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Existence of ponderomotive effects for plane,
uniform electromagnetic waves of arbitrary
polarisation in a magnetoplasma

By R. Uma and D. Subbarao

Fusion Studies Program, Centre of Energy Studies, Indian Institute of
Technology, New Delhi - 110 016, India

(13. TV. 1986)

Abstract. The stationary ponderomotive force of an arbitrarily polarised, plane, uniform
electromagnetic wave in a magneto-plasma is shown to be space-periodic with the characteristic length
of the order of wavelength of the normal modes. The longitudinal part of the force modulates the
plasma normal to the boundary for all angles of incidence of the electromagnetic wave. The nonlinear
dispersion characteristics as a result show total and partial Bragg reflection for normal and oblique

incidence of the wave respectively in the stop (unstable) bands and spatial harmonic generation in the
pass (stable) bands.

1. Introduction

The concept of ponderomotive force finds applications in several nonlinear
phenomena relevant to laser-plasma interaction [1], heating, r.f. plugging and
stabilisation of magnetically confined fusion plasmas [2, 3, 4] and wave propaga-
tion in ionosphere [5]. In laser-plasma interaction, the coupling of the pump
(laser) to the modes of the plasma through the force leads to parametric
instabilities [6], while the density redistribution due to the radiation pressure
causes self-focusing of electromagnetic beams [7], anomalous reflection [8] and
soliton propagation [9]; the ponderomotive force of finite amplitude electromag-
netic and electrostatic waves can help deliver a net momentum to the plasma,
generating a zero-frequency current and magnetic field [10].

Several derivations of the ponderomotive force based on Helmholtz method
[13], fluid and kinetic picture of the plasma [14, 15], as reviewed in Ref. 16 exist;
the most general of these being the Lie-transform formalism due to Cary et al.
However, with the exception of Refs. 16, 17 and 18, all of these studies consider
the ponderomotive force and its effects only for waves with inhomogeneous
intensity profiles.

In this paper, we examine an effect for uniform plane waves missed until
recently, namely that almost every conceivable system that launches a wave in the
plasma, will excite a super-position of waves which having the same frequency w
but different wavenumber k will generate by mixing, a zero frequency spatial



1388 R. Uma and D. Subbarao H P. A.

periodic structure. This structure then influences the propagation of the wave,
resulting in new ponderomotive effects like nonlinear Bragg reflection in the stop
bands and spatial harmonic generation in the pass bands.

The above ponderomotive effects are studied in detail in the high frequency
regime in a cold, unbounded, magnetoplasma, where for a given w, two
characteristic modes with different polarisations propagate (note that these waves
can no longer be termed ‘modes’ as they cease to be independent in the nonlinear
regime). While this is the first such study for unbounded systems interacting with
an external electromagnetic energy source, the above effects could also arise in
bounded systems where oppositely propagating waves that constitute an eigen-
mode beat to give zerofrequency modification on the ponderomotive force.
Examples of the latter are the excitation of cavity modes investigated recently by
Festeau et al. [12] in the ioncyclotron regime in a two-species plasma and the
earlier studies on radio frequency confinement [11] and other effects such as

self-focusing [7].

The orgamisation of the paper is as follows: Section 2 gives expressions for
the longitudinal and solenoidal part of the ponderomotive force for normal
incidence and the resulting density redistribution while Section 3 deals with the
wave equation in the modulated plasma and the nature of the solutions in the
stable and unstable regions. Section 4 is devoted to the phenomena of nonlinear
Bragg reflection. Finally Section 5 gives a summary of results, applications and
conclusions.

2. The stationary ponderomotive force density and density redistribution

We define the ponderomotive force density as the time independent force
density obtained by averaging all the nonlinearities in the first moment of the
Vlasov equation over the fast time scale (16, 17)

Fro = (puE+ 20, XB) =7 (V-3,0,) (1)
c (1
where « refers to the charge species, p, and J, are the charge and current
densities respectively. ,, = (47ng,€%/mo,)"is the characteristic plasma frequency,
ng, and m, are the number density and mass respectively; e is the electronic
charge, c is the speed of light in vacuum, c.c. refers to complex conjugate. This
definition more accessible for uniform plane waves [18], generalises the definition
in terms of a gradient force [20] which is applicable to inhomogeneous fields.
The linear high frequency response of the cold magnetoplasma in the
presence of an incident wave of frequency w can, in general, be expressed as a
superposition of the two normal waves of different wavenumbers and polarisa-
tion. We have, in mind in this paper, the region of propagation of fast
extraordinary (FE) and ordinary (O) waves; that of ordinary and slow extraordi-
nary (SE) waves; and fast magnetosonic (FMS) and slow extraordinary (SE)
waves. External pumping of a plasma is also possible in other frequency regimes
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such as that of Alfven waves where the analysis should essentially be the same.
With

E=) E,é,exp(i(—K, -r+ wt)) a=1,2 (2a)

E, being the complex amplitudes and &, the normalised eigenvectors correspond-
ing to the two normal modes and use of the continuity and Maxwell’s equations,
we get

E* =~ (K, o-E,)E} (2b)
W o8
1
“@xBY) =3 [Ke(o - E, - E}) ~ E§(K, - 0 - )] (0)
a.B

where =1, 2 and =1, 2.
Equations (2b) and (2c) may then be simplified by the use of V- D =0 and
the orthogonality relations between the normal modes [19],

Ka-o-Ea=—£(Ka-Ea) (2d)

Ak A

( )elﬁe]a - a'ﬁ (26)

where K;, K,- are the components of the unit propagation vector. More con-
veniently, equation (2e) on substitution in the equation for é, i.e.

(N (6 Kin) - €zj(Na, w))éja =0 (2f)
gives
el] ]cr =N : aa,B (Zg)

where N, is the refractive index of the ath mode and ¢; refers to the dielectric
tensor (€; =1 — 4mio;/ w).

Equation (2g) shows that the eigenvectors are not mutually orthogonal as
they are not purely transverse or longitudinal as in an isotropic plasma; their
transverse components are, however, mutually orthogonal. Equation (2g) also
implies

o/w-E, -Ej=—iE,Es(1-Ny)/dx a=p
—_ : * /A (2h)
= —iE, -Eg/4n a#f
so that equations (2b) and (2c) become

. :
pE* + E (J+B*)+c.c.= % [é (Ka(Es - Eg) — (K, — Kp) - EarE;;)] +c.c. (20)
a;b,()‘

while
iw?
VI =——=> (K, — K;) - E.(D} — E}) (2j)
167 o, B
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Equation (1) can be written using equations (2d) and (2h) as
i
Fp = Er {(Kl -K,)- [I(El : E;) - wz/wﬁ(ElDé‘ - EzDT)

— (1 - w’/w)(EE; — EE})]} +c.c. ~ (3a)

The ponderomotive force hence vanishes for propagation of the characteristic
waves parallel to the magnetic field and can be seen to be periodic in space with
the characteristic length |K; — K,| ™"

One may separate the longitudinal part of F, which can be expressed as a
gradient of a scalar. This component is parallel to (K; — K;) and is denoted by F,
below:

F, = (K, - K)EE5(Q2w?*/ w; — 1) sin (K, — K»)z)/8n (3b)
where (21)

€,(e5— N3)(€;— N3)sin* 6
€3(N3 — N7)(€, sin” 6 + €5 cos” 6)

E\.E],=E\E, (3c)

With
2 2 2
=1 Wpe _ W, Wpe _ Wpe
&, = 15 2 230 €= 2 287 E3_1_ 2
(wi, — w*) o (02, — ) w

w. being the electron cyclotron frequency, 6 the angle of propagation of the
modes with respect to the magnetic field. Equation (3b) vanishes both for wave
propagation along and perpendicular to the magnetic field B,. This might be one
of the reasons for its not having been investigated till now; Fig. 1 gives the

034
0.03
& 0.02—
o
w
0.01 I~
0.0 1 1 ] ]
0.4 0.8 1.2 1.6
8g

Figure 1
The nonsolenoidal component of the ponderomotive force (F,) vs. the angle of propagation (85) of
the linear modes with respect to the magnetic field, for normal incidence.
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estimates of the force for intermediate angles of propagation (with respect to the
magnetic field direction).

The solenoidal part of equation (3a) can be written as

(Kl - Kz) 1 ) X
F - Fx K = K X
- 8t  (€,sin’ 8 + €5 cos’ B) (Fpu sin (K, 2)2)
+ F,y cos (K — K3)z)§)
where
€,Sin 0
e = (1 — ?/w3)(2€; — (N} + N3))
N2 N2

+ w?/wi(e3(NT + N3) — 2NiN3)}

E,, = (€, sin” 0 + €; cos® B) sin 9{(1 - w?/w}))

€3— € w?
X ]ﬁcosz 6+ = ((NT+N3)—€,65— N%Ng/e3)} (3d)
In this paper we do not take up the current and magnetic field generation by F,, , .
It may also be noted that the orthogonality relations (equations (2h)) used to
obtain the ponderomotive force above (equation (3)) apply when the two
characteristic waves propagate at the same angle to the magnetic field. To see
when such collinear propagation of the two waves occurs, consider the electro-
magnetic wave to be incident at an angle 8,, with respect to the normal (Z) to the
vacuum-plasma interface, with the magnetic field at an angle 8z (different in
general from 6 defined earlier) with respect to the z direction such that

sin 8;, = N; sin 8, = N, sin 6, (4a)

and
(K, - K,)-r=0 (4b)

from continuity of the fields across the boundary. Here 8, and 8, are the angles
of propagation of the two modes with respect to the normal and N;, N, are the
refractive indices of the two modes evaluated at (6, —6z) and (6,— 6p)
respectively; r is a vector along the vaccum-plasma boundary and is in the y
direction so that (K, —K;) is along the normal (see equation (4b)). From
equation (4a), it is clear that the two characteristic waves propagate collinearly
for normal incidence (8, = 0, = 6,, =0), the magnetic field being at an arbitrary
angle 605(=80) with respect to the direction of propagation of the normal waves.

For oblique incidence, the two normal waves propagate non-collinearly
(6, # 0;). The ponderomotive force may then still be expressed as

F=F, exp (i(K, — K;)z) + c.c. (5)

from equations (1) and (4). An explicit expression can be obtained for F,, along
the lines of equations (2) and (3) and is not gone into, as it is not relevant to the



1392 R. Uma and D. Subbarao H. P A.

ponderomotive effects considered here. However, the basic consequences are still
discernible; we come to this aspect again in Section 4 (equations (14)).

Density modulation

Though we consider a two-species electron-ion plasma, the contribution of
ions in the linear dielectic constant may be ignored when w®>> w. w,.; the
ponderomotive force on the ions is also negligible as the force varies inversely as
the mass of the species. While the latter is not explicit in the expressions (3c) and
(3d) it can, for example, be easily verified for quasilongitudinal and quasitrans-
verse propagation.

In steady state, an electric field consistent with the nonsolenoidal part of the
ponderomotive force (acting on the electrons) develops, which is balanced by the
thermal drag on the ions (The ions follow the electrons) i.e.

E = KgT,/eVon;/n, (6a)
From equation (4a), the electron momentum equation
0= Fp” - eES” - KBEV(ﬁne/no (6b)

and the assumption of quasineutrality, (which persists as the scalelength of the
potential is much greater than the Debye length) the selfconsistent modulation
due to the longitudinal ponderomotive force may be determined [19]; it is along
the normal to the vacuum-plasma boundary irrespective of the angle of incidence
of the electromagnetic wave, as can be seen from equation (4). For normal
incidence, it is given by

on_ (1-20%wy)
h - n()(7;+7:~)

E,E3,(cos (K, — K,)z—1)/8n (6¢)

This zero frequency modulation vanishes when the two modes propagate parallel

or perpendicular to the magnetic field just as the longitudinal ponderomotive
force does.

3. Wave equation and its solutions

Assuming E = E,&, + E,&, to still hold in the modulated plasma, (henceforth
called the parametric approximation in this paper) a steady state solution for E,
and E, can be obtained after incorporating the self-induced density modification
in the wave equation of each of the normal modes. In this parametric
approximation, when 6N, << N,, N, being the perturbation in the refractive index
for the a-th mode corresponding to the density perturbation 6n, i.e.

3N?Z
on |n=n,

Nln) = Ne(no) + on+--- (7)

the nonlinearity is weak and is calculated using unmodified eigenmodes. In the
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same approximation, the selfgenerated currents and associated magnetic fields
have negligible effect on wave propagation [22].

Let us first consider the case of normal incidence, where 6n/n is given by
equation (6¢). The propagation of the eigenmodes is governed in the present
approximation by the Mathieu equation [23],

d’E, _
172 +(a;,—29,,c0822)E, ,=0
where
z=(K,-K3)z/2, 01,2=4N%,2/(N1 - N,)? (8)
2 *
fz=" (81;’;_2)(1 ~Raf o) 2::?;,%},.) N, —11\/2)2
and |g/a| < 1.

As dictated by the Mathieu stability diagram, periodic and aperiodic but
bounded solutions can be constructed in the stable region (pass bands) while the
unstable regions (stop bands) situated near a=m?* m=0, 1,2,..., allow
growing (unbounded) solutions and decaying (evanescent) solutions in space. We
consider only decaying solutions in the unstable band; the growing solution is
unphysical in the semi-infinite, passive medium which has no free energy to
amplify the wave. However, the modulated medium can act as an active medium
for a small amplitude test wave which satisfies the Bragg (stop band) condition.
This could lead to spatial amplification of the test wave as in parametric amplifiers
[25] and is not taken up here.

Consider the Floquet solution of equation (8),

E(Z)=Aexp (—u2)®(z, 0) 9)

where ®(Z, o) is a periodic function of z. In the stable and unstable region
between A, and B, (Fig. 2) it is given by

®(z, o)=(exp (iz) + R, exp (—iz) + As(exp (i3Z) + Ry exp (—i32)) + - - -

where
. c3+is :
R, = exp (i20); Ry= ( ) exp (i60);
C3 — 183
As=i(c; — is3) exp (i20) (9a)

Here o and 6 are complex parameters dependent on a and g and are given by

o = 3 arc cos &; u=q/2(1 - 65"

o

o= l1—(a+ig)"]

s3=—q/8+¢q*cos20/64+ - -

c3 =g’ sin20 — s5g°sin4o + - - - (9b)
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Figure 2
The high frequency region of the magneto-plasma with w > w,, > w. and 6g=10° for normal

incidence. (a) The stability diagram for the Mathieu equation superimposed by the curves a(w) and
g(w) (w increases towards the right on the curves) corresponding to FE and O Waves: with
w,/w, = 0.1; (b) Dispersion curve (Brillouin Diagram) derived from (a). Continuous curve — nonlinear

W
and d%tted — linear.
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In the stable (pass) bands, u is imaginary and |R,| and |R5| in (equation (9a))
decay to zero some distance from the boundary of the stop band. The wave can
propagate in this region. It, however, excites a spectrum of sidebands at different
wavenumbers though at the same frequency. For example, the solution in the
pass band between A,, B,, with u =i(1+ ) and 0<f§ <1, is described in terms
of Mathieu functions of real fractional order viz Ce,.4(a, ) and Se,.z4(a, q)

exp (i(3+p)z) exp (i(B - 1)2)] o
3+ p-1

This solution is periodic when f is rational and is aperiodic but bounded when f
is irrational. The solution shows that the primary wave with wavenumber (8 + 1)
is coupled to sidebands of higher wavenumbers (8 + 1 £ n) through the modula-
tion of strength ¢g. Considering the coupling only to the sidebands n = £1 to be
significant, the dispersion relation for the wave may be written as

E(z)=exp (i(1 + B)z) — %[ (10)

a—1 2

2(a _ 1)2_ qu
B S5a+7
32(a—1)(a

K= (Ky — K)(1+ B) = (K, — K2) a -

) a

under the approximation |a| > |¢*/(1 + B)* —1|.

The existence of coupling to sidebands with higher wavenumbers (lower
phasevelocities) suggests the possibility of enhancement in wave damping [22].

In the unstable bands, u is real while it is zero on the boundary A,, B, for the
first band near @ =1 in Fig. 2. The width of these bands depends on the strength
of the modulation; for example, near a = 1, the width of the stop band is g/a and
given by the condition 1 —¢g/2a <a <1+ g/2a. On the boundary A, and B;, the
solution corresponds to the integral Mathieu functions Se;(a, g) and Ce,(a, q).
Here the harmonics couple exactly in pairs and correspond to purely standing
waves. Inside the stop band, the solution equation (9) gives a superposition of
standing waves exponentially damped in the z direction. This implies that the mode
considered is evanescent in the plasma in the stop bands; accordingly the
component of the electromagnetic wave with the polarisation of the evanescent
mode is Bragg reflected.

The case of oblique incidence could be analysed likewise. With E, =
Eo, exp (ik,y)Z;(Z); o« =1,2, one may write down a Mathieu equation from
equation (4) as in equation (9) for Z;(z) with a2 = 4(K% — K3 sin® 6,,)/(K, — K,)*
where K7 (a =1, 2) are evaluated at the angle of propagation 6 — 6,, 65 being
the angle made by the magnetic field with the normal. The stopband condition
then becomes

4(N% — Ngsin® 6,,)/(Ny — N,)?|g,—6, = m* (12)

The significance of (12) and details of Bragg reflection are discussed in the next
section.
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One would observe that the above treatment based on parametric ap-
proximation assumes the modulation (of strength g) to be unaffected by the
changes in the dispersion characteristics of the modes induced by the non-
linearity. For example, at oblique incidence when one polarisation component of
the electromagnetic wave is reflected in the stop band, the evanescent nature of
the mode in the plasma would self consistently cause the modulation to decay in
space with a period (q|K;— K,|™") (in the first stop band). Besides, the
inhomogeneity would give rise to a space dependence in the wave number
thereby affecting the Bragg condition. It may therefore appear that the
eigenmode solutions (equation (9)) could only apply to a small amplitude test
wave which probes the modulation created by the original finite amplitude wave
and essentially leaves it undisturbed. However, this is not the case considered and
our aim is to develop a selfconsistent description of steadystate nonlinear
propagation of the finite amplitude wave in a future communication. While the
parametric approximation, in general, should be replaced by a fully selfconsistent
analysis, it is shown, below that the above approach is selfconsistent within this
approximation and brings out the principal qualitative changes in the propagation
characteristics.

To see that the phase coherence between the wave and the modulation is not
disturbed in the presence of the evanescent wave (the incident wave is partially
Bragg reflected) one may note that the amplitude of the modulation g varies
much slowly compared with the phase (i.e. g |K; — K,| < |K; — K;|) so that the
Mathieu equation for a homogeneous, semi-infinite plasma is locally valid. Hence
the maximum value of the changed wave number, given that the unperturbed
value is Kyo=3(Kyo— Kx)Va, is K;=3(K,—K,)Va, +q so that 4K3/(K, -
K,)*=a+q. Hence the mode remains within the stop band and the Bragg
condition continues to be satisfied in spite of g decreasing with z along with the
width of the stop band. The parametric assumption involving the scenario of
unmodified linear eigenmodes is, therefore, valid. Further if the reflected wave be
considered in the determination of the ponderomotive force, a modulation would
be created at K, + K,. This modulation, however, is nonresonant with the wave
in the Bragg sense and would, therefore, lead to higher spatial harmonic
generation as in the pass bands (equation (10)); it is a higher order effect. Hence
considerable Bragg reflection would occur from the fairly large coherent volume
before selfconsistent effects (pump depletion) become important.

4. Nonlinear Bragg reflection (NBR)

From the previous section, we found that Bragg reflection of a characteristic
wave occurs in the stop band when the scalelength of the ponderomotive induced
modulation 1s an integral multiple of its wavelength. If both the characteristic
waves simultaneously satisfy the Bragg condition, the reflection of an arbitrarily
polarised electromagnetic wave is total as it is a superposition of the two
characteristic waves. For the case of normal incidence, it is easy to see that if the
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stop band condition is satisfied by mode 1 i.e.

a1=4N%/(N|'—N2)2=m2 m=0, 1, 2, (133)
mode 2 also satisfies a similar condition simultaneously i.e.
a,=4N3/(N, — N,)* = (m £ 2)* (13b)

This implies total reflection of the electromagnetic wave occurs in the stop bands
at normal incidence.

To identify the Bragg zone given by the stop-band condition, one may note
that the refractive indices N,, N, are functions of 6;,, 6, — 05, =1, 2 (the latter
being the angle of propagation of the modes with respect to the magnetic field)
and the plasma parameters w, w, and w.. For normal incidence 6,, = 6,=6,=0
so that for a given w, and w, equations (13) gives a critical frequency w (Bragg)
and q/a gives the frequency bandwidth about w (Bragg) at which total NBR
would occur. Fig. 2 illustrates the Bragg zones for the (high frequency) region of
propagation of the fast extraordinary (FE) and ordinary (O) waves where
o> o’ >0f?; ofP, ofP are the cut-offs for FE and O respectively. In the
stability (‘a’ VS ‘q’) diagram (see Fig. 2(a)) the stop bands are shown shaded and
are bound by the characteristic curves A,,, B,, (m =1, 2). (If the bands are too
narrow, they are indicated by straight lines). Also a plot of a(w) VS. q(w) for FE
and O drawn for monotonically increasing w is superimposed on this stability
diagram; w./w, is held fixed and is given by 0.1 in Fig. (2a). Note that this plot
satisfies equations (12) and (13); for instance when a,=9, agg = 1. In Fig. (2b)
the dispersion curve (corresponding to the a(w) VS. g(w) curve in Fig. (2a)) is
plotted using equation (11) for FE and O; the band gaps give the w’s for which
a(w) lies in the stop band (i.e. a =m?) in the stability diagram. Consider the
example of laboratory plasma with w./w, =0.1 and w, =1GHZ. One may infer
from Fig. (2) that the critical Bragg frequency w (Bragg) = 1.00617 GHz with the
stop band gap Aw =0.5 X 10> HZ at normalised power of the wave E*/87n,T, ~
1073, Similarly for ionosphere @ (Bragg) = 1.00617 X 10’ Hz and Aw = 0.5 x 10%.
Hz at E*/87n,T,=0.1, w, = 10" Hz.

The stop bands are pronounced at lower order resonances and are narrowed
for higher order resonances. If too narrow, they are shown by a dotted square in
the dispersion curve. In the pass bands also, the deviation of kc/w, from the
linear mode number becomes small in that case.

Figure 3 considers the case of the low density plasma when three frequency
regimes are accessible for both the linear modes simultaneously. The first region
is that of FE and O considered in Fig. 2 and is not plotted. The second region lies
between w{? < w < ¢’ where the slow extraordinary (SE) and ordinary (O)
waves propagate (Fig. (3a) and (3b)). The third region of propagation is that of
fast magnetosonic (FMS) and the slow extraordinary (SE) waves when of’ <
w <P (Fig. (3c) and (3d)). 0P, 0§ are the cut-offs of O and SE while o,
w? are the resonances of FE and SE.

Table 1 gives the normalised critical Bragg frequency w (Bragg) (for which
both the modes are in the stop bands) from Fig. 2 and 3 along with the order of
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Figure 3

Low density plasma (w.>> @,) with 6z =10° for normal incidence. The Mathieu stability chart
sugerimposed by the curves a(w) and q(w) respectively corresponding to (a) SE and O waves for
o’ <w <ol and (c) FMS and SE for 0{’ <w < w?; (b) and (d). The dispersion curves derived
from (a) and (c) respectively. O, FE, SE and FMS correspond to ordinary, slow extraordinary and
fast magnetosonic waves respectively.
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the stop bands. It may be noted that as the frequency band gaps of the two modes
are of different widths (as they are of different order) total reflection would occur
only in the frequency band common to both the modes; partial reflection would
occur in the rest of the stop band corresponding to the mode with the lower order

resonance.
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Table 1
Normalised Bragg frequency for which the two characteristic waves are in the stop bands
(a; = 4N?/(N, — N,)* =m?; m = 1,3) for a low density and high density plasma.

Modes
w/w, w/w,(Bragg) (1&2) a; a,
0.01 1.00621 O, FE 9 1
0.1 1.00618 O, FE 9 1
50 1.000175 O, SE 1 9
50 0.025 FMS,SE 9 1

Bragg zones may similarly be determined for the case of oblique incidence of
the electromagnetic wave. Here for a given 65 and plasma parameters w, w, and
@, the stop band condition in equation (12) defines a certain critical angle of
incidence 6, (Bragg) at which reflection would occur. It is convenient to analyse
equation (12) as a set of two simpler conditions. Ni can be eliminated using
Snell’s law to obtain

4 cos” 8, = m*(1 —sin 8,/sin 6,)° (14a)

The Bragg condition at oblique incidence is therefore equivalent to equation
(14a) & Snell’s law viz.

N, sin 8, = N,sin 6, =sin 6, (14b)

Table 2 given the values of 6,, (Bragg) calculated numerically by optimising
the values of w, w, and w,. simultaneously to satisfy equations (14a) and (14b).
For the case of laboratory plasma (or ionosphere as considered in the earlier
example) with w./w, =0.13, one may infer that at 6, (Bragg) = 0.84 rad partial
reflection of the electromagnetic wave would occur (i.e. reflection of the ordinary
wave component) due to the ordinary mode being in the second stop band; the
fast extraordinary (FE) is in the pass band.

Figure 4 illustrates a graphical method for determination of the critical angles
of incidence 6,, (Bragg), the region of propagation considered being that of O and
SE. For the ordinary wave, curve ‘O’ is plotted by determining sin 6,, (left hand

Table 2
Critical angles of Bragg reflection for a given o /w, and w/w, in a low and high density plasma.

5 6,. 6, 6, (Bragg)
W, w Modes
w, o, (L s In radians
0.00136 1.006 O, FE 3.92 0.052 1.54
278.15 1.34 0.097
0.1 1.07 O.FE 4.0 0.136  1.55
678.6 1.42 0.84
9.525 10.35 O.FE 9.04 2.846 1.53
262.49 1.33 1.35
10.0 1.4 O. SE 1.01 0.728 1.44
379.15 0.922  0.964
29.8 30.1 0, FE 4.0 2772 1.54
241.24 1.32 1.37
30.0 1.15 O, SE 1.09 0.785 1.36
25.62 0.76 0.78
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Figure 4

Ok to be read off from right hand ordinate is calculated from first order Bragg condition (Equation
(13a) with m = 1) for given 6, (abscissa). The lefthand ordinate is sin 6,, calculated using Snell’s law
(Equation (13b)) on 6 and 6ge. The ordinary wave is in the first stop band for Bragg reflection
(partial) of the wave incident from vacuum. Plasma parameters are: w/w, = 1.15; w./w, = 30.

ordinate) from Snell's law (equation (14b)) assuming 6, to be given. For the slow
extraordinary wave, a plot of G5 (shown as the right hand ordinate) Vs 0¢ is
given where Oge is determined from the Bragg condition for the given 0.
Finally, with known 8gg, Snell’s law for the extraordinary wave is used to obtain
the values of sin 6;, again and the curve labelled SE is plotted. Clearly, only at
the intersection points of the curves O and SE, Snell’s law for both the waves as
well as the Bragg condition for the O wave are self-consistent. The point at the
origin represents normal incidence (6,, = 0). It implies that at normal incidence
Bragg reflection is always possible if the parameters are properly adjusted. The
second point 6,, (Bragg) is the critical angle of incidence around which the O
wave is reflected. The critical angle hence determined has been found to agree
closely with the value determined numerically.

Figure 4 above considers first order (m = 1) Bragg reflection. Higher order
Bragg reflections would be less accessible because of narrower windows of
parameters like w and higher thresholds. Further, while NBR can be total for
normal incidence as both the modes are in the stop bands simultaneously, for
oblique incidence it is partial because only one of the modes can be in the stop
band, the modes being non-collinear.

Observability of NBR

Nonlinear Bragg reflection would be observable when the power of the
incident electromagnetic wave scattered from the zero frequency modulation
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exceeds the incoherent scattering from the background thermal fluctuations.
Otherwise this phenomenon has apparently no threshold in contrast to parametric
scattering processes like stimulated Brillouin scattering (SBS) or stimulated
Raman scattering (SRS). In a low collisional plasma, however, the observability
thresholds of NBR and SBS/SRS could be comparable since the existence
thresholds of the latter processes are small enough, and the observability depends
mainly on the noise levels at the appropriate frequency shifted lines. The NBR
line with zero frequency shift (in the absence of the usually present plasma drifts)
could, in principle, be less noisy than SBS or SRS lines which support noise levels
of the natural modes of the plasma. In practice, on account of the presence of
drifts (28) and cascading, the ‘zero frequency’ noise levels could, however be high
enough to compare with that of the SBS/SRS lines.

To determine the required power for detection of NBR, the average thermal
density fluctuation of an equilibrium plasma may be substituted in the equation
for the density modulation (equation (6¢)) to obtain normalised power E?/
8mn,T,. For instance, in quiescent laboratory plasmas characterised by on/
n =<0.1%, the (normalised) pump power should be greater than 1072; this falls in
the intermediate/strong range of microwave power. Specifically, (for example)
on/n=0.17% in the high frequency regime with the parameters w./w, =0.1,
w/w, =1.051, 85 = 45° where the normal waves in the stop bands are O and FE;
in a low density plasma with w./w, =50 and 65 =45°, én/n=(0.1%, 0.01%,
0.31%) are created at w/w, (50.04, 1.01, 0.019) in the stop bands of (O, FE), (O,
SE) and (SE, FMS) respectively. The above values could be an overestimate
since the actual thermal fluctuation at zero frequency would be much less than the
average value as the principal contribution to the latter comes from the peak at
the ion line (w./w,<1) when T,>> T, (and neglecting turbulence effects).
Consequently the Bragg scattered wave may be detectable below the above
threshold (even though the frequency shifted scattering due to the ion line may be
more intense). For ionosphere, a similar estimate is E*/8an,T,=10"", the
thermal 6n/n being 0.01% (n = 10° particles/cm> T = 1eV).

It is interesting to compare the zero frequency modulation level with the
saturated values of on;/n (of ions) measured in laser plasma interaction during
SBS. For instance at strong pump powers of E*/8xn,T, =1 (Intensity 10** Watt/
cm’ for Nd glass lasers) when the SBS reflectivity is 20%, the observed
on;/n =10% (28); the zero frequency modulation is also of the same order at
these powers (10* times the thermal value). One may, therefore, expect NBR to
compete with SBS in laser plasma interaction. (It should be detectable at a shifted
frequency corresponding to the drift of the underdense plasma; this process is
different from the case of magnetoplasma in that the modulation is created by the
beating of the incident wave and the reflected wave from the critical density
region (22)).

In a more complete analysis, drifts due to inhomogneties should be
considered as these are unavoidable in a magnetoplasma. In such a case, the
Doppler shift in the reflected wave and hence the modulation would enable a
resonant coupling to a normal mode such as the universal drift mode in a low
plasma (which satisfies w = 4(K, Vp, + (K3 V% +4K5C3)"). Hence, NBR would



Vol. 59, 1986  Existence of ponderomotive effects 1403

be observable when the modulation created by the wave exceeds the fairly large
fluctuation level of the drift mode which is always present in an inhomogeneous
plasma. Typical values of én/n of drift waves for example in a Q-machine, are
about 5-6% (29) which is much higher than the thermal level; normalised pump
powers of about 0.1 may then be required for detection of NBR. At these
powers, parametric instabilities may also be excited. While, the Bragg scattered
wave can be enhanced if the reflected and the drift wave grow at the expense of
the incident wave, other parametric instabilities like decay instabilities may drain
energy from the electromagnetic waves (by coupling to other normal modes) and
compete with NBR, since the observability thresholds are comparable.

S. Summary and conclusions

We have investigated a new ponderomotive effect for uniform plane
electromagnetic waves in a cold magnetoplasma in situations where different
polarisation components of the same wave with different wave numbers but same
frequency, beat to produce a spatially periodic modulation of the magnetoplasma.
This modulation leads to Bragg reflection of the incident wave because of the
appearance of the stop bands in the wave characteristics. For normal incidence
when both the waves are in the stop bands, total reflection occurs while partial
reflection occurs for oblique incidence when only one of the modes is in the stop
band. For weak nonlinearity and absorption, this would occur at all powers and
does not need a threshold. However, to be distinguishable from other incoherent
scattering due to thermal fluctuations, power levels comparable to SBS are
necessary when the density fluctuation level due to the wave is raised above the
thermal noise. The Bragg condition for reflection for oblique incidence gives
certain critical angles of incidence while for normal incidence reflection occurs in
certain frequency band gaps for given plasma parameters w,, ..

One may venture to conclude that the stop bands should be avoided in wave
heating of plasmas as enhanced reflection of the wave would occur. The stop
bands are, however, useful for enhanced reflection e.g. from the ionosphere in
radiowave communication. The use of pass bands as an efficient channel for
dumping wave energy by cyclotron damping or drift wave excitation would be
taken up elsewhere [22].

While this study should be considered as a preliminary indication of the new
ponderomotive effects, further elaboration of the processes including the effects
of self consistency, geometry, finiteness and inhomogeneity would be necessary to
be able to relate better to realistic actual experiments and are likely to be dealt
with in a future communication.
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