Zeitschrift: Helvetica Physica Acta

Band: 59 (1986)

Heft: 8

Artikel: On the general theory of Bose-Einstein condensation and the state of
the free boson gas

Autor: Berg, M. van den / Lewis, J.T./ Lunn, M.

DOl: https://doi.org/10.5169/seals-115777

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-115777
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Helvetica Physica Acta, Vol. §9 (1986) 1289-1310 0018-0238/86/081289-22$1.50 + 0.20/0
© 1986 Birkhduser Verlag, Basel
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1. Introduction

Following the paper by van den Berg, Lewis, Pule [7] which identified two
critical densities p. and p,, governing generalized condensation in the free boson
gas, we aim to give a comprehensive description of the state of the gas when the
thermodynamic limit is taken in a variety of ways. It was shown in [7] that both
non-extensive condensation and macroscopic occupation of the ground state can
occur if p. < p,,. In this paper we use a similar method to that in [7], to treat the
grand canonical ensemble, when the thermodynamic limit is taken keeping the
mean value of the particle number density fixed.

In Section 2 we show precisely how the behaviour of the lower eigenvalues
of the hamiltonian for large volume, through the re-scaled single particle partition
function, determines the asymptotic behaviour of the state, under the additional
assumption that the asymptotic behaviour of the Green’s function of the
hamiltonian parallels that of the partition function.

In Section 3 we consider two examples in which p. = p,,. The first example is a
greatly simplified derivation of the result of Lewis and Pule for an isotropically
dilated region. The second example treats in detail one of Casimir’s examples, a
cuboid with edges V*', V2, V* a,=Za,= a3>0, ) a; = 1. The single particle
hamiltonian is taken to be —3A (the Laplacian with Dirichlet boundary
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conditions). In the case a,; =3, new results are found for both the diagonal and
off-diagonal contribution of the condensate to the state.

In Section 4 we give new results for cuboids where the sides become large at
very different rates, treating in particular the case p,, > p..

2. General results

Consider a sequence (h;, V)):1=1,2,... of pairs, h; being a self-adjoint
operator, the single particle hamiltonian of the system, and V, being the volume
of the system. In [7] the grand canonical pressures p,(u):/=1, 2, ... are used to
define the chemical potential, scaled by an exponential of the lowest eigenvalue,
as the unique root y,(p) in (=, 0) of

d
e = p. 2.1
4 Py =0 @D
If h, has eigenvalues ¢g(1)=<¢g/(2)=<--- with corresponding normalized
eigenfunctions y,(x; 1), y,(x;2),..., we define the single particle partition
function to be
1 & ;
o(B)== 2 e PO, (2.2)
Vi
where A,(k) = €(k) — (1). We write
1
FE(A) = v #{k: A (k)<A)}. (2.3)
Then I
(B = | e dR(). 2.4
[0.)

Invoking a similar treatment for the state of the system we define the spectral
function (diagonal part)

F(hix)= 2 |wx bl (2.5)
(kA (k)=A}
and the transform
oprix)= | PP dE(hix) @.6)
[0,

the Green'’s function of #,. Assume ¢,(8';x)— ¢(B'; x) as | 1 =, pointwise in x.
Let F(A; x) be the measure corresponding to ¢.
We note that van den Berg, Lewis and Pule define the critical density as

p. = lim lim (eP*—1)"' dF(A)

el077> g x)

=j e — 1)~ dF (%), (2.7)
[0,%)
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where F(A) is the unique (non-defective) measure corresponding to ¢(B') =
lim; ;. ¢(B'); see [8].

Definition. Define the contribution of the condensate to the state (at
constant density) to be

imhm [ (eB** — 1)1 dE(4; x). (2.8)

el0lt= [0,€)

Then it is easy to see that the contribution of the uncondensed gas is
f (P — 1)1 dF(A; x), (2.9)
[0,=)

using Lemma 1 of [7], where p is the limiting value of u,. This follows since for
the free boson gas the diagonal part of the state is given by

K(x, x) =1lim (ePA=1) — 1)1 dFy(A; x). (2.10)
1= J0,=)

In order to consider the macroscopic occupation of the ground state (see [7])
introduce the re-scaled partition function

Yi(B') = Vigu(B'V)). (2.11)
If y(B') =lim;; . y,(B') is finite then
w=-Vitb+o(Vit)

for constant b as V, tends to infinity. Hence y determines the asymptotic
behaviour of p;. We require an extension of the argument in Theorem 3 of [7] in
order to consider cases with differing asymptotic behaviour. Accordingly we look
for a, 0<a =<1 such that y,(B') =Vi¢,(B'V) has a finite, non-zero limit as
[ 1

Lemma 1. If

Al p, = lim lim (ef* — 1)L dF(A)

X 1= 1= Jx-vio=)

exists and is finite,
Bl Yt} = VIGLVER)
exists and is non-zero for some ' >0, then

bi(p)=—-Viw
has a finite limit b(p) which is the unique root of the equation

f[ BB =p = po (for p>p)
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A3 provided that the integral on the left exists for some b > 0.

Remark. Since p. < p, < p,, we have in our case p. = p,.

H. P A

Proof. The proof follows much the same line as that given by [7]. We need
to define G,(A), the measure whose Laplace transform is given by y,(B)=
Vigi(BV), and the limiting measure G(A) whose transform is the limit y,(8).

Define
px(x)=lim sup (e = 1) dF(A).
{1 inf Jlx- Vi e =)
Then

= llm pE(x).

Forb>0and A=x-V;“

PV _ 1 " 1 by 1 ) 1
_ e ]
(emx+MW“._1)'(eﬁ'—1) < (ePMHOVT _ 1)l (P — 1),

Integrating and letting / T <, we have

-1
(1 +9) pa(x)<lim inf (PP — 1) dR(2)
X

1T= [x-Vi®,x)

< lim sup (PP — 1)1 dFR(A) < pa(x).

1= [x Vi 9,=)

So for all b >0,
lim lim (ePATPVIY) — 1)1 dFR(A) =

21 =11 = Iy -ox)
Using the inequality 0 <x~'— (e* —1)"! <1, we derive
w dG(A)
lim ePATEV) _ 1)1 dE(A) = “+f —
1= [(),x)( ) I( ) i [0,=) ﬁ(}‘ + b)
for all b > 0. Choose b(p) such that

jm G+ b)) 4G () =Blp ~ o)

Then we can conclude that lim, ;. b,(p) = b(p).

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

We are now in a position to prove a general theorem concerning the
contribution of the condensate. We need to make parallel assumptions about the

behaviour of the Green’s function.
B1 limy ;. lim; 1. f{xvrex) (e7* —1)7' dF(4; x) exists and is finite.

B2 y,(B';x)=lim;;.y,(B';x), pointwise in x, where y/(B8';x)=
ViguB'Visx). ,
B3 [0 e P?y.(B';x)dB’ converges whenever [ e PPy, (B")dB’

converges.
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Theorem 2. For p > p, under assumptions A and B, the contribution of the
condensate to the state is

0,=) B(A + b(p))
where G(A; x) is the unique measure with transform v,(B'; x). Further
lim lim lim (PP — 1)1 dFy(A; x) = 0. (2.19)
X1t=el0lt=Jxyeg)
Proof. First we establish that
lim (PP — 1)1 dF(A; x) (2.20)
1= Jix-Viee)
can be made arbitrarily small. Using 0 <x~'— (¢ —1)"' <1 we have
_ N dG/(4; x)
eP*=1) — 1)L dE(A; x —[ —D 0| < Fy(e; x). (2.21)
U{XV,«,E)( ) 1(4; %) (x.evey B(A + b)) Heix)

Proceeding to the limit as [ T, F(g;x)— 0 as £— 0, given assumption B1. Now
02 J dG(A; Jc)< dG,(A; x)
x.evey BA+8;)  Jix < B(A+ b))

the last expression being finite by assumption B3. However we know {b,} are
bounded and convergent. Further G, converges to G and

J’ dG(/l_; x)
(x.=) B(A +¢)

is uniformly convergent on compact sets, hence tending to 0 as X— . This
proves the second statment in the theorem. The first statement follows in much
dG(A; x
(5 0)| _

the same way:
X
EF (—; x) , 2.24
o B+ )| = AV7 s

B1 gives lim,; . F(X/V{; x)=0. Taking firstly the limit as /1, secondly the
limit as X 1 %, we easily see that the contribution of the condensate is:

j dG(A; x)
0. BA+b)

This completes the proof of the theorem. W

(2.22)

(2.23)

f (eﬁ(it—m) 55 1)—1 dF(A; x) —
[0, X/V®)

(2.25)

We conclude by noting that:

1. The contribution to the state for p < p. and for the uncondensed gas for



1294 M. van den Berg, J. T. Lewis and M. Lunn H. F, A
p > p. s

f (ePA—HE) 1)1 gF(A; x), (2.26)
[0.)

where u(p) is the unique solution of p'(u) = p for p < p. and u(p) =0 for
P = Pe-

2. The off-diagonal part of the Green’s function can be treated in an exactly
parallel manner if we define the function

FEhx,y)= 2 |wilxs k) + 8yi(y; k)|, (2.27)
(kA (k)=<A)

where 6 is an arbitrary positive constant. The off-diagonal expression for
the state can then be recovered as the coefficient of 6.

3. Example A: Isotropic dilation of the boundary

Suppose that A, is a bounded, convex, open set c R* with unit volume, and
with closed boundary dA,. Dilate istropically from an interior point 0, to give a
sequence of regions {A,;}, [=1,2,... with V;=1F. Let h, = —3A, with Dirichlet
boundary conditions on 3A,. Then it is well-known that [2]

6
=
(2]”)3/2

e|x—y13/21

(2V2-3)(262/31)
e , 3.1
(2m)3’ 2 ( )

kz e Oyy(x: K)yu(y; k) -
=1

where 8, =inf, 54, |x —y|, and

1
(27t)**

Note: ¢,(k) = &,(k)V[*">.

Hence we can conclude that the limiting transform ¢(8'; x) is (2nB') >, for
convex bounded regions A;.

Similarly the transform corresponding to the limiting measure, obtained from
F(A;x,y)is QaB") (1 + 20 exp { — (Jx — y|*/2B)} + 67). In this case p, is finite
[4]. Since A, (k) =V ;??A,(k) we have:

6
<
(2]”)3/2

e Mg (t; x) —

g, (3.2)

V(B = Vigu(Vip) =1 + f “emBVI Ny (A) (3.3)

where N;(A) = #{k: A (k)< A} and 0< 6 <A,(2).

From Clark [9] we have: there exists A such that N,(1) < AA** and hence the
integral tends to zero as [ T «. This gives y,(8') =1 for all 8’ >0 and the measure
G(A) is an atom at A =0. Theorem 3 of [7] gives

%f:e“’ﬁ'v(ﬁ’)dﬁ’ =p=p.; (3.4)
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that is, b =(B(p — p.))"' and hence u, ~—(BVi(p — p.))”" asymptotically. We
now check assumptions B1, B2, B3 for the Green’s function. By Clark [9] it is
clear that

Yl(ﬁ’;x) — Z e_ﬁ'VJ‘ﬂ}”(k)
k=1

2

(3.5)

NES

behaves is the same was as y,(8’). The measure G(4; x) is an atom at the origin,

weighted by the term |y,(0; 1)|?, i.e. the ground state eigenfunction in the region
of unit volume evaluated at 0 (the point of dilation).

Using Theorem 2 we conclude that the contribution of the condensate is
(p = pc) [¥1(0; 1)
Denoting the state by K(x, y) = (¢*(x)y(y)),

[ 4 = onBu(p)

—(lx—y|*2nB)
e <
(27B)*? ,21 pe ’ P=Pe

K(x, y) =1 (3.6)

= p—(lk—y[¥2np)

- . 2
k(p pc)h/’l(oa 1)| +n A (2 Bn)_‘s/z ’ p pc

which is the result obtained in [4].

Example B. Rectangular box with differing growth rates for the edges

For the second example we consider the case of the rectangular box with
sides of length V{1, V{2, V{ where a;=a,=a;>0 and Y;_, o;=1. Take

h, = — 3A with Dirichlet boundary conditions. The eigenvalues are
R
k ————— — N ki Z+
WO=g g e

with corresponding eigenfunctions

]- 2 . Jrki 1Y 70;
Yi(x; k) =— I1 V2 -sin (—a (x; +3V] ')) :
VI i=1 VI
Now the single particle partition function is

o) = H(V, kE exp{'ﬁlﬂ;g?«f_ 1)}). (3.7)

eZt

¢;(B') is thus the product of three one-dimensional functions. Hence the limiting
measure corresponding to ¢(B’) is the convolution of three one-dimensional
measures, each with transform (2z8')~"2

It is easy to see that the contribution to the state from the uncondensed gas is
precisely the same as in Example A. To calculate the contribution of the
condensate we need to consider the re-scaled partition function y,(8’).
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(1) a;<3. Choose

16 = Viovig) =11 (S exo (- BV - 1)), G9)

In the limit the one-dimensional re-scaled Green’s function behaves like a
Gaussian, variance (72B'V{!72*))~!. We see y(B')=1 for all g'>0. The
contribution to the state is identical to that in Example A.

(2) a;=3. Then

vi(B') = V1¢,(V1ﬁ')=lil (; exp( ’; BIViI-2e)(k? — )))
(; exp —%ﬁ'(k%— n)). (3.9)
In the limit
16)= 3 e (- T p03-). (3.10)
Hence
F() = #{k,:”{(k% -1=1}, (3.11)

i.e. F(A) is the number of eigenvalues <A for the one-dimensional hamiltonian in
an interval of unit length. Similarly

y(B';x)= ; 2 exp ( —JT?ZB’(k2 1)) sin ng (2 sin g)z’ (3.12)

reducing to the one-dimensional ground state in the x,, x; directions. Thus
u, ~ —1/AV,, [5], where

1 & { 1
LS ey g,
52 ( ) p=p
and the condensate is given by
NP 1\7! th
2t Z)' S (Z -1+ L) 2w |
(31112 E}: 2(1 ) ) - 2sin° —— =N (3.13)

In the limit as / 1 e this expression is the same for both diagonal and off-diagonal
terms. Similarly we may consider the barometric formula, obtained by re-scaling
x; to V“u; and looking at the diagonal part. For the uncondensed gas the limit will
be p or p,, since x =y in (3.6). The expression for the barometric formula is:

x 2 -1
v(u)=p.+, (% (k3 — 1)+%) 2 sin” wky(u; +3)
1

3
x[]2sin?w(u; +3) for p>p,. (3.14)
2
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(3) a,>3. This is potentially the most interesting case. If we consider the
re-scaling y,(B8') = Vi¢,(B’V)) then, since V] 2*'—0, y,(B’')— © as [ 1 . We must
choose a different re-scaling and consider

Y(B) = Vi (B'VIIT), Qe a=2(1-a).
From [1] p, = p,. = p.. Thus

n(8) =1 (S ewp (-5 pvio-omoi-n)).

2 (ki—1
V,"(z""”zexp(—%ﬁ’( ;m_)). (3.15)
ki VI

The first two terms give unity in the limit and the third term is the standard
one-dimensional Green’s function which converges to (2z8')""%. By Lemma 1,
we have '

1 r
: j e 2B’y 2 dB=p - p.. (3.16)
Thus
b ! d e (3.17)
=———— an ~ . ]
2(p ~ po)’ M 2o — poypvIa

We are now in a position to calculate the state. Consider

Yi(B'; x) = V0= ®0g('V7A=20; x)

TS w k; 2
= I;[ >, exp ( - [—2—ﬁ’V,2(1‘““"‘")(k,-2 = 1)]) : 2(sin~{/~;z (x; + %V;"")) :

)

1 * 2 k 2
> exp[—ﬁ’EV,‘(““"z)(k’f——l):I 2sin T +4v) . (319)
{

In the limit the first terms reduce to the value at k; = 1, as in y,(B"). The last term
is the one-dimensional Green’s function. Thus in the infinite volume limit:

3
r(pi) = ([[2si°3) ) (3.19)
2
In order to calculate the barometric formula we rescale x so that x; = V{"“u;. Then
3
y(B';u)= (1_[ 2 sin” w(u; + %))(23.[[3:)—1/2‘
2

The contribution of the condensate to the state is

* dG
where b= 1

o B(A+b)’ 20p—p)B’
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giving

T 2
(p— pc)(2 sinzg) , (3.20)
This is clearly the contribution in the off-diagonal state also. The barometric
formula v(u) is:

3
v(w)=(p —p) [] @sin®> w(u; + 1))+ p,, for p>p.. (3.21)
2

Thus although the distribution of the condensate in the two more slowly
expanding directions depends on the ground state wave function in one
dimension, the condensate is spread evenly in the direction of the longest side.

On considering the behaviour of F(A; x, y) and its corresponding transform

¢(B'5x,y)=| e PHdE(Asx, y) (3.22)
Q

we can as before find the re-scaled transform
vi(B'sx, y) = Vil (B' ViU x, y). (3.23)

In order to consider the persistence of off-diagonal long range order we also
re-scale x and y, ie. x;=V/u, and y,=V/v, The term in 6 contains a
one-dimensional Green’s function of the form

2

J Qe T

L= P (_B 2
where L=V~ and y(z;k)=V2sin nk(z +3). Consequently in the limit as
L 1, this term — 0. Hence the off-diagonal contribution of the condensate
disappears unless u, = v,.

L7206 = 1))yt )y (w3 ) (324)

4. Free boson gas in a cuboid

In this section we will consider a free boson gas with hamiltonian —(A/2)

with Dirichlet conditions on the boundary of a cuboid L with sides L, =L, =

++=L, and volume V,. The eigenvalues and eigenfunctions of this (single
particle) hamiltonian are given by

d Zk'2
Eé:;zLZ’ ki=1521'--, i=1,...,d_, (41)
d ;o112 ki /L L L,
cpk,L(x):H(f) sin%(—z—%—x,-), —E<x,-<—2-, i=1,...,d
i=1 i i
(4.2)

The grand canonical equilibrium state for a free boson gas (at mean density p and
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inverse temperature 1) is determined by its “two-point” function

__ 1 E(L)
K. (x,y)= AT Ld(Ek:) e — E(L) P, (X)Pr,(¥), (4.3)
where
d 2
n£=E£—5=12n_lf?', (44)
and &(L) is the unique solution in (0, 1) of
1
o= S ) (4.5)

Ll...Ld{k}en}_E(L)'

In a previous paper [1] we have shown that the behaviour of the mean
occupation density

1 E(L)
- 4.6
Pi.L Ly -+ LyeP —E(L) (4.6)
in the limit {L, T, ..., L, 1>} depends on how that limit is taken. Since the

results of [1] are of crucial importance for the computation of lim; .. K; (x, y) we
recall them here.

Theorem. Let the infinite volume limit L — o be such that
Ly --Ly

B e A 4.7
L (4.7)
. lOgL2

Iim ————=B8 4.8
im L (4.8)

then for p < p,,=p, + B/x none of the single particle states are macroscopically
occupied. p. (the density at which the thermodynamic functions behave singularly)
is given by

Pe = il (2nn) ", d=3,4,.... (4.9)
For p > p,,, we have
[?(k%—lﬁ-c]_l if k=(kp1,...,1),0<A<o
Pr= m Py, = 0 if k#(k;,1,...,1),0<A<w
(4.10)
. —pn if k=(,...,) A=o
pk:i‘i‘lp"'f{p 09 i,f k#((l,...,l)),.A=oo ALl

pr=lim p, , =0 forall k if A=0; (4.12)
L—x
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C is the unique positive solution of

i [(kz—l)—A+C]_l=p—pm- (4.13)

k=1
For the thermodynamic limit of the state we have

Theorem 3. lim,_,. K, (x, y) exists and is given by

x n

K(x,y)= ,,Z] ) ~(=vl2n) 0 < p., (4.14)
K(x,y)= i 2[(k>+ k) - 2m2A + C]™!
k=0x e~ x—yl2m
+ T B=0, 0<A<x  p>p, (415
x o (lx—r[2m)
K, y)=27(p=pu) + 2, Gy AT B=20. o>

(4.16)
x = (Jx—¥|*2m)

K, y)=2"(p-p)+ > —,
(x y) (p p) ;12—11 (Zﬂ,n)d/-

B >0, 0=<A ==, P.<P <P (4.17)

where & is the unique positive solution of

2 s=n

X (2;7 =p, pP<P. (4.18)

n=1

We remark that K(x, y) is a function of |x —y|. (The state is translationally
invariant). Hence the local particle density K(x, x) is independent of x. In order
to obtain the global particle density we introduce a scaling:

0= Lo 1= Vsus sy s (4.19)
For convenience we put
itw=uw, i=1,...,d (4.20)
Define
L 4, 2
vi(u)= 2 ‘S( ) H (sm wku;)>. (4.21)
E(L)l l

We have the following

Theorem 4. lim,_,. v,(u) exists and is given by
viw)=p,  p<p. (4.22)
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x 2 . k 2 d B d
v(u) =D, {pin J;z:l) [ ] 2(sin mu;)* + p [ 2(sin aw,)* + po.,
kzl(kz_l)_2__+cz=2 i=3

B =0, 0<A <o, p>p,, (4.23)
d

v(u)=(p — p,) ﬁ 2(sin mu;)* + B 1 2(sin 7iw,)* + po.,

i=2 i=3

A=0, B=0, 0> P (4.24)

d
vw)=(p—p.) [] 2(sin 2> +p., B>0, 0<A<%,  p.<p< p,
i=3

(4.25)
Note that
f v(u)du = p, (4.26)
(0,1)4
and that
K(x,x)=v(u) for u=(3,%...,%4), xeR% (4.27)

Though it is possible to prove part of Theorems 3 and 4 with the results
obtained in Section 2 it is much more convenient to use the techniques developed
in [4, 5, 1]. We defer the proofs to the appendix.

Appendix

Proof of (4.20). Since &(L)= &e £ (see the proof of Theorem 1 in [1]) we
get

vi(u)= i En Y enEk f[ 2(sin mk;u;)?

n=1 (k)

g 1 , 5
= "o ———0 (1 — 2de ™ L 3uldn)), Al
gl g (znn)d/‘Z( € ) ( )
We have used here (11) of [2]. Since e ™ < x~"* for x > 0 we get
d5/4
B et A2
vi(u)=p (L, 3,)"? (A2)
where
3,= inf |v—ul. (A3)
v#(0,1)4 :

Moreover by (15) of [1]
gn E(L)efi = ¢, (A4)
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so that
d

=3 ety S et [ (sin wha)?

i=1 4

< L)e=ry" . AS
3 G o (A3)
Hence lim sup, ... v;(u) = p for p < p.; this completes the proof of (4.2).
The next lemma is the equivalent of Lemma 3 in [1].
Lemma Al. Forze[0,1]and 0<u;<1,i=1,...,dand d=3
lim > z(e"* — z)7! ﬁ El (sin 7ku;)* = i - (A6)
LT (h:(ky,....k)#(1,.... 1)} i=1 L o n=1 (Zﬁn)d/Z
Proof.
) 4 2
> z(e"* — z) ' [ = (sin 7ku;)?
(ki(ks,....k)#(1,.... 1)} i, L
; i 2
= > z(eF¥ — 2) 7' ] = (sin wk;u,)?
{ki(kyo kg)#=(L..., 1)} io1 L;
; 2. 2
= > z(eF¥—z) ' [] = (sin mku;)?
(k:kg#1} =7 &Ly
x n 5/4
= z . d
=t (zn.n)dlz (Ld aH)I/Z
=, Gl - L; 2 2 2
- > 11 {2 e "E% . 2(sin Jrk,-u,-)z} . g (nT2LG) (A7)
n=1i=1 ‘“k;=1 VL
The third term above is smaller (in absolute value) than (d = 3)
= 2 e i
=, (na2L;
Zl (2nn)(d 1)/2 Ld )
< - 1 . eunJT:/ZL?,
n=17nLy
1 g3
— __l 1 _ ,—(mx-2Ly) A8
- log (1= e D), (A8)
which tends to zero as L— <. We have used in (A7) that
- —HJTZ 2 2 . L
g e KIRLY 2 (sin whu)t < ) (A9)
Define
b(L, n;u)= D, e "IN 9(sin wku),  n>0. (A10)

k=2
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Similarly to (30) of [1] we get for the left hand side of (A6)

oK

‘; {Z b(L;, n;u;) [ ] 2(sin muy,)?

i=3 k+#i

+ 2 D, b(Li,n;u)b(L, nyu)- [ 2(sinmu)?

1=i<j=d ki, k#j

d
+ BT et [ b niw)). (A11)
..... i=1
The estimates of the terms in (All) with ¥, ¥ ¥ up to (d — 1) — X’s go similarly
as (31) (32) etc. in [1] since b(L, n;u) <2a(L, n). Finally for d =3

[Ld4] 2
1 1
ZZ Hb(Lnn u)\EZ exp%(i+---+ﬁ)-
d

Vinst =i L% (2“’1)0”2

dr < n di2
, 2
R R N

N (Jm 2em®* \x) d-2
where [x] denotes the integer part of x. the combination of (A7), (A8) and (A12)
proves Lemma Al |

Note that we have used in (A12)

na?/2L2 L
b(L, n;u)<e™™ L. Q) (A13)
Lemma A2. For n>0 and u € (0, 1) we have
o 2 2 l 1
0= D e k2L cos Dk <~ + . (A14)
k=1 u l—u

Proof. Using the Poisson summation formula (see §10 of [6])

> e~ TR cos 2ku = Z f dx - (cos 27tlx) - (cos 2mux) - e~ F72LY
k=1 l=—x

s f dx - cos 2mmux - e~ (Ex2LY 4 z f dx{cos 2xx(l + u)
0 I1=170
+ Ccos 2JTX(I - u)} . e‘—(n:rzlezLZ)

L Zii2 = 2 2 = 2 2

_ — (2L — QLA +w)¥ —@LI-wn) | .

—(2;-; T {e (2Lu n)+ 2 e (2L +u) n)+ E e (2L (I —u)*/n) 5 (A15)
n) =1 =1

this proves the left-hand side of the lemma. It follows that

x

2 e~ (WKLY oy e < ~(2L2%n) | p—(LA1=u)n) 4 22 e—(szllm)}

L {e
=1 (27n)"? =1

- L {( n )1/2 N (-—n-__)lfz N zfac _(2L212/n) dl}
T @an)? \2L22 2L*(1 — u)? o

-1 11,1 m A6
u-a"? 20—-u)- 7?2 u 1-u (A16)
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Lemma A3. For n >0 and u € (0, 1) we have

x

- 2r2
> e~ R sin 2wk
k=1

<13+ (ljuf) (A17)

Proof.

x +x oot

> e TR in dmku = >, | dx - (cos 2ntlx) - (sin 2mxu) - e D
k=1 l=—x J(

\ZE

J dx {sin 2xx(u + ) + sin 27wx(u — 1)}6—(mr2x2/zm)
=1

)

+ I dx - (sin 27mxu)e T2
0

5: {( I l)fl dt L*(u+0)3(r—1)/n A ( l) : dt eLz(u~1)2(t—1)/n}
= u —_—e u— oy
=1 (L) L (1+0)"7
23/2 . L2 LZu . 23/2 1 dt
L2u(t—1)/n
' * [1(1+t)1’26 o

We have used the Poisson summation formula and two integral formulas of [3]
(3.896.3 and 9.211.1). First we will compute an upperbound:

{L%u+nfﬁfl d  ppsiy, L= D2
1+ 7N

Al
N TTh (A18)

=

VL

1 2,432 ¢l
xf dt 121_2(:—1)/"} n L2 dt wL2(t—1)in
1 (1+0)'? an J_; (1+0)"?

% (72,452 1 2y 32
_ {Lﬂ f dt éwmm}+Lﬂ r dt__ pwrie-m (A1)

\9|

I=1 an 1(1+t)1/2 an 1(1 +t)1/2
But for y >0
1 dt 3 21/2

J;l (1+0)"7? e S*y_ ) (A20)
so that

i —(nm2k?R2L2) Sln Zj'tku < 2 {lzu 25/2 21/2 } Lzu . 23/2 . 21/2n

— “1 an  PL? n w L’

dau 4
R (A21)

The next step is to find a lowerbound:
{L2123/2 ! dt eL2(1+1)2(£—1)/n _ L212%" J eLZ(u—l)Z ; (t—l)/n}
an J_, (1 th‘)”2 (14}-t)”2
23/2L2

Mg

{

I

1

Lz(u-l)z(l—l)/n

- [
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x 211372
2 L 12 {I dt (eLz(l-Fl)z(!—l)/n _ eLz(l—l)Z(f—l)/”)}

1 (1+ )"
4 25/2L2 x 21/2 12
Ta(l-u)? an SLQ-I1F =©
13
e N ] A22
A—a) (A22)

Lemma Ad4. For p >p.and a >0

s L1L2 - (E(L))n . e—(an/L%) —_
Lt=Ly- - Lgs=y 27n

inf {p, Pm} — P (A23)

Proof. We write

L L2 - (E(L))n _(cm/[_,%)
L Ldn 1 27n

=“‘“‘.“.7:* S, (EW)Ya(Ly, n)- a(Ls, n)
dn=1

Ly-
> S " —(an/L3)
+L_—_ Z (§(L))"a(Ly, n)a(L,, n) - (e (an/L3) _ 1)
+L 2 (E(L))"a(L,, n)((2 o —a(L,, n))e—(cm/l_g)
P E (E(L))" - L, ( L, —a(L n))e—ummg)
Ly---Lyjnz (2an)'? \(2an)"*? b
=I+1+1I+1V. (A24)
Term I converges to inf {p, p,,} — p. by (35), (40), (44) of [1]. Furthermore since
—(nJ'I:Z/Lz) 3
(4 (231:?2)”2}“([” n) >-————-(2n_’/1)1/2 ok (A25)
we get
n = L, - L, n_ p— (LY 1’23 ) 1 < : a/ ,
n=1(27n)"* (27n) L2 L, L, 2-7(Ls---Ly)
(A26)
5 Ll 3 2 1 3 1
TN = % = . = gl < . , o
( ) ,12._;, (Zn’n)lfz 2 e Li---L, (Sa,)llz L=y ( )
1 X L, 5 i
v = .. p—(an/L3)
) Ll"'Ldngl(ZJTn)”z 2 €
J 1
= (A28)

< . .
(8a)'” L,---L,
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We are now in a position to prove the following

LemmaAS Forp>p.and u;e(0,1),i=1,2

lim 7 2 (E(L))'b(L,, n;u))b(L,, n;uy) =inf{p, p,,} — p.- (A29)

L—= V| n=

Proof. From Lemma A2 and Lemma A3 it follows that

b(L, nju)<e YN o=KL o (sin sk + 1)u)?
k=1

L - 2.2 2
<e"b { — > e k2L (cos 2mku
(Znn)m k§1 1( )

- (cos 2u) — (sin 2ku) - (sin ZJTM)}}

< e—(nnlmf){ + 142+ (1 —u) ). (A30)

(2.717?1)1/2
Combining (A30) and (A13) we get

L,L S g B
b(L,, n;u)b(L,, n; u;) < ——=2 =213
27tn

14L, —_ 1 1
e T YL (— A ————) A3l
@am)™ NP .
But
L, - ( 1 1 )
n nJi 3 14 _+
7 2, G0 e 2" - wy
14 1 1
| = ————— | X A32
L2 st Ld (u% (1 - uZ)z) i ( )
Because of Lemma A4, (A32) and (A31) we conclude that for p > p,
lim sup—— 2 (E(L))'B(Ly, n;uy)b(Lsy, n;uy) =inf {p, p,,} — pe. (A33)
Ln 1

Furthermore for u; € (0, 1)

= b(L, n; M) = e—(n;r:/Lz){ L _ 14{% 1 )}

2€ —(naLY) "

(27n)"? (27n)"? (1—u)?
so that (A34)
v 21 (EL))" H b(Li, ns u;)
: n,—(nax¥L}) | L, L, — i ___1
"V, ,g (E(@)ye™ ! (27n)'? {(2er)”2 14(u% * (1- ul)z)}
1 < ne— nm?/L3 1 1 Ll
- v §=: S(L)) ( 2l 14( (1 _ uz)z) : (211.”)1/2 ' (A35)
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But

212 L 1
L))" —(na?L3) | 1 <
L nzl (E( )) (2”’2)1/2 L3 I Ld ’ (A36)

and

L L 1
L —(nJ'rz/L%) ] 2 < 2
L nzl (E( )) (2-71’”)1/2 L1 L3 e ld ! (A37)

so that (A35), (A36), (A37) and Lemma A4 gives us

lim mfv E (E(L))"b(L,, nyu)b(Ly, nyuy) =inf {p, p,} —p.. MW (A38)

L—x Ln=1

Corollary Al. For p>p.and u;€(0,1),i=1,...,d

1 7 d
lim — » E(L) - (e — E(L)) ™ [ = (sin mhus)?
L-=V} {k:ky#1,(ks,....k5)=(1,...,1)} i=1L;
d
= (inf {p, p,n} — po) - [ | 2(sin 7u,)% (A39)
i=3

Proof. Since

n 2 = - nnz 2 L
hm v 2 (E(L))"b(Ly, n; uz) < h—rfolcFL,,zl ( ILZ)an—nz)ﬁ= 0,

(A40)
and because of (A38) and (A33) we arrive at A(39). [

The next lemma enables us to compute the contribution from the levels
k1=1,2,...,(k2,...,kd)=(1,...,1).

Lemma A6. Forz€[0,1]and L,>1

ac o s 2 . i 2 2
$ [z %sin gkul) __z 2(Smﬂk“12) <2Le™2 (A4
k=2 2 oy _ 2 _ M

(k*—1)- 2L2+1 z expllt=1) g

This is of course nothing else but (47) of [1]. Note the misprint in [1].

Proof.
x x . 2
kZ 2z(sin thul)2 < kzz 2z(sin J'L'kL:l) ’ (Ad2)
=2 2 _ =272 =
exp (k 1) 2L2 (k ) 2L2 z
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and
i 2z(sin mwku,)? 2z(sin mwku,)*
2 - i
“2) (k —1)5-L—2+1—z exp (k2 —1) - E—z
2 2
x exp(kz_l) 2L2 1_(k2—1) 2L2
<2 kzz = p
= 2 _ . 2 __ IR 1)
417 & e —1-y
s— k*—1)"'+2D su ———t
> 4 %+l ( (3n2/2L2)<y<(zI:))2 1)(x22L3) y(e —1)
ALY oy (A43)
a*D
We choose D = [L,] so that for L, >1 we have 1/D <2/L, and
2
Wi | petri-merarh < 8—1‘—1 +Le™?<2L,e™. N (A44)
x*D w?

Corollary A2. For p > p,, and 0 < A < we have
EL) 172

lim — (sin 7k;u;)*
Lt= (ki(ky,....k0)=(1,..., 1)}6’"" —E(L)ar[l ( )
x 2 . k 2 d
= Lt j:r;:) T T 2(sin 7u;)>. (A45)
“lk*-1)=—"—+cC

Proof. From Theorem (3) of [1] we have for p >p,,, 0<A<=x

C .
§(L)~1 A (A46)

so that (A45) follows from (A46) and Lemma A6. B
Corollary A3. For p.<p <p,, and 0 <A <% we have no contribution from
the levels ky=1,2,...,(ks, ..., k)=(1,...,1) to v(u).
Proof. Note that b(L, n;u)<2a(L, n) and use (40) of [1]. W

Lemma A7. For p > p,,, A =0 we have

W) 172 (sin mk)? = (o — o) [T 2(sin 7u)?
————— | | — (sin 7k;u; — O sin Tu;)”.
R =T, o 19 B — GLY i Ly F i=2

(A47)
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Proof. We write the left hand side of (A47) as follows

2T

2 (E(L))" 2 R 7 2 (E(L))" 2 e~ LD N 005 k.
Ln 1 Ln=1
(A48)

The first term tends to (p — p,,) [1%-, 2(sin w;)* by (44) of [1]. For the second
term we have

o

1 x
L.---L > (E(L))" D e~ RLDEED o8 2 rku,
1 dn=1 k=1

[L3] 5
1
s———— > (5(L)" | X e~ REDED o5 Dku,
Ly---L;no k=1

1 = =
o sy L))" —(na%2L3)(k2-1)
T2 (E@) X e

=[L3]+1 k=1
1 (L1]

l1—u

| - n L,
+ L,-- 'Ldn=1LZ%]+1 (‘E(L)) : (1 * (znn)l/z)
wp,_ 1 _SW) (1 1

L L, 1-&L) ( +1—u)

=e

dn
(2.715’1 ) 172

The first term tends to zero by (51) of [1]. The second term becomes less than

2 172
(_) I e~ (LrLay1+6pLlyLa) - u? gy, (A0)
T {Ly/(Ly+-Lg)}?

For L,---L,-6p>1 we have

2 1/2 5 5
< (—) f e~ 4420 dy, (A51)
T {LA/(Ly - La))?

which tends to zero since L,/L, - - - L,— « by assumption. H

1 oc
b | e (A49)
d YL

Proof of Theorem 4. For p>pE(L)1T1. So Lemma Al provides the
contribution p.. Corollary Al proves the appearance of {inf(p, p,)—
p.) T1432(sin mu;)* and the Corollaries A2, A3 and Lemma A7 give the
“one-dimensional” contribution to v(«). W

Indication of the proof of Theorem 3. The contribution from the normal fluid
to K(x,y) follows from (6) of [2]. The condensate part (diagonal and off-
diagonal) can be obtained by putting u; =- - - =u, =3 in the condensate part of
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Theorem 1. The reason is that

. Tk L . nk| =@k
sin L (x+ 2) sin— < 7 (AS52)

i

is small for small k. The contribution from large k values in (4.3) is small because
L .
ny is large.
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