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STABILITY OF SOLITONS

E. Magyari and H. Thomas

Institut flir Physik der Universitdt Basel

Basel, Switzerland

Phase transitions (PT's) are announced dynamically by a critical
slowing—-down phenomenon which manifests itself in general as a
"softening" of a normal-mode frequency. Thus, bulk PT's both in
lattice dynamics and in magnetism are associated with an extended
soft mode (soft phonon and soft magnon, respectively), announcing
the transition to a new ground state of the system. Similarly,
the instabilities of topological solitons, refered to in this
paper as PT's in domain walls (DW's), are connected in lattice
dynamical systems (e.g. in ferroelectrics) with a soft localized
mode signalling the transition to a new DW structure. In ferro-
magnetic systems, however, there occur DW-instabilities which

are associated with an essentially different mechanism of criti-
cal slowing-down, termed "softening of the velocity change". The
role of the soft eigenmode is taken over by the perturbation
which carries the static DW into a moving one with infinitesimal
velocity, and the role of the soft-mode frequency is taken over
by the velocity change induced by the perturbation. The present
contribution aims to survey by means of two typical examples the
basic aspects of soliton (DW) instabilities in quasi 1D crystals

and in-Heisenberg ferromagnets, and to discuss their peculiar
dynamics comparatively.

l. Domain Walls in Lattice Dynamical Systems /1,2/

1.1 Model and Domain Wall Solution

We consider an unbounded 3D crystal with two-component order para-
meter Q = (Q1,Q7), quartic anharmonicity and anisotropy in the
on-site harmonic terms which may be realized by coupling to an
external uniaxial strain. In classical continuum approximation
the model is described by the Hamiltonian

1 s 2. 2 2 2 2_ 2

1 2 2 2
+ -2-u(Ql +Q2 ) 7] dxdydz (1.1)
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giving rise to the equations of motion

- 2 B 2 2
Q1,27 V9,2 597,50, - ulQ™ +0,70, , , (1.2)

where gl>g2 >0, u > 0 and the dot denotes 3/0t.
The system has a doubly degenerate ground state (GS)

_ _ 1/2 _
Ql = inO = t(gl/u) ; Q2 = 0 (1.3)

The linear excitations of these uniform field configurations con-
sist of two phonon branches with frequencies

2 2 2 2
w = 2gl + q ., w =g, -9, +taq (1.4)

showing the linear stability of the GS's for g <g . At g =g, there
occurs a first-order PT to a state with Q. and™Q 1nterc%anged
associated with a soft phonon. The occurrénce of “a soft mode at a
first- order PT is connected with the fact that the point g1 = g3
of the above model is a point of infinite degeneracy.

We are interested in this Section in a certain class
of quasi 1D configurations of the displacement field Q, namely in
plane DW's Qj 2(x,y,2) = Q1 5(z-vt), which are static (v=0) or
uniformly mov1ng (v=const#0} permanent-shape field structures con-
necting the two GS's ("domains"). The dynamic equations (l1.2) are
invariant under a formal Lorentz transformation (z,t) = (Z,1),
where ¢ = y(z-vt), 1= v(t-vz), v = (1-v2)-1/2 and v2 < 1. There-
fore it is sufficient to consider the static DW's only, since by
the substitution (z,t) - (z,t) all results may be transcribed
directly for moving DW's.
The static wall structures are solutions of the system of coupled
equations

1" 2 2
QL2 - 'g1,2Q1,2 ¥ u(Ql + QZ)Ql,Z , (1.5)

satisfying the boundary conditions

Q. (=) = £Q , Q. (xx) =0
1 10 2 (1.6)

where the prime denotes 4/dz.

Equations (1.5) may be interpreted as the equations of
motion of a point particle in the plane (Q;,Q5) under the influ-
ence of a potential
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_ 1 2 2. 1 2 2.2

This analogy permits to write down immediately a first algebraic
integral of the system (1.5), namely the "energy" integral

2

_ l ] 12
I, =5 (0 2 +0, %) +vie.0,) . (1.8)

By using some special methods /3,4/ one finds surprisingly also a
second algebraic integral /2/:

2 -1 L2 L2
)T + u (gl—gz) {Ql - Q2 +

I, = (9,0, - 9,0,

5 (1.9)

2 1 4

4
1 - Q)1 .
The existence of this integral offers the possibility to enumera-
te by qualitative analysis all the solutions of the system (1.5).
This analysis shows /2/ that there are only two DW solutions sa-
tisfying the boundary conditions (1.6), namely:

(1) A one-component DW

172 I

QlI(z) = Q tanh H% gl) 2] » QZ =0 , (1.10)

10

with energy per unit xy-area EI = (7/3u)(2gl)3/2, existing in the

whole interval 0 < g, < gy and

(2) A two-component DW

It

Q (z) 172

ino tanh Kgl—gz) z ]

IT (1.11)

Q, (z) = Q,, sech [(gl—c_:lz)l/2

z 1,

with energy per unit xy-area B = (2y/3u) (g +2g2)(gl—g )1/2,

where Q,, = [(2g2-gl)/u 1172, existing only in “the interval
9,/2< g,°< gy

We notice that the system described by the Hamiltonian
(1.1) has attracted considerable attention in recent vears.
The 1lD-counterpart of (1.1) was also investigated extensively in
various fields of the soliton theory /5-7/.

1.2 Energetic and Dynamic Stability

We discuss in this Section the linear stability of the DW's Fl.lO)
and (1.11). To this end we first linearize Egs. (1.2) according
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If the LHS of (1.17) vanishes for both z =+ - ©® and 2 - + «, the

corresponding X is termed a "localized mode" of

the DW. Otherwise, X is referred to as an "extended mode" of the DW.
We now immediately see that the DW is linearly stable

if no negative eigenvalue w®’ of Egs. (1.15) exists (for w? < 0 the

perturbation grows exponentially for t - ) . The case w? = 0 is
of special importance because each solitary wave on a translatio-
nally invariant system has an w? = 0 mode, the well-known Gold-

stone mode (GM), which restores the broken translation symmetry.
In the present context the GM of our DW is

Y ..o= {o, Qi 5 (2) } . (1.18)

2
o™ %y 2tam

According to the above considerations the GM is defectively degene-
rate, and one finds the accompanying "algebraic mode" (AM) :

2 ~ '
{w™, Xl,Z}AM = 40, & Ql'2 (z)} . (1.19)

Let us now examine the physical significance of the AM (1.19). If
(x) is a static DW solution of Eq. (1.2), then, as mentioned

a%bve Q (), = y(z-vt), is also a solution, describing a DW
mov1ng w1tﬁ velocity v. For infinitesimal v and finite times,
() = 9, (z) - vt Q! _(z). Comparing this expression with Eq.

(} 59), we sée 1mmed1ate1y that the AM (1.19) represents a pertur--
bation which carries the static DW into a moving one with infini-
tesimal velocity. Similarly, the aM {w? %, ,}.. = {0, 7 Q1 (2},
represents a perturbation which generates from the given =’ “DW mo-
ving with velocity v another DW moving with infinitesimally
changed velocity v + 8v, since for v - v + &v, N 2(C) > 0 2(?;) -
-y GVTQl 5 (%) ! ’

After these general considerations let us examine the
stability of the one-component DW (1.10) in detail. In this case
the system (L.15)decouples into two Schrodinger-type equations:

2
2
[ %gz + 2 (w™ - 2gl) + 6 sechzs ] Xy = 0
> 95 (1.20)
[ gw2 + £ (w2 + g.—- g )+25ech25 l x, =0 ,
ds g 2 1 2
1
where s = (g /2)1/2 z . These equations can be solved explicitly.
One finds three localized modes: the GM
wz = 0; X, = sech s , X, =0 (1.21)
a thickness vibration mode
2 3 —
wh =3 gy i X = sech s tanh s, Xy = 0 . (1.22)
and an internal oscillation mode of the DW
2 1
m =5 g, - 9, ¢ Xy = 0 , Xy = sech s . (1.23)

(The extended modes of the DW (1.10) can also be written down ex-
plicitly. They are, however, of no relevance for the stability,
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to the ansatz

Ql'2 = Ql’z(z) + 21,2 (z,t) (1.12)
and obtain

o 2 _ 5 3 N .
Xp,27 VX, =gy 5, -u (3Q1,2+Qz,1)1X1,2‘2“0192X2,1 (1.13)

where xl are small deviations from the components Q (z) of
the DW uﬁéer consideration (the superscripts I and II "wére omit-)
ted) . We are interested in solutions of the form

(z,t) (z) T (t) . (1.14)

X1,2 = X1,2
Equations (1.13) and (1.14) lead to the following system of or-
dinary differential equations

d2

2 2 2 _
[452 + 0™ + 91,5 - u(:an’2 + szl)l X1 o = 20010, X, 5 (2-18)

T + w1 = 0 (1.16)

where —w2 denotes the constant of separation. These equations are
of basic importance since (1) they determine the possible linear
excitations of the DW, and (2) the linear excitations yield comp-
lete information about the linear stability.

Equation (1.16) is very simple. For w # 0 its general
solution is a linear combination of the exponentials
T1 e exp(-iw t) with w = * w , whereas for w = 0 one
has™ Ty = const. and T3 "= t . '~ We see, therefore, that in
the function space {X} of separable perturbations, each eigen-
value w? of Egs. (1.15) is doubly degenerate with respect to the
time-dependent part of the perturbation, i.e. each eigensolution
{w?; ¥ } of (1.15) is associated with two linearly independent
time-evbfution functions T. For nonvanishing eigenvalues w”, the
corresponding T's are purely exponential functions of t, but for

w?= 0 the two characteristic frequencies become coincident,

w, = w, =0 , and both the purely exponential T's reduce to a con-
s%ant. In analogy to comparable situations occurring in algebraic
eigenvalue problems, this type of degeneracy may be termed "defec-
tive" /. 8/. Obviously, it is only apparently "defective", since
the role of the missing exponential T is taken over in fact by a
solution with an "algebraic" t dependence, T = t .

The separation constant w* was referred to above as
eigenvalue parameter of Egs. (1.15), but the corresponding eigen-
value problem was not fully defined. This problem is specified by
the physical requirement that the configurational parts Xl 2(z)
of the normal modes (l1.14) be bounded functions of x,i.e. '

lim X1,2(Z) < o, (1.17)
|z |+
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since these solutions correspond to thecontinuouss@ec&um of two
Egs. (1.20) extending to the regions w? > 2g, and w® > gl-g = Oy
respectively). Therefore, the one-component DW (1.10) iS s%able
for g, < gl/2. At g, = g /2 there occurs an instability against

a sof% loc3alized oscillation (1.23) and a bifurcation /6,7/ of
the two-component DW (l1.11l), signalizing a second-order PT within
the DW. For g, > g1/2 the two-component DW must represent the
stable DW up to the bulk stability limit g, = g,, because no
other solution connecting the two GS's exists /%/. It does not
appear simple, however, to confirm this stability by solving ana-
lytically the corresponding eigenvalue problem (1.15) & (1.17)
for the linear excitations of the DW (l1.11l). Indeed, Egs. (1.15)
do not decouple in this case,and except for the zero-frequency
mode (1.18) no other closed-form solution seems to exist.

As an important conclusion we emphasize that the insta-
bility at g, = gy1/2 represents a second-order PT in a DW with
order parameter Q2 , which is associated with a soft localized
mode, and which angicipates the bulk PT occurring at g, = 9
(Fig. 1). Such behaviour (DW instability as precursor of a %ulk
instability) appears to be a generalphenomenon in lattice dyna-
mics as discussed by Lajzerowicz and Niez /97.

A w Fig. 1 Phase transition in a
bulk Tattice-dynamical DW. The bulk
PT at gy = g7 is associated with
w Q a soft phonon of frequency
.~ 2 wagﬁk = (g1-92)¥Y2 ; the domain-
wall PT at gy = 9] is associa-
ted with a soft localized
mode of frequency wjge =
(1g,-g,5) Y2
—— 59192
1 g
P 9 :

We close this Section with three remarks.

(i) We see that at the bifurcation point g,= g /2 of the two-com-
ponent DW, the (soft) eigenvalue w? corresponding to the internal
oscillation mode (1.23) of the one-component DW becomes defecti-
vely degenerate in the function space {x(z,t)} (and regularly de-
generate with the GM (1.21) in the function space { X (z)1}). Hence,
at go= g1/2 the soft mode (1.23), i? ={0,sech s} is accompanied
by an algebraic mode ¥& ., = {0, t sath s}. what is the signi-
ficance of the defectiVé“degeneracy of the soft mode? At the bi-
furcation point, the linear part of the restoring force of the
internal oscillation mode vanishes. Therefore, an initial pertur-
bation X% 2(0) = a {0, sech s},given an initial velocity

i? 2(0) ='¢ {0, sech s}, will evolve in time according to a linear
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law X? (t) = (a + vt) {0, sech s} corresponding to a linear su-
perposi%ion of the soft mode and the associated AM, until the mo-
tion is reversed as a result of anharmonic contributions not con-
sidered in linear stability analysis. In other words, the AM des-
cribes in this case the initial stage of the nonlinear oscilla-
tion in the purely anharmonic potential at the bifurcation point
/ 8/.

(ii) Our second remark concerns the space-dependence of the per-
turbations of the DW's. By linearizing Eqgs. (1.2) according to
the ansatz (1.12) we have considered "uniform" perturbations,i.e.
perturbations depending only on the coordinate Zz normal to the
plane of the DW's. Obviously, "nonuniform" perturbations, i.e.
perturbations depending also on the coordinates X and Y in the
plane of the wall, ¥ = X(xX,y,2z,t), may not be excluded a priori.
Their (undramatic) effect, however, may be evaluated easily. Indeed,
the linearized dynamic equation (1.13) is invariant under X- and
y-translations which implies that the (X,Y¥)-dependence of the
non-uniform perturbations may be taken of the form exp [i(F1x+d3Y)]
where gj and g; are the components of a wave vector d lying in
the (x,y)-plane. Thus, the only effect of nonuniform perturba-
tions on the eigenvalue equations (1.15) is the replacement of
d2/dz2 by (d2/d22)-q2, where g2 = q12 + q22. This is equivalent
to a shift of the eigenvalues w? by a positive quantity q2.
Therefore, the nonuniform perturbations have no influence on the
stability limit of the one-component DW.

(iii) We would like to comment briefly also on the title of the
present Subsection 1.2. The linear stability analysis carried out
above is a "dynamic" stability analysis, since it yields complete
information about the time evolution of the perturbations. On the
other hand, the structure equations (l.2) of static (& = 0) field
configurations are just the Euler-Lagrange equations correspon-
ding to the static part H_of the energy functional (1.1), i.e.
for static structures the®functional H_ is stationary. Therefore,
the linear stability of static DW's aﬁhd have been analyzed also
"energetically". The energetic stability analysis only requires
to expand HO [O 2] towsecond order in the static deviations

X1 6(z) from t%é DW 07, (where W stands for I or II),

;. [ 1,2] = H_ [Q¥’2] + MH [ x1'2],and to determine the eigen-

values € of AH_ as function of g; and g,. The DW under considera-
tion is energe%ically stable if no eigenvalue € is negative. The
limit of stability occurs at critical values of g1 and g, where

an eigenvalue ¢ vanishes. This "diagonalization" procedure of the
second variation AHy; of H, leads to the eigenvalue equations
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§ (AH_)
- =€ X1 2 (1.24)

X1,2

where the LHS represents the functional derivative of AHO with re-
spect to Xj; o -

An energetic stability analysis is
in general less powerful than a dynamic one, since it yields no
information about the time-evolution of the perturbations (in par-
ticular on the dynamics of possible instabilities), but the cor-
responding eigenvalue equations may be substantially simpler than
the linearized dynamic eigenvalue equations. The spin-dynamic sy-
stem discussed in Sect. 2 yields an explicit example in this
sense. In the present lattice-dynamical context, however, the
"energetic" eigenvalue equations (1.24) coincide with the dynami-

cal ones (1.15), with € = w? .

2. Domain Walls in Magnetic Systems /10-12/

2.1l. Model and Domain Wall Solutions

We consider in this Section a 1D biaxial Heisenberg ferromagnet

described by Hamiltonian
-

= z, 2 X, 2

H = Zi{—JSi- Si41 ~ AT - <8N}, (2.1}
where J and C are positive constants and A is a parameter satis-
fying A <C such that the S, axis is the easy axis. The hard axis
is along S for A >0 and along S, for A>0. In the classical con-
tinuum approximation one obtains the energy functional

'2 2 2

Els] =< [ (s - as_, - s

= « T laz _ (2.2)

and the equation of motion

> -+ -+ -
= s X (s" + s,.e +tas e ) , (2.3)
XX zZ 2z

3
s

-> -> >2 ;
where s(z,t) = S(z,t)/S, s“ =1, a = A/C <1, the prime indicates
9/5z, the dot denotes 3/3t, and the units of 2,t and E are
[ z] (J/2C);2d (d is the lattice constant), [tl= (2sc)” 1 and
[ E] s2(2Jc)¥2, respectively.

For a <1, the ground states of the system are the do-
mains s = (+¥1,0,0) while for a >1 this role would be taken over
by uniform solutions s = (0,0,%1). The dispersion relation
for the small-amplitude oscillations (spin waves or magnons) in
the domains (*1,0,0),

0l = (marg®) (14D (2.4)
shows that these configurations are indeed linearly stable for
a< 1, and that the first-order PT ("bulk instability") to the new

I

i
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ground states ¥ = (0,0,¥1) occurring at a = 1 is associated with
a soft magnon.

We now consider solitary waves s(z,t) = 8(Z), 2 = z -vt,
connecting the two ground states (*1,0,0) of the system. These
are 180° DW's satisfying the boundary conditions 2 (=) = (*1,0,0).
There are two static (v=0) DW's (plus their trivially symmetric
counterparts) satisfying these boundary conditions. One of them
is the Bloch wall

s, = tanh z, s, = sechz, s, =0 (2.5)
with energy E; = 2, and the other is the Néel wall
1 r
s, = tanh { (1-a) 2z], By = 0, s, = sech [ (1-a) 2Z] (2.6)
. L
with energy E_ = 2(1-a) 2. The widths of these DW'E are given
(in phggical uB%ts) by the expressions 6. = (J/2C)” 2d and 6§, =
(g/2C)"“(1~a)~ + respectively. Therefore, the Bloch and Neel

walls are long-wavelength profiles of the spin field satisfy-
ing the validity requirement of the continuum approximation
(6>>d) only if J>>C or J>> C-A , respectively.

For a # 0, any "intermediate" wall between the Bloch
and Neel wall is a moving DW. These moving DW's may also be given
in simple analytic form /12/. It turns out /12/ that for fixed
a # 0 the poESible wall velocities are restricted to the interval
|v|<|1-(1-a)”2|. For a = 0, on the other hand, there exists a
family of intermediate static DW's which is described by

+
s = ( tanh gz, k, sech z, k, sech z) (2.7)
where the constants k2 3 are subjected to the condition kg + kgzl.

3.2 Energetic and Dynamic Stability

Our aim in this Section is to examine the linear stability of the
Bloch and Néel walls in detail. We start with the Bloch wall, by

representing the spin field in spherical coordinates § = (cos0©
cos¢, cosO sin¢, sin®), where |0|<r/2 and 0<¢<2m. Thus, the wall
(2.5) becomes O_= 0, sind¢_ = sech Z. Linearizing now the dynamic

equations (2.3) around (GB,¢B) according to the ansatz

0(z,t) = GB(z) + 0(z) exp (-iwt)
(2.8)
p(z,t) = ¢B(z) + B(z) exp (-iwt) .,
we obtain for infinitesimal . deviations (a,B) from the wall

configuration the following system of coupled eigenvalue equa-
tions:

(L+a)a = iwB, LB = -iwa ; (2.9)
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where L = -1 + 2 sechzz + dz/dzz. Before we examine the physical
content of these equations, i.e. the dynamical aspects of the
stability, we discuss the stability problem from the energetic
point of view. This is possible, since for static spin configura-
tions the energy functional (2.2) is stationary,i.e. for § = 0
the structure equations (2.3) are obtained as Euler-Lagrange
equations corresponding to the variational functional (2.2).
Therefore, as described at the end of Sect. 1.2, we expand E[ 0, ¢]
to second order in the static deviations (a(z), B(z)) from (@BpB)
and determine the eigenvalues & of AE[a,B] as function of a.

This leads us to the eigenvalue equations

(L+a+e)a = 0 , (L+e)B = 0 . (2.10)

The Bloch wall is stable as long as all en(a)>0 . The limit of
stability occurs at a critical value a, found as the root of
€Eolag) = 0 , where ¢, is the lowest eigenvalue. The corresponding
eigenmodes (o, + Bp) are for €n = 0 solutions of the linearized
equations of motion (2.9) with w = 0 .

We see now explicitly that in the case of the magnetic DW's (in
contrast to the lattice dynamical ones) the energetic stability
analysis is operationally much simpler than a dynamic analysis,
since the energetic eigenvalue equations (2.10) are decoupled,
unlike their dynamical counterparts (2.9)

The system (2.10) admits two localized solutions:

(1) €=0, a=0, B= sech z, which is the Goldstone mode reflecting
the marginal stability of the Bloch wall against translations,

and (2) e=-a,a= sech z, B= 0. Therefore, the Bloch wall is ener-
getically stable against © perturbations for any a<0, but at
a=a_ =0 it becomes unstable with respect to a perturbation con-
nectigg it to the family of static 180° DW's given by (2.7).

A similar analysis of the Néel wall (2.6) shows that this static
spin configuration is energetically stable for 0<a<l and becomes
unstable also at a = 0 with respect to a perturbation connecting
it to the same family of static 180° DW's.

Let us now return to Egs. (2.9) with the aim to eluci-
date the normal-mode dynamics of the DW instability at a=0. The
dispersion relation (2.4) shows that the domains connected by the
walls under consideration are stable above the bulk-PT point a=-1.
Having in mind the lattice-dynamical example discussed in Sect. 1
one might expect (compare Figs. 1 and 2) that the instability of
the Bloch wall at a=0 is associated for a#0 with a localized dy-
namic spin mode (a(z,a),B(z,a)) corresponding to a frequency w(a)
whose square is positive for a<0 and negative for a>0, such that
for a+0, w(a) goes to zero and (a(z,a),B(z,a)) approaches the
static instability mode (sech z,0). This is, however, not the
case. In the present model, the non-existence of such a soft lo-
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calized dynamic spin mode can explicitly be proven, since the sy-
stem (2.9) may be reduced to trivially coupled equations *). In-

deed, by the ansatz a=(1-k)Wo- (1+k)W;, B=(1+k)W, + (l-k)Wq,

where k = (a+2iw) 2 (a-2iw)-*2, the system (2.9) goes over into
(2L +-a+Q)Wo = (2L + a—Q)Wl = —4iwwo ' (2.11)
2 2

where Q= (a” + 4w2)y . It is easy to show that this system ad-
mits localized solutions only for Q=-a, i.e. for w=0, /12/. Thus,
the only localized solutions of Egs. (2.9) are identical to the
static eigenmodes, i.e. the GM (o,B) = (0, sech z) for any a, and
at a=0 in addition the static instability mode (a,B)= (sech z,0).
Therefore, the energetic instability of the Bloch wall at a=0 is
not associated with a localized soft dynamic spin mode. The nor-
mal-mode analysis of the Néel wall leads to a similar result.

How can the absence of a soft mode be reconciled with
the existence of an instability? As we have shown, the family of
intermediate static DW's (2.7) bifurcate from the Bloch wall at
the critical field a=0. On the other hand, any infinitesimal ©
deviation from the Bloch wall leads for any value of a to a DW
moving with infinitesimal velocity /12/, except for a=0 where it
connects to a static DW with infinitesimal k3. This result sug-
gests that in the present problem the role of the soft eigenmode
is taken over by the 0 perturbation which carries the static DW
into a moving one, and the role of the soft-mode frequency is ta-
ken over by the resulting velocity change. The "softening" of the
velocity change dév at the critical value ac.=0 may be seen explici-
tly by calculating §v produced by a perturbation with maximum de-
viation 80, as function of a. The simple and convincing result is

§v/8§0, = a (Fig. 2). Cq s
This picture is confirmed by a more careful stability '
analysis. Instead of making the exponential ansatz (2.8), we li-

nearize the equation of motion (2.3) for deviations da(z,t) and
B(z,t) from the Bloch wall, with arbitrary time dependence. In
this way, in addition to the Goldstone mode (dj,B;) =_(0, sech z)
we find a nonexponential solution &2 = (v/a) sech z, Bjp=

-vt sech z, the "algebraic mode" of the DW. For a#0 , v#0 , this
mode describes a DW moving with infinitesimal velocity v. For
a*0 , v»0 , v/a finite, it reduces to the static instability mo-
de (a,B) = (sech x, 0).

*) We want to emphasize that the possibility of decoupling of

Egs. (2.9) is an accidental property of the model discussed. In
other cases of physical interest, e.g. for a planar ferromagnet

in an external field /13,14, the dynamic eigen_value equations
can not be decoupled, and thus the energetic stability analysis
represents the only source of analytic information about the soli-
ton stability.
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Fig.2. Phase transition in a magnetic DW. The bulk PT at a = 1 is
associated with a soft magnon of frequency whlYlk = (1-a)¥2 ; the

domain-wall PT at a = 0 is associated with a soft velocity change
Sv/88g = a

We close this Section with a brief discussion of the
nonuniform modes of plane DW's in 3D magnets. Similarly to the
case of the lattice-dynamical DW's the (x,y)-dependence of the
nonuniform perturbations of the Bloch wall may be taken of the
form expl i(gyx + gpy)]l, where g; and g, are the components of a
wave vector ¢ lying in the (x,y)-plane. Thus the only effect of
the nonuniform perturbations on the ei?envalue equations §2.9
and (2.11) is the replacement of L by* L—q2, where q2=ql +go“ .
As a consequence, the system (2.11) admits localized solutions
only for Q = 2g%-a , i.e. for w2 = q2(q2-a) . We see, therefore,
that in a real 3D ferromagnet the Goldstone mode is connected to
a branch of corrugating modes which for small g are unstable for
a > 0 and stable for a < 0 (Fig. 3).

*) This is now only valid if the contribution of the magnetosta-
tic interaction to the total energy densit¥ may be replaced by a
term proportional to the hard-axis part as4 of the anisotropy
energy. This is exact for the unperturbed BW and for uniform per-
turbations, and is a good approximation also for nonuniform per-
turbations with wave lengths large compared to the DW thick-

ness /15/.
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Fig.3 Frequencies of the nonuniform wall modes as functions of
the wave vector in the wall plane for a lattice-dynamical DW (a)
and a magnetic DW (b)

Fig.3 demonstrates the different dynamical behaviour
at a DW phase transition in a lattice-dynamical DW and a mag-
netic DW. In the lattice-dynamical case there exist two low-
lying branches, the Goldstone.,branch w2 = g2 and an internal -
oscillation branch w2 = gl + 391 T 9, and the DW phase tran-
sition is associated with the softéning of the latter. In the
magnetic case there exists only a single branch, the Goldstone
branch w? = g2 (q? - a),which becomes destabilized at g# 0 for
a>0. At g=0, the DW phase transition shows only in the algeb-
raic mode, giving rise to the softening of the velocity change.
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