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1. Introduction

Following the paper by van den Berg, Lewis, Pule [7] which identified two
critical densities pc and pm governing generalized condensation in the free boson

gas, we aim to give a comprehensive description of the state of the gas when the
thermodynamic limit is taken in a variety of ways. It was shown in [7] that both
non-extensive condensation and macroscopic occupation of the ground state can
occur if Pc<pm- In this paper we use a similar method to that in [7], to treat the
grand canonical ensemble, when the thermodynamic limit, is taken keeping the
mean value of the particle number density fixed.

In Section 2 we show precisely how the behaviour of the lower eigenvalues
of the hamiltonian for large volume, through the re-scaled single particle partition
function, determines the asymptotic behaviour of the state, under the additional
assumption that the asymptotic behaviour of the Green's function of the
hamiltonian parallels that of the partition function.

In Section 3 we consider two examples in which pc pm. The first example is a

greatly simplified derivation of the result of Lewis and Pule for an isotropically
dilated region. The second example treats in detail one of Casimir's examples, a
cuboid with edges Va\ V"2, Va\ ax^a2^a3>0, T, a, 1. The single particle
hamiltonian is taken to be -|A (the Laplacian with Dirichlet boundary



1290 M. van den Berg, J. T. Lewis and M. Lunn H. P.A.

conditions). In the case ocx^\, new results are found for both the diagonal and

off-diagonal contribution of the condensate to the state.
In Section 4 we give new results for cuboids where the sides become large at

very different rates, treating in particular the case pm > p...

2. General results

Consider a sequence {h,, V,):l 1, 2, of pairs, h, being a self-adjoint
operator, the single particle hamiltonian of the system, and V, being the volume
of the system. In [7] the grand canonical pressures p:(p) : / 1, 2, are used to
define the chemical potential, scaled by an exponential of the lowest eigenvalue,
as the unique root P/(p) in (-», 0) of

-f{pM) P- (2.1)

If h, has eigenvalues e,(l) =£ e,(2) =£ • • • with corresponding normalized
eigenfunctions i/»,(jc; 1), xp,(x;2), we define the single particle partition
function to be

Mß')-^2e-ßXX (2.2)
y t k=\

where X,{k) e,(k) - £,(1). We write

F,(A) i #{k:X,{k)^X). (2.3)

Then

<t>,(ß')=l e-ßXdF,(X). (2.4)
ho.-)

Invoking a similar treatment for the state of the system we define the spectral
function (diagonal part)

F,(X;x) E |V/(*;fc)|2, (2-5)
(*r:A,(*)«A>

and the transform

<f>,(ß';x)=\ e-ßXdF,(X;x) (2.6)
ho,-)

the Green's function of h,. Assume cpi{ß';x)—> cp(ß';x) as / f », pointwise in x.
Let F(X; x) be the measure corresponding to tp.

We note that van den Berg, Lewis and Pule define the critical density as

Pc lim lim f (eßX - l)"1 dF,(X)
e 10 If- J[E,oc)

{eßX-lXdF{X), (2.7)=1 <

J[0,-)
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where F(X) is the unique (non-defective) measure corresponding to <p(ß')
lim,Toc0,Q3'); see [8].

Definition. Define the contribution of the condensate to the state (at
constant density) to be

lim lim f (e«*-") - l)"1 dF,(X; x). (2.8)
e iO/f =- J[0,e)

Then it is easy to see that the contribution of the uncondensed gas is

1 (««*-")-ij-irff(A; x), (2.9)
[0,*)

using Lemma 1 of [7], where p is the limiting value of pt. This follows since for
the free boson gas the diagonal part of the state is given by

K(x, x) lim f (eß(X-^ - l)~l dF,(X; x). (2.10)
' î - ho,-)

In order to consider the macroscopic occupation of the ground state (see [7])
introduce the re-scaled partition function

y,(ß') Vl(t>l(ß'Vl). (2.11)

If y(ß') lim, ax yi(ß') is finite then

pl -Vr1b + o(VT1)

for constant b as V, tends to infinity. Hence y determines the asymptotic
behaviour of ph We require an extension of the argument in Theorem 3 of [7] in
order to consider cases with differing asymptotic behaviour. Accordingly we look
for ex, 0<ar=sl such that y,(j3') V?<p,(ß'V?) has a finite, non-zero limit as

/t».

Lemma 1. //

AI pa limlimf (eßX - I)'1 dFi(X)
*tx'tx hxVT".x)

exists and is finite,

A2 ya(ß') limVr<t>,(Vrß')
ir-

exists and is non-zero for some ß' > 0, then

b,(p) -Vlapl

has a finite limit b(p) which is the unique root of the equation

e-ßbya(ß') dß' p- pa (for p > pa),
J[o,-)
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A3 provided that the integral on the left exists for some b > 0.

Remark. Since pc^ pa^ Pm we have in our case pr pa.

Proof. The proof follows much the same line as that given by [7]. We need
to define G,(A), the measure whose Laplace transform is given by y,(ß)
V?cpi(ßV?), and the limiting measure G(A) whose transform is the limit ya(ß).
Define

p*(x) limsupf {eßX-l)-'dF,(X). (2.12)
'ì=e mfh*-vr°.')

Then

pa lim pi{x).
xf-

For 6 >0 and X^x ¦ Vfa

{X^'-i) '{eßX "1)_' * C«"**"™ - D"1 * (e/u - D"1- (2-13)

Integrating and letting / f », we have

(l + -)~1pZ(x)^limmf { Xx+bVl~a) - I)"1 dF,(X)
V xl it- J[x.v,o,o=)

« lim sup f {eßiX+bvra)-lXdF,{X)^p+a{x). (2.14)

So for all b > 0,

lim lim I" (e«A+fcvì-"> - l)-1 d/.(A) pa. (2.15)
J: î oc, f oc J{xV-c, oo)

Using the inequality 0 <^_1 - (e* — 1)~* < 1, we derive

limf {eß^»vr°)-i)-UFl{X) pa+\ -^- (2.16)

for all b >0. Choose 6(p) such that

(A + ö(p))-1dG(A) /3(p-pa). (2.17)1

Then we can conclude that lim, t ,o b,(p) b(p).
We are now in a position to prove a general theorem concerning the

contribution of the condensate. We need to make parallel assumptions about the
behaviour of the Green's function.

Bl lim^ T oc lim, f oc iixv,",-) {X ~ I)-1 dF,(X; x) exists and is finite.
B2 ya.(j3';x) lim,ìooy,(/ta-';jc), pointwise in x, where y,(ß';x)

V7<t>t(ß'V?;x).
B3 Uo,-)e~ßbya(ß';x)dß' converges whenever j[0.~)e-ßbyol(ß') dß'

converges.
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Theorem 2. For p > pa under assumptions A and B, the contribution of the

condensate to the state is

f dG(X;x)
)[a^ß(X + b(p))'

(2.18)

where G(X;x) is the unique measure with transform ya(ß';x). Further

lim lim lim f (««*-«> - l)"< dF,(X; x) 0. (2.19)
xt-cL0lt-J\xvr\E)J\XVr°,e)

Proof. First we establish that

lim f <eßV-r-d _ !)-i dF,(X;x) (2.20)

can be made arbitrarily small. Using Q<x~l - (ex — 1)~'<1 we have

dGi(X;x)\\ (eß(X-^-l)-ldF,(X;x)-\v. „.,,..,,., fln4.hx F'(£;*)- (2-21)
J[jrv,-",e) Jixev;») PVa + °t)

Proceeding to the limit as / \ », F,(e;x)—»0 as e—»0, given assumption Bl. Now

r ^Mf dGAXX
hx,evnßß + b,) i[x,x)ß(X + b,)

K

the last expression being finite by assumption B3. However we know {b,} are
bounded and convergent. Further G, converges to G and

L dG(A;*>
(2 23)

W)jS(A + c) {l-ló)

is uniformly convergent on compact sets, hence tending to 0 as AT—»». This
proves the second statment in the theorem. The first statement follows in much
the same way:

I/ (,«*-*>-l)-^(A;*)-J ^l\<Fl(fa,X), (2.24)
IJ[0,A7V«) J[0,X)PVA + Dl) W I >

Bl gives limnxFl(X/Vf;x) 0. Taking firstly the limit as / \ », secondly the
limit as X | », we easily see that the contribution of the condensate is:

1 dG(X;x)
ll0,x)ß(X + b)-

This completes the proof of the theorem. ¦
We conclude by noting that:

1. The contribution to the state for p^pc and for the uncondensed gas for
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p > Pc is

(eß(X-»(p»-l)-ldF{X;x), (2.26)IJ\o.-)

where p(p) is the unique solution of p'(p) p for p =£ pc and p(p) 0 for
P>Pc-

2. The off-diagonal part of the Green's function can be treated in an exactly
parallel manner if we define the function

F,(X;x,y) £ \%(x;k) +e^(y;k)\2, (2.27)

where 6 is an arbitrary positive constant. The off-diagonal expression for
the state can then be recovered as the coefficient of 8.

3. Example A: Isotropic dilation of the boundary

Suppose that A[ is a bounded, convex, open set cK3 with unit volume, and
with closed boundary dAx. Dilate istropically from an interior point 0, to give a

sequence of regions {A,}, / 1,2,... with V, /3. Let /z, -2A, with Dirichlet
boundary conditions on 3AX. Then it is well-known that [2]

E«"'"(*)V/(*;*)V/(y;*)-:
,\x-y\-at

(2m)3

where ôx infve(5A. |jc —y\, and

6

(2m) 3 2
e(2V2-3)(2d.?/3f)j /3 j\

e^'cp^t-x)
(2m)3/2

e-(2ô>/3". (3.2)
(2my

Note: e,(k) ex(k)VX-
Hence we can conclude that the limiting transform cp(ß';x) is (2nß')~312, for

convex bounded regions A,.
Similarly the transform corresponding to the limiting measure, obtained from

F,(X;x, y) is (2nßX'2^ + 20 exp { - (\x-y\2/2ß)} + 92). In this case pc is finite
[4]. Since X,(k) VXXk) we have:

Yt(ß') VMVtß') 1 + f e~ß'v>3x dNx(X) (3.3)
Jó

where NX(X) #{k:Xx(k) «X) and 0< ô <Xx(2).
From Clark [9] we have: there exists A such that NX(X) m AX3'2 and hence the

integral tends to zero as / f ». This gives yx(ß') 1 for all ß' > 0 and the measure
G(A) is an atom at A 0. Theorem 3 of [7] gives

-\ e-bßy(ß')dß' p-pc; (3.4)
P Jo
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that is, 6 (ß(p - pc))_1 and hence pt~ -(ßV,(p - pc))~l asymptotically. We
now check assumptions Bl, B2, B3 for the Green's function. By Clark [9] it is
clear that

y,(ß';x)=2e-ßvf'^k) v>i\ym>k (3.5)

behaves is the same was as yx(ß'). The measure G(A; x) is an atom at the origin,
weighted by the term 11/^(0; 1)|2, i.e. the ground state eigenfunction in the region
of unit volume evaluated at 0 (the point of dilation).

Using Theorem 2 we conclude that the contribution of the condensate is

(p - Pc) |Vi(0; 1)|2.

Denoting the state by K(x, y) (ip*(x)y(y)),

K(x,y) <

1

(2nß) 3/2

¦ p"ßf<P)

J „3/2 '
_i n

-(\x-yP/2nß) P<Pc

(p-Pc)IVi(0;i)|2+2
- „-(\x-y\2/2nß) (3.6)

(2jzßn)3/2 P>Pc

which is the result obtained in [4].

Example B. Rectangular box with differing growth rates for the edges

For the second example we consider the case of the rectangular box with
sides of length Vp, Vp, Vp where a-, 5= a2 ^ a-, > 0 and Sf=i ar, 1. Take
hi - |A with Dirichlet boundary conditions. The eigenvalues are

r2 3

'¦<«=f,!?P ki e Z+

with corresponding eigenfunctions

1 3 I jtk
Mx; k) ^p Jl V2 • sin ^ (jc, + \Vp)

Now the single particle partition function is

(3-7)

(pi(ß') is thus the product of three one-dimensional functions. Hence the limiting
measure corresponding to 4>(ß') is the convolution of three one-dimensional
measures, each with transform (2nß')~m.

It is easy to see that the contribution to the state from the uncondensed gas is

precisely the same as in Example A. To calculate the contribution of the
condensate we need to consider the re-scaled partition function yx(ß')-
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(1) ax < \. Choose

yl(ß') Vlcpl(Vß') U(^^V[-^ßXXXki-!)))¦ (3.8)

In the limit the one-dimensional re-scaled Green's function behaves like a

Gaussian, variance Xß'VX^X- We see y(ß') l for all /3'>0. The

contribution to the state is identical to that in Example A.
(2) ax \. Then

Yt(ß') VMVß') - ft (2 exp -Cß'VX^k2 - 1))

(2exp(-y/S'(*?-l))). (3.9)

In the limit

y(ß')= f exp(-yj8'(*?-l)). (3.10)

Hence

F(A) #{*1:y(*f-l)*-A}, (3.11)

i.e. F(X) is the number of eigenvalues =sA for the one-dimensional hamiltonian in
an interval of unit length. Similarly

y()3';x) |:2exp(-y)8'(^-l))sin2^(2sin^)2, (3.12)

reducing to the one-dimensional ground state in the x2, x3 directions. Thus

Pi 1/AV,, [5], where

and the condensate is given by

2sin^)2|(|(^-l) + i)",.2sin2^. (3.13)

In the limit as / j » this expression is the same for both diagonal and off-diagonal
terms. Similarly we may consider the barometric formula, obtained by re-scaling
Xj to Vf'Ui and looking at the diagonal part. For the uncondensed gas the limit will
be p or pc, since x =y in (3.6). The expression for the barometric formula is:

v(«) Pc + Z (y (*? - 1) + -) 2 sin2 nkx(ux + J)

3

x f] 2 sin2 jt(u,: + i\) for p>pc. (3.14)
2
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(3) (*i>2. This is potentially the most interesting case. If we consider the
re-scaling y,(ß') V,4>,(ß'V,) then, since Vj~2a'^0, y,(0')-»» as / f ». We must
choose a different re-scaling and consider

Yt(ß') VX^<pl(ß'VXX, i-e. a 2(l-ax).
From [1] pa pm Pc. Thus

Y.(ß') Ü(2exp(-jß'VX«>->(*?-l))).

Vr<2-''Sexp(-|)3'^2-^). (3.15)

The first two terms give unity in the limit and the third term is the standard
one-dimensional Green's function which converges to (2nß'yxl2. By Lemma 1,
we have

j\xß'(2nßXl2dß p-Pc.

Thus

b - and pi ¦
-1

2(P-Pc)2 """ " 2(p-pcm(1-^'
We are now in a position to calculate the state. Consider

y,(ß';x) Vf'-^^ß'VXXx)

(3.16)

(3.17)

3 =o r„2
nSexp(-

2 /t, l
"yjg'VP—>(*?-!)]) ^(sin^^. + lFro)

y t k,=i
rî2exp -ß'^VT^-^ki-1) .2(sm^(x1 + iiVP)). (3.18)

v vp

In the limit the first terms reduce to the value at /c, 1, as in y,(j8')- The last term
is the one-dimensional Green's function. Thus in the infinite volume limit:

,-T
y(i3';^) (n2sin2-j(2^T (3.19)

In order to calculate the barometric formula we rescale x so that xt Vf*Uj. Then

3

Y(ß'; u) (û 2 sin2 w(u, + è))(2jr/S')~1/2-

The contribution of the condensate to the state is

1
whprp h —

Jo ß(X + b)«JvXïy where b=2(P-PcYß'
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giving

(p-p,) (2 sin20. (3-20)

This is clearly the contribution in the off-diagonal state also. The barometric
formula v(u) is:

3

v(u) (p - pc) n (2 sin2 jt(u,,+ i)) + pc, for p>pc. (3.21)
2

Thus although the distribution of the condensate in the two more slowly
expanding directions depends on the ground state wave function in one
dimension, the condensate is spread evenly in the direction of the longest side.

On considering the behaviour of F,(A; x, y) and its corresponding transform

4>i(ß';x,y)={ e-ßXdF,(X;x,y) (3.22)

we can as before find the re-scaled transform

yl(ß';x,y) VX^ct>l(ß'VXau;x,y). (3.23)

In order to consider the persistence of off-diagonal long range order we also
re-scale x and y, i.e. *, Vf'Uj and y, Vpv,. The term in 6 contains a

one-dimensional Green's function of the form

1 <£ / r.. 31- 2 exp i^-ß' — L-\k\ - l))tp(ux; kx)xp(vx; kx) (3.24)

where L Vfa'~1 and xp(z; k) V2sin nk(z + I). Consequently in the limit as

L \ », this term —> 0. Hence the off-diagonal contribution of the condensate
disappears unless ux vx.

4. Free boson gas in a cuboid

In this section we will consider a free boson gas with hamiltonian —(A/2)
with Dirichlet conditions on the boundary of a cuboid L with sides Lx~5-L2^
¦¦¦^-Ld and volume VL. The eigenvalues and eigenfunctions of this (single
particle) hamiltonian are given by

£* S^hr, k, i,2,..., i i,...,d, (4.1)
; 1 £Laì

as. 1 0 (2\m ¦ 3Tk,lLi \ L, Li 1

(4.2)

The grand canonical equilibrium state for a free boson gas (at mean density p and
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inverse temperature 1) is determined by its "two-point" function

1

KL(x, y)
U

P(L)2 ~WZ »n <t>kAx)4>k,L(y),
-'d (k) ' $(L)

where
d n2

<,ì ELk-YsTyr2,
i=\Z.lAi

and §(L) is the unique solution in (0,1) of

_=
1 y gg)

9
L, ¦••£.„£*"'- f(*0

(4.3)

(4.4)

(4.5)

In a previous paper [1] we have shown that the behaviour of the mean
occupation density

1

Pk.L
Ï{L)

Lx---Ldeß^-^(L)
(4.6)

in the limit {Lx \ »,..., Ld | »} depends on how that limit is taken. Since the
results of [1] are of crucial importance for the computation of limL_^o= KL(x, y) we
recall them here.

Theorem. Let the infinite volume limit L—* » be such that

lim ;

L->-

lim

Ld

logL2
L--- L3 • ¦ • Ld

A

B

(4.7)

(4.8)

then for p =s pm pc + Bjn none of the single particle states are macroscopically
occupied. Pc (the density at which the thermodynamic functions behave singularly)
is given by

Pc=^(2nn)-dl2, d 3,4,. (4.9)

For p > pmwe have

pk lim pkiL •

L-^r-

pk lim pkiL

r3i2A..2 T'1

L 2 (kXl) + C

0

if k (kx,l,.

if *#(*!,!,..

p-pm if k (1, A
0 if k*(l,...,l),A

oc

00

pk lim pk L 0 for all k if A 0;

1),0<_4<»

1),0<A<»
(4.10)

(4.11)

(4.12)



1300 M. van den Berg, J. T. Lewis and M. Lunn H.P.A.

C is the unique positive solution of

P-Pm- (4.13)
2 a n-l

(K'-X+C
For the thermodynamic limit of the state we have

Theorem 3. lim,^» KL(x, y) exists and is given by

K(x, y) S j^tjfX^'^X P<Pc (4.14)
(2nn)

x

K(x, y) 2 2''[(Â:2 + k) ¦ 2jz2A + C]"1
*=o

* e-(\x-y?l2n)
+ £ ,- v//2 B^O, 0<A<*, p>Pm, (4.15)

„=, (2jzn)'"2 '

h (2jin)

e-(|jr-.v|-/2n)
K(x,y) 2"-\p-pm)+yZ „,dn ¦ ^=0, Ss0> P>Pm,

(4.16)
oc „-(|.v-v|-/2n)

K(x,y) 2«-2(P-PK)+1
e-(|.v-.v|-/2n)

„=, (2jt«)"/2 '

B>0, 0=5.4«-», Pc<p<pm, (4.17)

where § is -7i<? unique positive solution of

^\7^X- P> p<p- (4'18)
1 (2;m)

We remark that K(x, y) is a function of |-v-y|. (The state is translationally
invariant). Hence the local particle density K(x, x) is independent of x. In order
to obtain the global particle density we introduce a scaling:

Xi L,w„ i l d. (4.19)

For convenience we put

Xw, u„ i \,...,d. (4.20)

Define

Ë(L) d 2
ydu) S J L, Il y (sin 3tk,u,)2. (4.21)

{/.) e -§(L), i Lj

We have the following

Theorem 4. \\mL^x vL(u) exists and is given by

v(u) p, p<pc, (4.22)
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-A 2(sinJikux)2 A... x2 BÀ ./• x2v(u)= 2j - YT— 11 2(sin jtu,)2 + -[[ 2(sin.to,)2 + pc,
*-l /, 2 1

W ^ ^.(=2 ^1 3

(/c2-l)-y+C
ß3=0, 0<^«», p>pm, (4.23)

v(w) (p - pm) n 2(sin .to,)2 + — \\ 2(sin .to,)2 + pc,
1=2 ^.=3

_4 0, B^O, p>Pm, (4.24)

v(m) (p - pc) fl 2(sin to,)2 + pc, B>0, 0 « A =£ », Pc<p< pm.

(4-25)
.Vote r/zaf

v(u
¦'(0.1)''

)du p, (4.26)

and i*//a?

K(;c, jc) v(u) for « (ii |), ie R". (4.27)

Though it is possible to prove part of Theorems 3 and 4 with the results
obtained in Section 2 it is much more convenient to use the techniques developed
in [4, 5, 1]. We defer the proofs to the appendix.

Appendix

Proof of (4.20). Since §(L) 5= Xe' (see the proof of Theorem 1 in [1]) we
get

vii") i r 2 e~"Ei FI 2(sin nk-.u,)2
«-1 {k} 1

> i r ¦ t^A^ (i - 2de-(2^3""*"). (M)

We have used here (11) of [2]. Since e~x =£x~1/4 for x >0 we get

(^3„)'
where

Vz.(«)^P-7T a m/2 (A2)

3„ inf \v — u\. (A3)
i)#(0.1)rf

Moreover by (15) of [1]

lim §(L)e£' I, (A4)
Lî-c
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so that

Vl(«) S (ï(L)eEL*y f e-"E* • f\ f (sin jr*,«,)2

<l,(«l)^,ë=j"- (A5)

Hence lim sup^^ vL(w) p for p < pf ; this completes the proof of (4.2).
The next lemma is the equivalent of Lemma 3 in [1].

Lemma Al. For z e [0, 1] and 0<_.,-< 1, i l, d and d^3
A 2 2

lim 2 z(e"*-z)-,rir(sin^M')2=2>T-^ (A6)
M00 {*:(*, k,i)¥=(i i» i=i La-, n x\\inn)

Proof.

Y, z(e"t-z)-lflj- (sin jtkiUi)2

Y, z(eE" - zX fly (sin nk^)2
{k:(k3,...,k,i)*(l,....l)} i l Li

^ Y. z(e^-zXY\y (sin Jtk,u,)2
{k:kd*l) i l 4

^„e1(27r«r2 (Lrf3J1/2
=c d—l r —

re l /=1 •-*,•= 1 J •'/.

2-EUS e-^'' ¦ 2(sin nk,u,)2 • -f • e"^2/2^>. (A7)

The third term above is smaller (in absolute value) than (d 3= 3)

^, 1 2_

rd„f1(2TO)^-"/2 Ld

=£ y 1
e-"^:'2Lj

n \ 3inLd

^log(l-e-^2/2^), (A8)
JlLd

which tends to zero as L—>». We have used in (A7) that

S e-"*2k2«2L:) ¦ 2(sin Tr/:»)2 ^—^. (A9)
*=i (2.ro)

Define

b(L, n; u) Y, e-^272^*2-1' • 2(sin nku), n > 0. (AIO)
/t 2
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Similarly to (30) of [1] we get for the left hand side of (A6)
1

Y. z"\ X b(Li> n- "/) n 2(sin nuk)2
rLn l L;=3 k*i

+ _S ]__. b(Li> n;Ui)b(Lj, n; ut) ¦ f] 2(sin .to*)2
ls/</«d k¥=i,k¥=j

+ EEE- + -+n KU, n; «,)}. (All)
/-i ->

The estimates of the terms in (All) with E, E E up to (d - 1) - E's go similarly
as (31), (32) etc. in [1] since b(L, n; u) =£ 2a(L, n). Finally for d s 3

1 * rf [£"] «jr2 / 1 1 \ 1

— 2 z" n &{£/. »; "/) « S zn ¦ exp-— -3+ • • • + jj) •
dl2

vLn=i i=i «=i ^ \^i L,d/ \\z.nn)

+ S (-) <^2jtt«+- -A-L^/2> <A12>
n=[M+i V^n/ n=l(2nn)au- W d-2

where [jc] denotes the integer part of x. the combination of (A7), (A8) and (A12)
proves Lemma Al ¦

Note that we have used in (A12)

b(L,n;u)^^.-^~. (A13)

Lemma A2. For n > 0 and u e (0, 1) we have

0^2 e-«*2*2'2^ cos 2nku * - + —. (A14)
A. l M 1-M

Proof. Using the Poisson summation formula (see §10 of [6])

X e-o-2*2^2) cosiitku =2 f dx • (cos lube) • (cos2.TO.) • <re»2*2/2i-2>
*r l /=-=c Jo

\ dx ¦ cos 2wi« - e-("x2*2/2L2) + 2 colcos 2_rar(/ + u)
Jo /=1 Jo

+ cos 2nx(l - u)} ¦ e-("-2*2^2)

L_
(2nn) 1 ,=1 ,=i

this proves the left-hand side of the lemma. It follows that

Y e-^lkl)l2Ll)cos2nku^—^-m\e-(2LVln) + e-(^2(i-«)2'«) + 2 Y <r(2L2'2/">

*=i (2icnylz v ,=1
1/2 / „ N1/2 r-

+ 2 e-(2L2,2/n) dl

_ e-(2LV,n) + £ e-(2^(/+„)^) + ^ e-(2L\l-u?,n, [ (A15)

\2LV) + \2L2(l-u)2) +2J0(2to)

2^ + 2(l-u).^2 + ^^ + T^- B (A16)
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Lemma A3. For n>0 and u e (0, 1) we have

\_ 1

u2
+

(l-u)^ e-^2k2l2L2)sin2nku
k l

^13(3 + 77-^2 ¦ (A17)

Proof

2 e-(n"2k2,2L2) sin 2nku § f dx • (cos 2nlx) • (sin 2nxu) ¦ e^nJlVl2L2)
k l -ocJ()

2 \ dx{sin2jix(u + l) + sin2jix(u-l))e-('"l2x2l2L2)
1=1 Jo

+ f dx ¦ (sin2jTxuXn'z2x2'2L2)
Jo

dt i2l„-l\2,eL2(u-l)2(t-iyr.

23/2 • L2 L2u ¦ 23'2 r-

nn

1 zu ¦ vIL r1 dt

We have used the Poisson summation formula and two integral formulas of [3]
(3.896.3 and 9.211.1). First we will compute an upperbound:

2C,, _L A03/2 r\ j, 2/,, im3/2-A (LAu+jjX f1 dt PLHl_lv L\u-l)23
,%\ nn Lx(l + t)m nn

J_! (1 + 0 J nn J_i(l + ^1/2

2,,')3/2 rl
u2L2't-l)/n

2„-)5/2 rl J, 1 r 2„03/2 ,1

y ÏLXX Ç dt efiLHt.X+LAuX p dt 2LHt_1)/n
,%\ nn Ml + 01'2 J to L^l + r)1'2

' '
But for >> > 0

r, dt a „ 2V2
——e^'"1^— (A20Ì

(i + 0,/2 >
' l ;

so that
00 <l2ii-->512 7v2n, r2u-73'2 ?1/2n

Y. e-*-2*2'2'-2' sin 2nku « Y lXX_ .£__?} + LXA_ LJL
*__! ] l TO IL J TO _. L

4to 4
— + —. (A21)

3 nu
The next step is to find a lowerbound:

• 2,^3/2 r\ J, / 2/93/2 r\ J,La IZ. I Ul ,2|Uft!|,-1ll. i-, /Z. | Ul _;,2(u-|)!.((-l)/ta|v {XX Y dt P^»H.-ivn U12- r> dt Hu_

ài to J-,(i+o1/2 3in J_,(i + o1/2

f1 ch

nn \-X(l + iy
93/2; 2 fl J,^ L- I Ul L2(u-l)2(t-l)/n
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A L 11 f f __dt__ a r2(l+l)2(t-\)ln _ -Z.2(l-02(l-l)/n\
+,è2 tt« \Lx(i+t)mKe ]

4 25/2L2^, 21/2 12

jr(l-u)2 to ,~2 L2(l -1)2 n

._JL_
a-«) 2 • (A22)

Lemma A4. For p>pc and <x>0

Hm t^V f ^^ • e-<^2> inf {p, pm} - pc. (A23)

Proof We write

LtL2 A (g(L))" /LiS
Lx- • ¦ Ldn=l 2nn

1

e

L\- • ' Ldn=x

1

2 (§(L))"a(*<i- «) • a(L2, n)

L\- • ¦ Ldn2 (?(L))"fl(L1, n)a(L2, n) ¦ («-<«»* - 1)
-i

1 f (B(L))na(Lx, „)(-J2_-fl(L2, n))e-^/i2>
Li • • • Ld„fi v"v~/7 ~v~" "/V(2to)1/2

+ïtXÂ <W)r • pi^ (^-«(i.. »))«-'""ä>

1 + 11 + 111 + IV (A24)

Term / converges to inf {p, pm} - pc by (35), (40), (44) of [1]. Furthermore since

^'w'^^L-"^(ptr'l <A25>

we get

W ^±7ré^2-7rè^2-e-^m l
„fi (2to)1/2 (2to)1/2 L2 Lx---Ld 2 • jr3(L3 • • • Ld) '

(A26)

Ll .1. e->«nlLl, <^ L
1(2to)1'2 2 L1---Lrf^(8ar)1/2 L3 • • • Ld '(HD * 2A • 5 • e-(*"/i2) • 7-^ «^ • T^-T > (A27)

1 V) Lx---Ldt,(2xny2 2

^Tre^'l l
1 ¦ " (A28)

(8a) Lx- ¦ ¦ Ld
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We are now in a position to prove the following

Lemma A5. For p> pc and «, e (0, 1), / 1,2

lim-^i (Ç(L))"b(Lx,n;ux)b(L2,n;u2) mi{p,pm}-pc. (A29)

Proof. From Lemma A2 and Lemma A3 it follows that

b(L, n;u)^e^""2'^ f) e-e-2*2^2). 2(sinn(k + l)u)2
k \

^enx-X L £ e>-^2*2/2Z-2){(cos2;rA:u)
V(2nn) k=x

¦ (cos 2nu) - (sin 2nku) • (sin 2nu)}

* e"("/L2,{(2^r + 14(""2 + (1 ~ ")2)}' (A30)

Combining (A30) and (A13) we get

b(Lx, n; ux)b(L2, n; u2) =£^e^"*2'2^
2.TO

J^.e-<^../l + _i
(2to)1/2 V«! (l-"2)2+ T^k • e-'"""L~2) -(-2 + TT-ATTÏ (A31)

But

^i^wr-TTÉ^-^^-14(3+; *

V^„f,v'v " (2to)1/2 ' "W2 (\-u2)2
14

+ 7. T5 J (A32)
L2 • • • Ld \u2 (1 - u2)

Because of Lemma A4, (A32) and (A31) we conclude that for p> pc
1 x

lim sup—2 (%(L))nb(Lx, n;ux)b(L2,n;u2) inf {p, pm) - pc. (A33)
Li—* VLn \

Furthermore for w, e (0, 1)

&^^-^-»^»:">-''^ëSp-M{?+(î^?)}'
?i, * (A34)

so that v '
^2mL))"flb(L„n;u,)
VLn \ 1 1

-- t (|(L)re-<^«-ö • 7^5 f^ - 14(i + —^3Vtufi (2to)1/2 1(2to)1/2 \u\ (\-ux)

~i mL))x-2'^ • u(\+-^—2).-^-
VLn=x \u2 (l-u2) l (2to)
è- i m)Te-^i^ ¦ 14(1 + —L-J) • -^-_. (A35)
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But

and

— Y (Ë(L))ne-^nn2/L2) ¦
Ll

=£
1

VL^XKL))e (2to)1/2^L3---L/

— Y (Ë(L)Y • e-("-2^2). ________^____? I
Vl. «=i (Inn) Li L3 • • • ld

so that (A35), (A36), (A37) and Lemma A4 gives us

1 *
lim inf— 2 (M(L))nb(Ly, n; ux)b(L2, n;u2) inf {p, pm) - pc

L-H— VLn=x

(A36)

(A37)

(A38)

Corollary Al. For p> pc and u, e (0, 1), i 1, d

lim ±- Y. Ï(L) ¦ (e** - KL))"1 n f (sin nk,u,)2

d

(inf {p, pm) - pc) • f] 2(sin to,)2.
1=3

(A39)

Proof. Since

lim ^ S (?(^))"6(L2, n; u2) *- lim £ f e-(-2"-2> —^*-—°° *£. «=i *¦—« Kl «=i (Znn)

and because of (A38) and (A33) we arrive at A(39).

0,

(A40)

The next lemma enables us to compute the contribution from the levels
kt 1, 2,... (k2, ...,kd) (l,...,l).

Lemma A6. For z e [0, 1] and LX>1

z ¦ 2(sin nkux)2 z ¦ 2(sin nkux)2

k=2
\2Lxen

2/2 (A41)

(k2-l)-jj-2+l-z exp(fc2-l)

This is of course nothing else but (47) of [1]. Note the misprint in [1].

Proof.

2z(sin nkus)2 2z(sin nku-,)2
(A42)

exp(A:2-l)-;^-z (k2-l)-^-2-z2Lf 2L?
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and

tat

«2

2z(sin nkux)2 2z(sin nku,)2

(*2-l)^l+l-z exp(fc2-l)-^-z
2 2

exp«.2-l)-^j-l-(*2-l)~

*X-i)-£-(^-i)-£ri)
.4L? * r,y — 1 _

sup
1-.V«^ E (^2-l)-, + 2D ^K" .-=0 + 1 (3^2/2L?)sys(D2-l)(ji2/2Z.5) /ke ^

AI 2

< ^1 | Dc(D2-l)(*2l2L2)
n2D

We choose D [Lx] so that for L, > 1 we have 1/D < 2/Lx and

-.--*-!
+ De(o2-D(-2/2M) .s

talill
+ Lie-2/2 ^ 2Lie-2/2. ¦^2D jr2

Corollary A2. For p > pm and 0 < .«4. =s » we have

£(L) ^ l(sin^.M.)2lim
*• î * {k:(k2,...,kd)=(\ i)> eT'k - _f(L) ,-=i L

•A 2(sin nkux)2 A „, ,22 _2, • n 2(sin to,)2.
* 1 /| 2(je-DtafLl+c <-*

Proof. From Theorem (3) of [1] we have for p > pm, 0 <A =s oc

hd-Xt
so that (A45) follows from (A46) and Lemma A6. ¦

(A43)

(A44)

(A45)

(A46)

Corollary A3. For pc< p< pm and 0 =e A s; oo we have no contribution from
the levels kx 1,2, (k2, kd) (1, ,1) to v(u).

Proof. Note that b(L, «;/.)=£ 2a(L, n) and use (40) of [1]. ¦
Lemma A7. For p > pm, A 0 we have

Ik (*2 w-d i)}e"*-|(L)/=1Li
£(L) d 2 rf

f] — (sin taT/:,/.,)2 (p - pm) [I 2(sin to,)2.

(A47)
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Proof We write the left hand side of (A47) as follows

— 2 (%(L)Y 2 e-lMA2L'ilk2-l) - — 2 (%(L)Y 2 e-("jr2/2/-?)(A:2-,)cos2^Ml.
Kl„ 1 /t l K/_„ 1 * l

(A48)

The first term tends to (p - pm) n?=2 2(sin to,)2 by (44) of [1]. For the second

term we have

1

2 (IO-))" 2 e-^2,2L2^k2-x)cos2nkux
r\ ' ' ' Ldn X k X

[Lì]

- l 2 (ZW 2 e-("Jl2/2Z-2)tt2-1)cos2^Ml
Ll • • • Ld „ i Ar=l

+
1

2 (iwri«"(M2,2Li,(t2"i)
Li • ¦ ¦ Ld „=[l2]+i k=\

;r_i-I-|(W))..e-.(I + --i-)

+. -, £ «(/.ir (i+
M ' • * Ldn=[Z-5] + l V (2nn)m

L,---Ld 1 — §(L) V« 1 — u

dn

L2 • • • Ld JL2 ' (2nn)

The first term tends to zero by (51) of [1]. The second term becomes less than

+ - f e-(nKl+6PLr-Ld)2) an
(A49)

/9\l/2 f=c

(-) e-(L2..L,)/l+6pZ.2...Z.^u2dM (A50)\nl J<i.,nr,...r.A,,2J{LXI(L2-Ld)}2

For L2 ¦ • • L,, • 6p > 1 we have

?\1/2 r°°

- e-(«2/144p2) dM (A51)
^/ J{£.i/(L2-L<()>2

which tends to zero since LJL2 ¦ • • Ld—» » by assumption. ¦
Proo/ of Theorem 4. For p>pc.|(L)îl. So Lemma Al provides the

contribution pc. Corollary Al proves the appearance of {inf (p, pm) —

Pc) nf=3 2(sin to,)2 and the Corollaries A2, A3 and Lemma A7 give the
"one-dimensional" contribution to v(u). ¦

Indication of the proof of Theorem 3. The contribution from the normal fluid
to K(x, y) follows from (6) of [2]. The condensate part (diagonal and off-
diagonal) can be obtained by putting ux • ¦ ¦ ud \ in the condensate part of
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Theorem 1. The reason is that

nk I LA nk
sin — \x A 1 — sin —L,\ 2 / 2 f, (A52)

is small for small k. The contribution from large k values in (4.3) is small because
77£ is large.
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