases). As a consequence, the

transition temperature and the critical currents show a complex periodic de-
pendence on f [24,27-29].
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Iv. Experimental results and discussion

Arrays consisting of NxN Pb/Cu proximity-effect junctions, with N$103,
were fabricated on sapphire substrates using standard evaporation techniques,
photolithography and sputter-etching. Fig. 1 shows a scanning electron micro-
graph of a typical array. The square lead islands, 200 nm thick, form a squa-
re lattice on a 200 nm thick copper film. The lattice parameter a is 8 um,
the distance L between the squares is 1.7 pm. Fig. 2 shows the resistance of
an array as a function of temperature. There are two distinct transitions, as
observed by other groups [17-19] : the proximity-effect reduced BCS transi-
tion of the lead islands at 6.8 K and a transition to zero resistance at T
~ 3.9 K. In the temperature region 3.9 K < T < 6.8 K the coherence length in
the copper increases with decreasing temperature leading to an increase of
the effective size of the superconducting islands and thereby a decrease in
resistance [17].

The complex sheet conductance Go = ZE} of the arrays was measured
using a variation of the mutual inductance technique devised by Fiory and
Hebard [11,30]. Two coaxial cylindrical coils consisting of an external drive
coil of diameter 4 mm and an internal astatic pair of receive coils, 2 mm in
diameter, were immersed in stycast. After appropriate machining, the coil as-
sembly was positioned directly on the sample, the distance between the sample

and the first winding of the detection coil being of the order of 10 pum. An

Figure 1. Scanning electron micrograph of an array. Lighter colored squares
are the Pb islands on the top of the darker Cu film.
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Figure 2. Dc resistance vs temperature of a 2D array of Josephson junctions.
Tes ¢ BCS-transitions of the Pb islands. T, : Vortex unbinding

transition.

ac current of amplitude Ip, and angular frequency w flowing through the
drive coil will induce screening currents in the array proportional to Ip,
and w and, in the weak screening limit [30], also to G , the complex sheet
conductance of the array. These currents will, in turn, induce a voltage
8V, « uﬂIDmGD at the receive coil which can be phase-sensitively detec-
ted. Using Eq. (14) for Gg = Zal, in the weak screening limit appropriate to
discuss our experiments in the transition region, the signal voltage can be

written as :

io(T)
e(w,T)

8V, (T) = iCwlp, N (16)
where C is a constant depending on the sample-coil geometrical configuration,
whose numerical value was estimated to be ~ 0.74 Vs/A%. At low temperatures
(T€To) the weak screening condition is no longer satisfied and Eq.(16) must
be modified to include the geometrical inductance of the sample.

Since ig(T) is a monotonically decreasing function of temperature,
any unusual behaviour of the signal voltage 8V, in the transition region
will be determined by e-!(w,T). Calculations of e~‘(w,T) based on Eqs. (11)
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Figure 3. Temperature dependence of the receive coil signal &V, proportio-

nal to the array's sheet conductance at a frequency of 1663 Hz.

and (13) show that a peak in Im(e=!) and a roll-off in Re(e~!) are expected
in the neighborhood of T,. This is quite clearly demonstrated by the mea-
surements shown in Fig. 3 which exhibit a peak in dissipation [Re (8V,)]
and a drop in superfluid density [Im (&V,)]. Structures similar to those
shown in Fig. 3 were observed in uniform 2D superconductors [11] and in
superfluid helium films [10].

The evolution of the signals with increasing frequency is shown in
Fig. 4, where the signal voltage is normalized with respect to the angular
frequency of the driving current. Notice that, with increasing frequency, the
structures in both Re (8V,) and Im(8V,) shift to higher temperatures.
This is consistent with the theoretical prediction implied by Eq. (12) : as
the frequency increases, the probing length r, becomes smaller and the
vortex unbinding transition is observed at a higher temperature T,.

Also shown in Fig. 4 are the signals measured in a magnetic field cor-
responding to one flux quantum per unit cell of the array, the f = 1 case.
The response for f = 1 is similar to that for f = 0, in qualitative agreement
with the conclusion of section III, that the Hamiltonian of the system is
periodic in f with period 1. We conjecture that in the f = 1 case the thermal
excitations are highly mobile positive and negative vacancies, which can be
viewed as vortex-antivortex excitations superposed on a pinned commensurate
background of one field-induced vortex per unit cell of the array. Notice

however, that the transition for f = 1 in Fig. 4 occurs at a slightly lower
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Figure 4. Temperature dependence of the complex ac response of a 2D array at
different frequencies for f=0 and f=1. Signal voltages are normali-

zed with respect to angular frequency.

temperature than in the f = 0 case. The finite size of the junctions causes
the critical current of the individual junctions to be slightly reduced by
the magnetic field. The KT transition is thus also expected to occur at a
slightly reduced temperature in the case f = 1.

The frequency dependence of the signals, through Eq. (12), can be used
to verify the unusual temperature dependence of the vortex correlation length
£+(T) given in Eq. (7). The r,-values were calculated with D = (c/¢g)2rnakgT
for the vortex diffusivity, as derived in Ref. 20, and r,= 2.2 mQ, inferred
from the array sheet resistance at Tog. The temperatures T, were deduced from
the Im (8V,) vs T curves by extrapolating the steep portions to zero. In
order to determine T = kgT/J = 2ekgT/(hip(T)), low temperature measurements
of the array's critical current in zero field, i,(7,0), and in a f = 1

field, io(T,1), were fitted to the expression

io(T,f) = ig(F[1-(T/Tog) JPexp[-L/EN(T)] (17)

yieling EN(Teg) = 85 nm for the Cu coherence length, ig(o) = 0.78 A and
ig(1) = 0.26 A. Finally, introducing the scale parameter %, = An(r,/a),
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Figure 5. Dependence of the scale parameter 2,=2n(r,/a) on the dimensionless

temperature Tw. Solid lines are fits according to Eq. (18). On the

upper axis the real temperature for f = 0 is shown.

Eq. (12) can be cast into the form
B* = b2[T, - TulP] " (18)

As can be seen in Fig. 5, our measurements confirm the linear relationship

between 152 and ?w' By extrapolating the fitted straight lines to infinite

scale, corresponding to the limit w*0, we find io(T4,0)/To(0) = 49 nA/K
and io(Te,1)/Te(1) = 143 pA/K, wich leads, with Eq. (10), to eq(0) =
1.81 and ec(1) = 5.3. Our eo(0) value is in excellent agreement with a
Monte Carlo calculation performed by Tobochnik and Chester [31], who found
ec = 1.75. The gc(1) value, on the other hand, seems somewhat large, even
though additional screening by the commensurate vortex background is expected
to enhance e..

At this point, having studied the temperature dependence of the respon-
se at integer values of f, we would like to consider the dynamic response of
the array also at rational and irrational values of f. Real and imaginary
parts of the signal as a function of the frustration parameter f are shown in

Fig. 6 at four different temperatures. The structures occurring at integer f
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Figure 6. (a) Real and (b) imaginary parts of the ac response at 4033 Hz as a

function of the frustration parameter f = ¢/¢g at four temperatures

values, as well as half-integer f values (f=p/2) and at f=p/3, reveal the
presence of low energy commensurate vortex phases. At integer f values the
evolution of the structures with temperature is the signature of the
vortex-unbinding transition discussed above. The temperature evolution of the
signals at low-order rational f values is similar to that observed at integer
f values, leading to speculations about the possibility of a KT-like phase
transition at rational values of f. However, a theory describing the dynamics
of field-induced vortices and their interaction with topological excitations
such as thermal vortices and domain walls at non-zero temperatures is not
available. A detailed analysis of the data shown in Fig. 6 is therefore not

yet possible.

V. Conclusions

Our measurements of the dynamic response of 2D arrays, in magnetic
fields corresponding to integer values of the frustration parameter f, as a
function of temperature verify the qualitative behavior of the dielectric

constant e(w,T) predicted by the KT theory for phase transitions in two
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dimensions. The analysis of the frequency dependence of the measurements pro-
vides a quantitative check of the exponential-inverse-square-root temperature
dependence of the free vortex correlation length above T..

The nature of the phase transition in magnetic fields corresponding to
non-integer f values is an unsolved and challenging problem. In particular,
the case f = 1/2, corresponding to the fully frustrated XY model, has recent-
ly received a considerable amount of attention and some progress is being ma-
de, both theoretically and with numerical computer simulations [27, 32, 33].
Our experimental work to-date on 2D arrays cannot unambiguously settle the
question of the nature of the phase transition, KT- like or Ising-like at f =
1/2.

This work was supported by the Swiss National Science Foundation.
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