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BRISURE D'ERGODICITE
EN MECANIQUE STATISTIQUE

G. Toulouse, E.S.P.C.I. 10, rue Vauquelin
75231 - PARIS Cedex 05 - France

Résumé : Une mise au point sur la notion d'ultramétricité, des mathématiques
a la biologie. L'ultramétricité est préservée dans la brisure d'ergodicité

associée a certaines transitions de phase dans les milieux désordonnés.

1.  Perspective générale

La mécanique statistique décrit des propriétés collectives et, en
particulier, 1'émergence de nouveaux comportements lorsque 1le nombre
de particules augmente. Trés remarquable, a cet égard, est 1'existence
des transitions de phase d'équilibre, dans 1la Tlimite thermodynamique.
Un siécle d'études a porté sur les transitions de phase dans les milieux
homogénes, et sur 1le phénoméne de brisure spontanée de symétrie, qui
implique brisure d'ergodicité dans la phase ordonnée. L'espace de configura-
tion est alors divisé en vallées, reliées par symétrie, d'oll le systéme
ne peut échapper. _

Les verres de spin sont des systémes désordonnés frustrés et ils
ont servi comme archétypes des milieux hétérogénes. La transition verre
de spin est d'une espéce nouvelle et la brisure d'ergodicité associée
est bien plus sévére que la précédente, car il apparait ici une proliféra-
tion de vallées, qui ne sont pas reliées par symétrie. Les nombreux états
métastables sont cause d'effets de rémanence spectaculaires.

La méthode du recuit simulé fut congue pour éviter le blocage dans
des états métastables. Elle s'est révélée étre un algorithme d'optimisation
efficace pour de nombreux problémes combinatoires, dont un archétype
est le probléme du voyageur de commerce, et pour bien d'autres problémes
complexes en 1ingénierie et biologie. Ces problémes d'optimisation ont
souvent plusieurs traits communs avec les verres de spin : la frustration
entraine une transition de gel et un paysage d'énergie avec une distribution
hiérarchique (ultramétrique) de vallées. L'ultramétricité est peut-&tre
la propriété émergente la plus remarquable associéea la brisure d'ergodicité
dans les milieux hétérogénes.
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Un paysage d'énergie peut étre utilisé comme une mémoire adressable
par le contenu. C'est ce que propose une théorie récente des réseaux
neuronaux. Les vallées sont les mémoires enregistrées et le rappel s'effectue
par une dynamique de gradient. Des régles d'apprentissage rendent les
paysages d'énergie adaptables. Les capacités de mémoire et les performances
du rappel présentent de 1'intérét pour 1'intelligence artificielle et
pour la théorie du cerveau. Dans ce dernier cas, il y a un stimulant
débat entre une approche instructive, partant d'un paysage d'énergie
plat (tabula rasa), et une approche sélective, partant d'un paysage d'éner-
gie de type verre de spin.

I1 y a deux ans, dans ce journal, j'ai donné une revue de la théorie
de champ moyen des verres de spin, avec un certain acccent mis sur la
notion récente d'ultramétricité. Ici, en 1'honneur de Charles Enz, un
physicien que la curiosité et 1'enthousiasme ont toujours porté vers
les 1idées nouvelles, je tenterai une mise au point sur cette nouvelle
frontiére de la physique statistique.

2. Verres de spin et ultramétricite

C'est en 1984, tout récemment donc, que le terme d'ultramétriciteé
fait son entrée dans la physique(1). Au cours d'une é&tude sur la théorie
de champ moyen des verres de spin (il s'agit d'un probléme qui reléve
de la physique de 1la matiére condensée et de 1la physique statistique,
et ces mots sont précisés ci-dessous), il est découvert que la distribution
des vallées dans 1'espace de configuration posséde une structure ultramétri-
que. C'est une surprise. Aucun des auteurs ne connaissait le mot ni la
chose, en dépit de sa simplicité et de leur longue maturation en mathémati-
ques.

"(I1) s'est produit a plusieurs reprises un phénoméne qui ne cesse
d'intriguer physiciens et philosophes. Lorsque sont nées les conceptions
révolutionnaires de la Physique moderne, relativité et mécanique quantique,
on a constaté avec surprise que les outils mathématiques nécessaires
a leur développement avaient déja été concus et étudiés par les mathémati-
ciens, en vue de probléme internes des mathématiques, et sans soupgonner
le moins du monde qu'ils pourraient un jour avoir d'autres applications.

I1 ne faudrait cependant pas croire que ces exemples spectaculaires
représentent ce qui se passe dans la majorité des cas. Ils sont au contraire
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assez exceptionnels..."(2)

En voici donc un nouvel exemple, relativement mineur peut-étre comparé
a d'autres, mais qui fait une histoire amusante & raconter, a cause de
sa simplicité et de sa généralité (physique statistique, théorie de 1'opti-
misation, biologie)(3,4).
3. Histoire de 1'ultramétricité

Pour nos besoins, je soulignerai cinq dates : 1897, 1910, 1944,
1967, 1984.

En 1897, Kurt Hensel idintroduisit 1la notion de nombres p-adiques
(5). Et lorsque la notion d'espace métrique eut été dégagée (M. Fréchet,
1906), i1 fit usage de ces concepts topologiques, contribuant ainsi a
la géométrisation de la théorie des nombres.

Le mot wultramétrique apparut cependant bien plus tard et il est
di, semble-t-il, & Marc Krasner (1912-1985). Dans une note présentée
a 1'Académie des Sciences, le 23 octobre 1944, intitulée "Nombres semi-réels
et espaces ultramétriques", i1 élucida la généralité topologique des
espaces ultramétriques, au-deld de leur berceau algébrique (6).

Autour de 1967, 1la notion d'ultramétricité sort, pour la premiére
fois, des mathématiques pures, et fait son entrée dans la taxonomie (7,8),
science des classifications en général, et en particulier des étres vivants.
Grace a la phylogénie moléculaire , qui présente plusieurs avantages
par rapport & la traditionnelle phylogénie morphologique, Tle caractére
ultramétrique de 1'évolution biologique apparait de plus en plus clairement

(9).
A partir de 1984, de maniére indépendante, 1'ultramétricité gagne

la physique (théorie des transitions de phase dans les systémes désordonnés,
théorie de la diffusion) et puis s'étend au-dela vers les sciences pour
1'ingénieur (analyse des paysages d'énergie pour des problémes d'optimisa-
tion, algorithme de recuit simulé) et vers de nouveaux horizons de Tla
biologie (réseaux de neurones, mémoires adressables par le contenu).

4. Rappel et discussion préliminaire

Un espace métrique est un espace doté d'une distance. Une distance
satisfait 1'inégalité triangulaire :

d(A,C) ¢ d(A,B) +d(B,C) 0
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L'inégalité ultramétrique est une inégalité plus forte :
d (A,C) & Max § d(a®),d(8,0)} 2)

On parle alors de distance ultramétrique et d'espace ultramétrique.

Comme 1'avait énoncé Krasner dés 1944(6), dans un espace ultramétrique
tout point & 1'intérieur d'une boule est 1lui-méme centre de la boule,
et le diamétre d'une boule est égal a son rayon. Si deux boules ne sont
pas disjointes, alors 1'une est contenue dans 1'autre.

En bref, 1'inégalité ultramétrique implique que Tes triangles sont
soit équilatéraux, soit isocéles a base étroite.

En termes physiques, 1'ultramétricité signifie absence d'intermédiaire.
Dans un ensemble ultramétrique, i1 n'y a pas de point intermédiaire entre
deux points donnés. Si un ensemble ultramétrique est plongé dans un espace
euclidien, i1 y est trés éparpille.

Cette remarque va nous permettre de remonter aux sources des structures
ultramétriques dans les sciences naturelles. Tous les exemples que nous
allons discuter concernent des systémes avec un grand nombre de degrés
de Tiberté. Un processus d'échantillonnage aléatoire sur un hypercube
de dimension infinie produit, a travers la loi des grands nombres, un
ensemble ultramétrique. Un processus de marche aléatoire avec branchements,
semblable au processus d"évolution neutre"(9) en phylogenése, engendre
un ensemble ultramétrique (non trivial).

Depuis un siécle, la physique statistique s'intéresse aux transitions
de phase qui apparaissent dans la limite thermodynamique, N — o= , d'un
grand nombre N de particules. L'apparition d'un ordre & grande distance,
d'une rigidité associée, sont des propriétés émergentes bien connues
des transitions de phase dans les milieux homogénes(10). L'ultramétriciteé
est une propriété émergente remarquable qui caractérise certaines transi-
tions spécifiques de milieux hétérogénes. C'est ainsi que dans la transition
verre de spin, 1'ultramétricité triviale de la phase paramagnétique (phase
de haute température) se transforme en une ultramétricité non triviale
dans la phase verre de spin (phase de basse température).
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5. Les verres de spin : des matériaux au modéle

Le terme verre de spin (spin glass) est d'origine récente (vers
1970). I1 fut créé pour désigner des matériaux magnétiques désordonnés.
Un archétype est Cu Mn ; typiquement quelques pour cent d'atomes de
manganése, porteurs de moment magnétique, dilués dans un cristal régulier
de cuivre, matériau métallique non magnétique. Les moments magnétiques
(spins) interagissent par des couplages de signes oscillants, si bien
que pour certains couples de spins 1'énergie est minimisée lorsqu'ils
sont paralléles (couplages ferromagnétiques), alors que pour d'autres
c'est le contraire (couplages antiferromagnétiques).

L'histoire de 1la physique des verres de spin est passionnante mais
elle est trop fertile en rebondissements, pour étre racontée ici (11).
Les deux questions centrales furent : la transition observée exférimentale-
ment, en fonction de la température, est-elle d'un type nouveau ? Cette
transition est-elle franche (température de transition précise) ou graduelle ?
Le terme "verre de spin" refléte 1'opinion d'une époque ol Ta transition
était considérée comme vitreuse, graduelle.

Ces considérations sont instructives, mais pas vraiment nécessaires.
En effet, depuis dix ans, il existe un modé&le bien précis, qui est intéres-
sant en lui-méme, quels que soient les motifs historiques qui ont présidé
d sa naissance. Il s'agit du modéle a portée infinie, dit aussi théorie
de champ moyen des verres de spin, dit encore modéle Sherrington-Kirkpatrick
(S.K). En voici la définition.

On se donne un hamiltonien (&nergie)

% = —Z} ]—L& Se Sé 3)

ey

o S est un spin d'Ising (Si + 1) placé au site i. Les couplages d'échange

Jij sont des paramétres aléatoires indépendants. La somme porte sur tous

les couples (ij). Pour assurer une limite thermodynamique convenable

lorsque le nombre de spins N tend vers 1'infini, la distribution P(Jij)

est normalisée de maniére que son premier moment soit é&gal a J. /N et son
second cumulant é&gal & J%/N . Nous supposerons ici Jg = 0.

Le programme consiste a faire d'abord Ta moyenne thermodynamique

sur Tes spins (& distribution {Jijl donnée) puis & effectuer la moyenne

sur le désordre des interactions. En bref, i1 faut calculer Lo% Z , cu
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Z{:\-L;;} =_{Y;T1 o B® ot 18 fonstion de partition, et ol la barre signifie
) |

une moyenne sur la distribution des Jij (B =7

T est la température).

6. Résultats et interprétation physique

Pour T > Tg = J, le systéme est dans la phase paramagnétique qui
est ergodique. A T = Tg, il y a brisure d'ergodicité. Pour T < Tg, il
existe dans 1'espace de configuration (hypercube des {Si}) un ensemble
de vallées, séparées par des barriéres infinies. Si bien que Tlorsque
le systéme se trouve dans une vallée, il y reste et n'a aucune chance
d'explorer les é&tats de méme énergie situés dans les autres vallées (ce
qui est notre définition de 1'ergodicité brisée).

Noter que Tles transitions de phases usuelles (ferromagnétique par
exemple), qui sont caractérisées par des brisures spontanées de symétrie,
sont aussi accompagnées de  brisure d'ergodicité (par exemple, pour des
ferromagnétiques d'Ising, il y a deux vallées). Les vallées se déduisent
alors précisément par les opérations de la symétrie spontanément brisée.

La nouveauté dans le cas de la transition verre de spin est qu'il
y a une prolifération de vallées qui ne sont pas reliées par des opérations
de symétrie. En particulier, TJleurs énergies libres différent. Il y a
des vallées hautes et des vallées basses.

Pour caractériser la distribution des vallées dans 1'espace de confiqu-
ration, on définit 1la fonction P(q), qui est 1la probabilité pour que
deux vallées prises au hasard aient un recouvrement égal a q (12) :

Pla) = 2 WeWe §(q-94) , L)

ou ws est le poids de Boltzmann associé a la vallée s, et ol le recouvrement
des vallées s et s' est défini par:

c\gsa = _(:I— Z (Si>s < Si.>s' ) 5)

qui n'est rien d'autre que le produit scalaire dans 1'espace de configura-
tion, et qui est donc un indice de proximité.
Dans le formalisme des répliques, P(q) est donné par
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\ ] .
—  uq . 4 9up
J@ Pla) &% dq = U & @ZH N 6)

Pour T < Tg, la fonction P(q), calculée dans le schéma de brisure
de la symétrie des répliques, posséde une composante continue, a la diffée-
rence des phases ordonnées habituelles, o0 la fonction se réduit & une
ou plusieurs fonctions de Dirac. |

De plus, on peut montrer que P(g) n'a pas une limite unique, bien
définie, lorsque N — oo . Ce phénoméne d'absence d'automoyennage sur le
désordre (lack of self-averaging) signifie qu'il y a fluctuation d'échantil-
lon a échantillon. ‘

Mais la plus grosse suprise vint lorsqu'on s'intéressa & la statistique
des triangles (1) :

Pla,aea) = 2— W W Wor 6(9,-9,0) 8 (gu-900) 8 s-960)

%)
on trouve en effet, pour T £ Tg,
Plaan,a) = 4 { Pla) Pla) 8(6,-9:) B(ga-ga) + perm. cire|
r2 Pla) x@) 8 (4-92) 8(q-93) , 8)
%A
ol x(qy) = JL ?;(q\<iq . La premiére ligne de 8) correspond & des

triangles "isocéles & base étroite, et la deuxiéme ligne a des triangles
équilatéraux. (Noter que Tle poids total de chacun des quatre termes dans
8) est égal a /) Ainsi donc, i1 y a ultramétricité a toute température.
Pour T > Tg, dans la phase paramagnétique, P(q) =9 (g), les triangles
sont tous équilatéraux et 1'ultramétricité est triviale.

En bref, au cours de la transition verre de spin,l'ultramétricité
est préservée mais son contenu change, a cause de la brisure d'ergodicité.
Dans la phase verre de spin, la distribution des vallées dans 1'espace
de configuration posséde une répartition hiérarchique en amas emboités.

IT existe un point, que j'ai passé sous silence ci-dessus, et que
je voudrais maintenant rétablir. La transition verre de spin a Tg, en

1'absence d'un champ magnétique, s'accompagne aussi d'une brisure de
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symétrie globale ordinaire. La symétrie dont i1 s'agit
est la symétrie par renversement du temps, qui revient & changer tous
les signes des spins. Evidemment, 1'énergie 3) est invariante dans une
telle opération. Le groupe de symétrie est 22 (comme dans une transition
ferromagnétique ordinaire). I1 s'ensuit qu'en dessous de T_ T1'ensemble
des vallées est divisé en deux sous-ensembles, reliés par cette symétrie.
Et T1'ultramétricité ne tient qu'a 1'intérieur de chaque sous-ensemble
séparément. Cette circonstance est particuliére au cas du champ nul.
En présence d'un champ magnétique fini, 1la symétrie par renversement
du temps disparait et seule subsiste la transition proprement verre de
spin.

7. Recuit simulé et problémes d'optimisation

La méthode de Monte-Carlo standard se heurte a des difficultés,
dans divers problémes d'optimisation, a cause de 1'allure de leurs paysages
d'énergie, qui entraine des temps de relaxation trés longs. La méthode
de recuit simulé, inspirée par les techniques de fabrication des cristaux,
est une méthode de Monte-Carlo augmentée d'un programme de variation
de la température. Cette méthode numérique fut d'abord mise en oeuvre
sur des problémes de verre de spin. Puis elle fut appliquée a des problémes
d'optimisation combinatoire difficiles, tel Tle probléme du voyageur de
commerce, qui est un archétype des problémes NP-Complets, et a d'autres
problémes complexes, en ingénierie et en biologie (13).

Ces problémes d'optimisation sont souvent caractérisés par des con-
traintes antagonistes, qui les rapprochent des systémes frustrés désordonnés
tels que Tles verres de spin. La frustration des verres de spin est liée
a 1'existence de nombreuses boucles fermées sur Tlesquelles le produit
des interactions est de signe négatif ; ce fait est & 1'origine de 1'exis-
tence d'un grand nombre d'états métastables, ou vallées. Dans le probléme
du voyageur de commerce (trouver le chemin fermé le plus court passant
par des points donnés), il y a conflit entre des contraintes Tlocales
et globales.

L'analogie avec les verres de spin a conduit & se demander s'il
existait aussi, pour ces problémes, une structure ultramétrique des minima
locaux dans 1'espace de configuration (14). L3 encore, 1'ultramétricité
serait obtenue dans la Tlimite des grandes tailles. Toute une activité
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s'est développée pour définir des indices ou critéres d'ultramétricité

et suivre leur variation, lorsque la taille des échantillons augmente.

Ces analyses de paysages d'énergie, et 1'utilisation du formalisme
des répliques(15), fournissent une nouvelle approche, toute récente mais
prometteuse, de la théorie de la complexité algorithmique.

8. Réseaux de neurones et mémoires

L'intérét pour les réseaux de neurones a pour origine la modélisation
du cerveau, mais aussi la conception de dispositifs artificiels. On peut
associer un paysage d'énergie & un tel réseau, avec la dynamique neuronale
standard, pourvu que Tles connexions (synapses) soient symétriques. C'est
a J.J. Hopfield(16) que revient le mérite d'avoir souligné qu'un paysage
d'énergie fournit le modéle le plus simple pour une mémoire adressable
par le contenu. Les minima locaux sont les mémoires enregistrées et leur
rappel se fait par une dynamique de gradient. Des régles d'apprentissage
permettent 1'adaptation des paysages d'énergie. Utilisant 1'analogie
spin-neurone, la régle formellement 1la plus simple, conduit a considérer
1'hamiltonien 3) avec :

M
- =7 A A
i =%: b

aprés mémorisation de M configurations {S;=-gi} . Supposez que les configu-
rations mémorisées soient choisies aléatoirement. Bien é&videmment, si
M devient trés grand, M N, les interactions Jij (efficacités synaptiques)
deviennent des variables effectivement indépendantes, et on retombe sur
le cas verres de spin. Une théorie détaillée récente(17) a permis d'interpo-
ler entre le cas ferromagnétique (M=1) et la limite verre de spin. Des
transitions apparaissent pour M~¢.65 N et pour MyvC.ALN, Nyw. Cette théorie
constitue un pas en avant important en mécanique statistique car elle
montre la possiblité de décrire analytiquement un comportement trés complexe
des é&tats métastables (avec usage de la théorie de Morse), et d'autre
part, elle &tablit une pasSere]]e entre les transitions de phase habituelles
a symétrie brisée et 1les transitions verres de. spin, avec brisure de
symétrie des répliques. Elle souléve des problémes nouveaux en théorie
des probabilités. Cependant, dans son cadre actuel, ce modéle ne pourvoit
pas la mémoire d'une structure hiérarchique, ce qui serait clairement
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désirable pour des motifs de catégorisation.

Deux suggestions récentes, complémentaires, ont é&té avancées de
maniére & obtenir une mémoire "ultramétrique". L'une part d'un paysage
d'énergie de type verre de spin et introduit des contraintes d'apprentissage
fortes, de maniére que 1'arbre des configurations soit é&lagqué par un
apprentissage sélectif, tout en préservant 1'ultramétricité initiale(18).
L'autre introduit une catégorisation hiérarchique au niveau de 1'encodage,

-

grace a une architecture perceptuelle en couches successives(19).

9. Remarques finales

L'ultramétricité non triviale est dinvisible sur les statistiques
d'ordre 2 (loi de distribution des distances entre deux points) mais
détectable par les statistiques d'ordre 3 (triangles). I1 convient mainte-
nant de se demander si des structures plus subtiles, cachées sur les
statistiques d'ordre 3 mais apparentes & un ordre supérieur, ne pourraient
pas présenter aussi un intérét pour les sciences naturelles.

Un article de revue, intitulé "Ultrametricity for Physicists" présente
de maniére plus compléte 1'ensemble des sujets évoqués ci-dessus (20).

Remerciements : Je remercie mes collégues R. Rammal et M. Virasoro pour
de nombreuses discussions sur la signification physique de 1'ultramétricité.
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