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STOCHASTIC BEHAVIOR IN NONEQUILIBRIUM SYSTEMS

N.G. van Kampen, Institute for Theoretical Physics of the University, Utrecht,
Netherlands

A system caught in a metastable state will ultimately escape as a result of
thermal fluctuations. The situation may be modelled by a Brownian particle
caught in a potential trough, obeying either a Smoluchowski diffusion
equation or a Kramers equation. The escape time can be identified with a mean
first passage time, which obeys the Dynkin equation. Unless this equation can
be solved exactly, it has to be treated by singular perturbation theory. The
calculation is demonstrated for the case of diffusion and for the one-di-

mensional Kramers equation.

1. Introduction

Figure 1 shows half an ellipsoid of solid material resting on a table. A
marble is at rest in the unstable equilibrium position. The random collisions
of the air molecules will start it rolling down and we ask the probability
distribution of the point where it hits the table. It is easy to write the
stochastic equations of motion fof the marble, but as there is no hope for an

explicit solution, we have to find an approximation method.

FIGIRE 1

The obvious idea is to select a small cap around the top in such a way
that: (a) inside the cap the equations of motion can be linearized, so that
they can be solved including the random force; (b) outside the cap the effect
of the random force is negligible and the nonlinear deterministic equations
suffice. Thus the linearized stochastic equations serve to find the prcbabili-
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ty distribution along the edge of the cap, which is then translated by the
subsequent deterministic motion into a distribution along the equator. The re-
sult must be independent of the precise size of the cap.

This is precisely what is done in singular perturbation theory [1], of
which the classic example is the calculation of Prandtl's boundary layer for
fluids with small viscosity [2]. We want to emphasize that singular pertur—
bation theory is the appropriate tool for dealing with fluctuations in un—
stable situations. The many ad hoc approximation methods in the literature are
merely this method in various disguises. Admittedly, the method is less cut
and dry than regular perturbation theory; one still needs some ingenuity in
applying it, but less than in reinventing it. .

This lecture is confined to the problem of camputing the decay time of a
metastable state. Other problems of interest are: the decay time of unstable
states; the probability distribution of their decay products, illustrated by
Fig. 1; the behavior near critical points where stable states became unstable;
and finally the evolution of the probability itself, which contains all other
information.

An apology: I am talking about mathematical methods applied to given
equations. The equations are suggested by physical systems and are often
used to describe them. However, they are customarily obtained by adding ad hoe
a fluctuating force with assumed properties, rather than by actually de-
scribing the actual physical mechanisms that cause the fluctuations. I find
this approach unsatisfactory and it has caused many difficulties [3], culmi-
nating in the grotesque It&-Stratonovich controversy [4].

2. One-dimensional diffusion
Brownian particle in a field of force:

2
BO,Y -2 grp + 6 2

ot 90X ax

)

|

(- < x < , (1)

[\¥)

U(x) is the force potential and 6 the absolute temperature; the mobility is
absorbed in t. This equation does not just apply to Brownian particles, but is
also used for chemical reactions, nuclear diffusion, nucleation and population
statistics. We are interested in potentials of the shape in Fig. 2. The
question is: when at t = o the particle resides in the potential trough
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FIGURE 2

-
a b C X

around a, how long does it take on the average to fluctuate across the barrier

W at b?

The average escape time 1 involves the Arrhenius factor ew/ e. This was
first suggested by the transition state theory for chemical reactions [5],
according to which the process from a to ¢ requires an excitation into the
'activated camplex' b. Apart from eW/ ® there is another factor; our aim is to
compute this factor on the basis of (1).

In order that 1 is well-defined it has to be much longer than the local
relaxation inside the trough, so that the precise initial location in the
trough is immaterial. Also the particle has clearly escaped only when it has
reached a location c from where the return probability (per unit time) is neg-
ligible. These conditions require ew/ . to be large. The escape time 1 is de-
fined only up to order 1, that is, relative order cW/e,

As a preliminary exercise con-
sider the potential in Fig. 3. (The
letters a, ¢ and b = c-a have a
slightly different meaning than in

EICURE = Fig. 2). The equations are
U (x)
2
3P (x,t) =0 al; for o<x<a
ot ax
and a<x<c,
A S P(ato,t) =e_W/e P(a-o,t)
a o X £ ' -
S——’
b Reflection at x = o and absorption
at x = c.

[P(x,t)/?)x]X -0 ! P(c,t) = o .
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The solution can be expressed as an eigenfunction expansion
=it
P(x,t) = ?{L c, By (xle "7,
where the eigenvalues A are given by

2 /e

A ek”™ , tan ka = e

cot kb .

For W/6 >> 1 there is one low lying eigenvalue, which is the transition proba-
bility per unit time,

A = (8/ab)e W8 = 1/7 . - (2)

o
The factors a and b, being the widths of the trough and the thickness of the
barrier, will appear in every case.

Back to the potential of Fig. 2. Let T, (x) denote the average time it
takes a particle starting at x to reach c for the first time. This mean first
passage time is a precisely defined quantity. The escape time T may be identi-
fied with Tc(a) within the margin of its definition. T 5 (x) obeys the Dynkin
equation [6,7]

ar &t
-U'(x) —=+ 8 §=—1, T (c) =o . (3)
ax dx

Thus one can find the mean first passage time from an orcdinary differential
equaticn withcut having to solve the partial differential equation (1) (as we
did in the previous example). The left-hand side of (3) is the adjoint of the
operator in (1).

The solution of (3) is

C x!
1, =3 | 96N e [ IO/ g (4)
X -0

If one takes x anywhere near a and approximates the integrals for small 6

t = 2n[U" (a) [U" )]~ 2 e‘W'/ ¥

[U" (a) ]—l/ g is a measure for the width of the trough and |U" (b) I—l/ “ measures

the thickness of the barrier. Higher orders in 6 may be added to the pre-



900 N.G. van Kampen H.P.A.

factor; they are not very interesting, but they are not inconsistent with the
inherent margin in the definition of 1, which is of relative order e-w/ 8. It
would be Znconsistent, however, to evaluate the integrals in (4) with more

precision than is provided by these expansions in 6.

3. Diffusion in more dimensions
The diffusion equation in a potential U(r) is

BP(E,t)/Bt =V. (EU)P + ezzp .

We take two dimensions and assume that U(x,y) is shaped as in Fig. 4, with a
minimum at a and a pass in the crater ridge at b, of height W. The trough
covers a region @ in the x,y
plane and the projection of
the ridge is a closed curve
3. Let T(r) be the mean
time for first arrival at
the ridge. The escape time
is t = 2T(a), because on the
ridge the particle has a
fifty-fifty chance to return.
The Dynkin equation is

FIGURF 4

- VU(x) .VT'(r) + BEZT(’E) = =1 (req) , T() =o (re€dq) . (5)

An explicit solution is no longer possible and singular perturbation theory is
needed. I give a simplified version of the calculation of Schuss and
Matkowsky [8,7].

Inside @, away fram the boundary, T(r) is nearly constant and contains
the factor eW/ 9 . We suppose again W/6 >> 1 and set

T{r) = ew/6 w(r) , w() =o0 (r€an) , w(r) =C inside Q .
- VWU(x) .Ww(r) + evzw(g) = e"w/e . (6)

To determine C we have to study the vicinity of the pass at b.
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Introduce coordinates s,c0 as in Fig. 5, so that near b
2 3
U(x) = uls) - %0"v(s) + 0(c7)

Equation (6) transforms into

| aQ 2 2 _
FIGURE 5 I E— _3E+e(3_"_’ +-"’-—"2!) =0(e W/e).
b 3s a0 -Bsz 90

For brevity we have amitted some terms
which will disappear in the next step
anyway. The next step consists in rescaling: o = 81/ 25, so that to lowest order

2
—U'(S)Ev—v+£v(s)a—w+aw=o. (7)

s o€ 352

At the pass u'(s) = 0; as a consequence the first term may be omitted, as will
be verified presently. Then the solution, involving two integration constants
A(s), B(s), is

© 2

w=ate) | YO/ gy 4 pes)

(6]

But B = o0 since w must vanish on 3. For larce ¢

w - A(s) [Ti9/2v(s)]l/2 .

This must be the value C of w inside . Hence we have in the vicinity of b

- a/Y0 9
T(s,0) = ew/B L /_______2¥e(s) J e—'%V(S)n dn .
o

We have found how the function T(x,v), which is constant inside @, is
dented near the escape pass b. The constant C is still undetermined because
we have not yet utilized the right-hand side of (5). Multiply (5) with e_U/ 0
and integrate

o [ ST g [

a0 £

The main contribution to the integral on the left comes from the vicinity of b
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and with the usual approximations for the integrals one obtains

W/GC_ZeW/B %%Jeu/ed}(dy ]

Q
[u" (o) ] measures the width of the pass, v(o) the thickness of the barrier.
The integral can again be evaluated by expanding around the minimum a. Notice
that only values of s enter for which u" (o) o 5 9, which a posteriori justi-
fies the omission of the first term of (7).

The method can be modified for other cases: more than one pass; ridge of

~1/2

constant height; sharp aréte as in Fig. 6. More serious is the case where the
deterministic part of the diffusion equation %as ne potential. This may occur
in physical systems that are kept far from equilibrium by some external agency,
and also in nonphysical systems such as populations. Then the boundary 3Q is
the separatrix between two domains of attraction [9]. Yet almost the same cal-
culation can be performed.

4, The Kramers equation

If the Brownian particle is not overdamped the inertial term in its
equation of motion must be taken into account, so that the wvelocity or mo-
mentum p enters as a variable in addition to x. The stochastic behavior is de-
scribed by the Kramers equation [10,11,12] for the procbability density in
(x,p)-space

2
AP (x,p,t) _ _ p 3 L (%) P = Y(_?_ PP +6 E"%)) . l (8)
ot ox op Ip ap

It contains a second parameter, the friction coefficient y. We are again inter-
ested in the escape from the potential trough in Fig. 2.

(1) For large y (8) reduces to the one-variable Smoluchowski case (1). To
show this [11,13,14,15] one eliminates the fast variable p by a singular
perturbation technique akin to the Chapman-Enskog method in kinetic gas theory.

(ii) For small y the zeroth approximation is the deterministic motion
X =p, p=-U'(x). For the motion inside the trouch one transforms to action-
angle variables, or to energy and phase angle [11,16]. The terms with y are
averaged over the phase so as to obtain a single-variable Smoluchowsky

equation for the energy distribution. However, near b the motion is too slow
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for phase averaging; hence this equation cannot be used to compute the escape,
unless the potential maximum is peaked as in Fig. 6.
(iii) If vy is fixed but 6 small the
U(x) zeroth approximation is the damped motion
FIGURE 6
X=p, pPp=-U'(x) -vyp .

Let x = p(t), p = ¢(t) be a solution. The
fluctuations are obtained by substituting in (8)

1/2 2,

x=0(t) +7/%¢ , p=y(t) +6
The result is an equation for the probability T(£,n,t), which can be solved by
ordinary perturbation theory in powers of 6/2. Hence one finds the determin-
istic behavior with small fluctuations tagged on to it. Condition is that there
is a single point attractor, otherwise the fluctuations may grow to make the
approximation spurious. Limit cycles can be treated to a certain extent [17],
but not our escape problem.
Our prablem is therefore to calculate the escape time without using these
limits, but how is the escape time defined? Of course cne must have again
eW/ 8 >> 1, but when is a particle escaped? The position x alone does not
specify the state and one is not
: -0 1 sure whether particles 1 and 2 in
1 Fig. 7 are escaped. One cannot
FIGURE 7 2 ; therefore identify the escape time
I with (twice) the mean time for
' first arrival on top of the barrier.
Rather one should take the time of
first arriving at same ¢ such that c-b is large compared to the mean free
path 61/ ZY and the return prdbability per unit time is negligible (namely of

order e_W/ e) . The corresponding Dynkin equation is

2
pé-'l—‘—U'(x)E—Yp-?LI‘—+Ye—8—%=—l (9)

ax ap op op

T(c,p) =0 for p>o0.

We solve this equation in the same way as (5) by the Ansatz
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W/ 6

T(x,p) = e w/e C.

wix,p) = e

Near b we set x-b = y and

Ux) =W - Yuy® + 0(y°) . (10)
Hence )
ow ow ow AW
P—+wW—-yp—+Y0 —=o0.
y op op op

The equation has a traveling wave solution [11]

wly,p) = f(ptay) , o = % +\/!;y2+v

(=]

- - o=y 12 '
f(z) = A J exp[ 778 z ]dz + B . (11)
-

At c the integral is practically zero, hence B = o. For y = — o
wix,p) ~» Al2mye/ (-1 172 = ¢ .

Finally to find C multiply (9) with exp[—p2/2e-U/9] and integrate over
-~ o< xXx<b, —o<p<w, After partial integration the only surviving terms

are
o] oo 2
- 3611 J U/ 4y = I pe P /20 gy SUD/E Ly

o0 2 (==
- -p /26 _ oy 2
[ ] el 51 e
=on P

o

= [o-L c(-0) J e'PZ/?'e exp[-— =X 2]dp

21y 6 2ve P
— 2

- -0 /—-lc=—ec[ 1+1_-_Y_]

a 4v 2~

This determines C and hence 1. The curious combination of vy and v = |U"(b) | ex~
hibits the interplay of the mean free path and the width of the potential
barrier.
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Apart fram the condition eW/ 9 >> 1 we have used the parabolic approxi-

mation (10). Let N be a typical distance over which this holds; in most cases
" m par n" nw 1/2
by ™~ lu" () /U ®)I or ¢ = |U"(b)/U"" (b) ]| .

On the other hand, we used the asymptotic expressions for the integral in (11);

hence the approximation is consistent provided that
2 L1 2 L]
[(o-v)/vely >> 1 or |U"(b)Ig >> ey{y+lU" ) 1} .

Thus we have shown that, for the Kramers equation in a metastable po-
tential trough, the escape time can be found bv a rather straightforward
application of singular perturbation theory. In the seminal paper of Kramers
the problem was solved by ingenious calculations, but in principle it contains
all the ideas that went into our more formal methods. '
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