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Momentum operators for large systems

By A. Amann and U. Müller-Herold
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Zentrum, Universitätstrasse 22, CH-8092 Zürich
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Abstract. For infinite systems a momentum operator can always be constructed in a suitable
representation. It then commutes with all quasilocal observables. The associated W*-algebra
factorizes into a commutative W*-algebra generated by the momentum operator and a non-
commutative residual part. Extremal translation-invariant states factorize accordingly and are
eigenstates of momentum.

I. Motivations

It seems to be a characteristic of infinite systems that proper Galilei-
transformations ("boosts") cannot be implemented unitarily in the GNS-Hilbert
spaces associated with factor representations of the underlying quasilocal C*-
algebra of observables ([l]-[3]). Covariant representations of boost-
transformations, however, can be constructed in the Hilbert spaces belonging to
direct integrals of suitable factor representations. As, roughly speaking, the

o-algebra of the corresponding central measures transforms under boost transformations

like a system of imprimitivities of a momentum operator, one could
conjecture that a momentum operator of an infinite system, if it exists, might be

an element of the center of the corresponding W* -algebra of observables and
hence a classical observable. It is the objective of this article to show that this, in
fact, is true under quite general conditions. Furthermore it turns out that the
W* -algebra thus obtained factorizes into a nonatomic commutative algebra
generated by the momentum operator and a non-abelian JK*-algebra representing
the remaining of the infinite medium.

There are various rationales for the special behavior of infinite systems under
boost transformations. On the heuristic level it is often argued that "to change
the velocity of an infinite system (one) would have to impart on it an infinite
amount of energy and momentum. No unitary operator upon a Hilbert space can
do this" [4]. On a more formal level some insight can be gained from the study of
simple model systems, the most simple being quasifree representations of the
CAR-algebra of a Galilei-relativistic Fermi field. Let ffl be a separable Hilbert
space with a basis of one particle state functions. The CAR-algebra si is
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generated by an antilinear map a : 3t~* si such that

a(f)a*(g) + a*(g)a(f)=(f\g)
a(f)a(g) + a(g)a(f) 0, f, g e X,

where (-|-) denotes the scalar product in %t. A quasifree gauge-invariant state
coA : si —» C is defined by

(oA{a*(f„) • ¦ ¦ a*(fx)a(gx) ¦ ¦ ¦ a(gm)} bnm det {(f \Âgk)}

where Â is an operator on Ut with 0 < Â -£ 1. Unitary transformations in St induce
quasifree automorphisms of si

rg{a(f)} a(Ugf)

where g—> Ug, g e G, is a projective representation of some group G in W. To
simplify the discussion we restrict the action of the Galilei group to space
translations r—>Ur and boosts v—> Uv in one dimension. A quasifree state ioA is

translation-invariant, if U*ÂUr Â for all r e M or, equivalently, if
-4 e {£/_}"

where {Ur\r eU}" is the von Neumann algebra generated by the generators of
space translations, i.e. by the momentum operator P on 9t. The operator Â is a

measurable function of P accordingly

Â=A(P)
transforming under boost transformations as

Â-*Â„ U*ÂUV=A(P - mvî)
where m is the one-particle-mass. It follows that Âm - ÂI'2 and (Î-Â1'2)-
(I — Al!2) have absolute continuous spectrum and hence do not belong to the
class of Hilbert-Schmidt operators on "M. This implies by a well-known theorem
[5] that coA and a>Av are disjoint factor states. (There are two exceptions, the case
A 0 representing the vacuum state and the case A / representing the

"plenum" state.)
Not all the states on a quasilocal C*-algebra are physically meaningful. It is

only the GNS-representation with the class of physically relevant states which
yields a meaningful VK*-description of a system. But what are the requirements
for a state on a quasilocal C*-algebra to be physically meaningful? The first
condition is local normality since it guarantees a VK*-description with separable
predual. A second condition may be the existence of the time evolution (which in
general is not an automorphism of the C*-algebra). But there is a third condition:
one must be sure that in a given representation physically important observables
such as momentum do exist.

This contribution is devoted to representations of Galilean quantum fields
carrying a momentum operator and it is shown that this operator is necessarily a

classical observable under quite general assumptions. These are stated in Section
II. Section III contains some immediate consequences and the main results.
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II. Assumptions

We consider a quasilocal C*-algebra si (obtained as an inductive limit of an
increasing sequence of local C*-algebras sin, « 1,2,...) together with a

norm-continuous automorphic representation of space translations

q —> aq € Aut si, qeR,
and momentum translations ("boost")

p -*¦ ßp e Aut si, peU,
which are assumed to commute, i.e.

aq0ßP ßP°ag.

With no loss of generality we thus restrict the action of the full Galilei group to a

subgroup of space and momentum translations in one dimension. Every local
C*-algebra s&n, n 1,2, is supposed to be represented on a separable
Hilbert space %,, sd„ ç &(%„).

Assumption I. The action of space translations is required to be norm-
asymptotically abelian, i.e.

lim ||[ör?(jc), y]\\ =0 for all x, y e si.
\q\->—

Asymptotic abelianess with respect to space translations of a quasilocal
algebra of observables has a clear physical interpretation: "It states that
observations performed at large distances in space do not influence each other
mutually" ([6]: p. 61).

As we intend to characterize the relevant VK*-algebras by GNS-
representations of si with physically relevant states we restrict our considerations
to states co e (si*)t fulfilling

Assumption II. co is a locally normal, translation-invariant state on si, i.e.
co ° âq co for all q e M..

A state co on a quasilocal algebra si is said to be locally normal if the restriction
of co to si„ extends to a normal state on the W*-algebra {sin}".1)

Assumption III. co is quasiinvariant under boost transformations, i.e. to°ßp
and co are quasiequivalent.

Assumptions II and III imply that space translations âq and boost transformations

ßp can be extended to pointwise a-weakly continuous actions ap and ßp

') Generalizing (Haag, Kadison, Kastler [7]: Prop. 8) it can be shown that the GNS-Hilbert space
ta?-5.., of a locally normal state <u is separable under the above conditions.
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on the weak closure

M na(si)"

of nm(si) (Observation 1). Assumption II reflects the fact that we are dealing
with infinite systems. It excludes systems with finitely many degrees of freedom
because finite systems other than the vacuum do not admit (normal) translation
invariant states commonly associated with pure phases of infinite systems.

Assumption IV. There exists a system of imprimitivities for the covariant
representation nm°ßp of the boost transformation in the GNS representation
nw(si) of si.

Assumption IV is the traditional way of establishing the existence of a

momentum operator [8, 9]. This method, however, is taylored to commuting
observables associated with abelian groups (as in our case). The question of
non-commuting observables with respect to non-commutative groups has been
studied by one of the authors [10, 11] and has led to a reformulation of the whole
problem. In this set-up an observable with respect to a group G is given in terms
of embeddings of S£J^S) in M, the algebra of observables. It is this formalism
which will be used in the sequel. It has to be stressed that both methods are
equivalent for abelian groups and commuting observables. The new formulation
is preferred mainly for convenience.

Let us denote by !£JAX) the VK*-algebra of essentially bounded functions on
IR (modulo null sets) and let us denote by {Ad k(p) \p e IR} the action of boosts
on taSPx(R) defined by

{Ad X(p)f}(P')-f(P'-py. P,P'eU; /e_4(R).

This action corresponds to the left regular representation of IR on if2(IR). We are

now in position to give the following

Definition. A momentum operator is a normal *-isomorphism r: J£X(M) —* M
of ta2_.(R) into M with the transformation properties

(i) /3poT ToAdA(p), peR,
(ii) aq°T t, q eU.

It is in this form that the existence of a momentum operator affiliated to M
(assumption IV) will be used in what follows.

Assumption IV may be regarded as fairly strong, both from a mathematical
and from a physical point of view, and one could ask for its derivation from
weaker requirements. To this end we consider a separable C*-algebra si, a

norm-asymptotically abelian action â of IR on si commuting with an action ß of IR

on si together with an extremal ôr-invariant state cj) on si with the property
cp°ßpTt=tl)VpeU.
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Lemma. Under the above conditions there exists a state co on si, invariant under
ä and quasiinvariant under ß, such that the associated W*-system (nm(M)", U, ß)
contains a momentum operator (Assumption IV).

The proof of this lemma can be found in the appendix.

III. Observations and results

Observation 1. The extensions aq and ßp of the actions of space translations
{âq | q e U} and boosts {ßp \p e U} from nm(si) to the weak closure nm(si)" M
are pointwise o-weakly continuous.

Proof. Since M has a separable predual, the a-weak topology on Mx

{x e M I 11x 11 =; 1} has a countable basis. Using Kaplansky's theorem we infer that
every operator x e M is the o-weak limit of a sequence (na(x„))neN, xn e si. The
functions

IR 3 q —> äq(xn) e si, neN,
are norm-continuous. Therefore the functions

U Bq-*4>(na(àq(xm)), neN^eM*
are continuous and in particular Borel. Thus

U3q^cP(aq(x))
is pointwise approximated by a sequence of Borel functions, therefore itself Borel
for every 0 e M* (Cohn [12]: 2.1.4) and continuous (Moffat [13]: Coroll. 1). The
same holds for {ßp \p e IR}.

Observation 2. The fixed-point algebra Mad= {x eM\ aq(x) x, gelR} is

part of the center 2£(M) of M.

The proof follows immediately from (Guichardet [14]: Proposition V.3).
Observation 2 is the algebraic aspect of the well known fact that the extremal

Og-invariant components of co are mutually disjoint. (This is a special feature of
asymptotically abelian systems [15]: Th. 2.)

Theorem 1. Under the assumptions of section II the momentum operator
t{J£x(U)} is part of the center °L(M) of M. Furthermore there exists a

*-isomorphism j of M onto Mß<S>^0-(U) such that

(i) j{r(f)} l®f, feX(U)
(ii) j{x}=x®l, xeMß

(iii) i°ßp^-l ^®Aak(p), peU.
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where Mß denotes the fixed-point algebra of the boost-transformations ßp and Id
stands for the identity map on Mß.

Proof

T(^(U))çzMa^S(M).
In the following the duality theory of W*-systems is used (cf. Nakagami,
Takesaki [16]; Stratila, Voiculescu, Zsido [17]). i?2(IR) denotes the Hilbert space
of square-integrable functions on IR with respect to Lebesgue-measure; 0.(0?)
denotes the right-regular representation algebra on J£2(M); M :/-» Mf, f e -2L([R),
stands for the multiplication representation of «S&_(IR) on J_?2(IR).

t:<£J.U)^>M implements a coaction o:Mß^Mß®3i(R) of IR on Mß.

There exists an isomorphism j of M onto the VK*-algebra generated by o(Mß) and

{1 ®Mf |/ 6 %J(.R)}, suchthat

(a) j(r(f)) l®Mf, feXJR),
(b) j(x) ö(x), xeMß,
(c) joßp öp°j, peU,

hold (s. Nakagami, Takesaki [16]: p. 25-27). {Sp\peU} is the dual
representation of the corepresentation ô.

Since t(J£x(U) c,H£(M), the implemented coaction ô is trivial, i.e.

ô(x)=x®l, VxeMß.

Tnns)\M^Mß®£x(^)<^M®®(X(^l)) is the desired "-isomorphism, (i), (ii),
and (iii) follow from (a), (b), and (c), respectively.

Theorem 1 describes the factorization of the algebra of observables into an
abelian algebra, generated by the momentum operator where the boosts act

faithfully and the space translations act trivially, and into a non-commutative
VK*-algebra Mß where the boosts act trivially and the space translations act
faithfully. This factorization carries over to the state co if Mß is a factor (Theorem
2 below).

Theorem 2. If%(M)a= t(£x(U)), i.p. if Mß is a factor, there exists a faithful
normal state <ï>0 on Mß and a faithful normal state <PX on ^„(IR) such that co

coincides with the product state {<ï>0 <8> OJ °j.

Proof, co is a normal state on M, invariant under {aq \ q e U}. The support
of co is an element of Ma ç 2t(M).

If co is faithful on 2£(M), it is thus faithful on M. Assume to the contrary that
there is an x >0, x e 2Ê.(M), such that co(x) (Q \ xQ) =0

^> (x1/2Q | xi,2Q) ||*1/2Q||2 04>;c1/2Q 0

i-> x1,2(xv2Q)=xQ 0

--> xnCÜ(a)Q nl0(a)xQ 0 Va e si
=> x 0 (since Q is cyclic for nm(s4)).

Thus co is faithful.
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Due to a theorem of Kovâcs and Sziics (s. Guichardet [14]: Th. II. 1) there exists
a normal ^-invariant conditional expectation E:M^>Ma' r(i?œ(IR)), such that
cp • E cp for every normal cr-invariant state cp on M. E is faithful and surjective,
since co is faithful.
We define (p0'-= u>\Mß, <px:= co ° r. Every element E(x), x e M, is of the form r(f)
for a suitable / e ^(U) =>j(E(x)) =j(r(f)) 1 <8>/.

:-> co(x) co(E(x)) co(r(f)) <px(f) (cp0 <S> <px)(l ®/)

(4>o ® cp,) °j(E(x))=(<p0 ® cp,)oj(x), x e M.

(At (#) the cr-invariance of co and ((po® <Pi)°j was used.)

As pure phases are usually connected with extremal translation-invariant
states it is of physical interest to consider the properties of these states in the
present situation. It turns out that they are characterized by sharp, i.e.
dispersion-free values for the momentum, that they are finitely additive ("singular")

and of product form on Mß<8>J£x(U). This holds equally for extremal

ocq-invariant states on M (Theorem 3) and on si (Theorem 4).

Theorem 3. Every extremal a-invariant state cp on M (necessarily singular) is

dispersion-free on t(J£x(U)). Furthermore cp0]'1 is a 'productstate', i.e.

(cp°X)(*®f) {(<t>°X)(x®V}{(<l>°r1)(l®f)}> xeMß, /elfi).
Proof. Consider the GNS-construction (St^, n$) for cp. By standard reasoning

(cf. Bratteli, Robinson [18]: 4.3.17) it is shown that n<t,(2£(M)a) C° 1^>
3t,pT(^£x(U)) C ° 1. From this the assertions are an immediate consequence.

Theorem 4. Assume si to be simple and let W be an extremal a-invariant state

on si. Then there exists an extremal a-invariant state *f on M such that
*¥ ° nm x¥. In particular, the extension W has a fixed dispersion-free momentum
value.

Proof. By the Hahn-Banach theorem the state W admits an extension Vq to
nm(si)" : M (Pedersen [19]: 3.1.6). Consider the group IR with the discrete

topology D. (IR, D) is amenable as an abelian group (Berberian [20]: 29.5). Let rj
denote a mean on ^(IR), (the set of bounded, complex-valued functions on IR).
Define ^(x) : r){q—»^„(a^Cx))}, xeM. Then x¥x is an ar-invariant state on M
such that Wa ° nm W. Denote S := {cp e (M*)t \cp°aq cp, <p°na)=xV}. 5 is

convex and weak* compact and has therefore (Krein-Mil'man) an extremal point
W. Assume W can be decomposed

^ kcpx + (l-k)(p2
where cpx and cp2 are .^-invariant states on M.

=> W A</)1U^) + (1-A)02U^).
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Since V is extremal a-invariant, we infer <px, cp2e S; since V is extremal in S, we
have W cpx cp2.

Remark. The dispersion-free momentum value of an extremal a-invariant
state cp on M might be infinite. It is infinite if and only if <p\T(cm<,u)) — 0» where
C^o(R) denotes the continuous functions on [R with compact support.

IV. Concluding remarks

Momentum operators are constructed in Lemma 2 by integrating disjoint
representations {n^,°ßp\p e IR}.We stress that for this the asymptotic abelianess
of the action â commuting with ß is important: If it is omitted, the construction of
Lemma 2 may fail (cf. Dixmier [21]: Coroll. 4; Bratteli, Kishimoto [22]: Example
2.3). Nevertheless, the existence of an asymptotic abelian action commuting with
ß is not a necessary condition (cf. Guichardet [23]: chapter I, §3, lemme 3; Baker
[24]: Theorem 6.15). The delicate problems arising in this context seem not to be

entirely clarified.
A further point concerns the detailed physical interpretation of the operator

thus obtained. It is intimately connected with the interpretation of the Weyl
group used for the characterization of the operators. There are several possible
interpretations: The operator may describe

° the velocity of an infinite system with respect to some rest frame
° the momentum of finite mass quasi-particles in an infinite medium
0 an average momentum per mass unit or per particle number in the sense

of Hepp's macroscopic operators [25].

Appendix: Proof of the lemma of section II2)

Let E(si) denote the state space of the C*-algebra si, and E(si)a it's
ôr-invariant part. E(si) is a Polish space (Pedersen [19]: 3.7.2). The mapping
<&:IR sp—»# ° ßp e E(si)"^ E(si) is injective and (w*)-continuous. Therefore
(Cohn [12]: 8.3.5, 8.3.7) <D(IR) is a Borel subset of E(si) and <D:IR^O(R) is a

Borel isomorphism.
Consider a probability measure p on IR, quasiequivalent to the Haar

measure. Define a measure v on E(si) by v(B) p(<b~l(B)) where B is an

arbitrary Borel set on E(si). Since E(si) is Polish, p is a regular Borel measure
on E(si) (s. Cohn [12]: 8.1.10).

The state co(-)d= /iW^-) dvÇV) JR (cp ° ßp)(-) dp(p) is invariant under
or. Due to (Bratteli, Robinson [18]: p. 374) (si, co) is IR-central with respect to
the action ä. Since all the states cp ° ßp, peU, are extremally ôr-invariant, the

2) The first part of this proof is due to J. Pöttinger.
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measure p is a maximal measure on E(si)&([18]: 4.1.10). From ([18]: 4.3.14) it is

referred that v is subcentral, i.e., the associated mapping _cv ([18]: 4.1.21) is a

^isomorphism of J£x(E(si), v) into the center 2£(nm(si)") of nlo(si)" (where
(nm, 2tm) is the GNS-representation of si associated to co). Define

X^ \ Xv dv(W) f X^-pdpip)
Je(j*i) Jr

n^!l nwdv(W)=\ n^-ßpdp(p)
Jew Ju

Dd^ \ {C l*v} dv(V) s ^(E(si), v)
JEtsd)

<ea(u,p).

Due to ([18]: 4.4.9) there exists a unitary operator U : X(0 -» "X such that

(i) Una(x)U* n(x), Vx e si

(ii) Ukv(^(v))U* D.

Therefore D is part of the center of the W*-algebra n(si)".
The direct integral operators J® n^ßp(x) dp(p), xesi, can be regarded as

continuous and i.p. measurable mappings from IR into &à=n^(si)" (cf. Takesaki

[26]: chapter IV.7). Recall that n^pjix) n^p(x)), xesi, peU, holds in a

natural identification of the GNS-Hilbert spaces X^ßp and 3€0. The automorphisms

{âq\q eU} are implemented by the constant functions {p —» U^(q), p e M},
where U$(q) is the unitary operator implementing or, on %# (cf. Bratteli,
Robinson [18]: 2.3.17). Therefore kv(^x(v))= U*DU is pointwise invariant
under {aq \q eU}.
The algebra of all measurable mappings from IR to ^ is naturally isomorphic to
%*.(Uy®&, where D corresponds to £X(U)®C. Since j8Po=fAd A(-p0) <8> Id,
Po e R, (Id is the identity mapping on SF) transforms the functions {p —>

^V/3»}> *e^, into {p->3i^ßpypo(x)} {p-*n<t,„ßp(ßPo(x))}, it follows by the
above spatial isomorphism that co is ß-quasiinvariant. Furthermore the associated
VK*-system (na(si)", U, ß) contains a momentum operator (kv(ï£x(v)), IR, ß)
(JL(IR)<2)C, IR, jSkwac) (Ä(R), K, Ad A).
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