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UNIVERSALITY IN THE KINETICS OF FIRST-ORDER PHASE TRANSITIONS

M. Droz, Département de Physique Théorique, Université de Geneve,
CH-1211 GENEVE 4, Switzerland

Summary : The problem of the existence of universality classes in the kinetics
of first order phase transitions is considered in view of the latest theoret-

ical and experimental results.

1. Introduction

The kinetics of first order phase transitions studies the dynamical evo-
Jution induced by a sudden change of external thermodynamic parameters in a
system which exhibits a first order phase transition. Let us illustrate the
problem on a simple example, the binary alloy A - B. The phase diagram of
this system is drawn on Fig. 1. The states above the coexistence curve are
homogeneous. Below the coexistence curve, the spinodale line divides the states
into metastable and unstable ones.

One considers the following process. An alloy of a given concentration c¢
prepared in a homogeneous state (i.e. at temperature T1) is' suddently
quenched at a temperature T2  below the coexistence curve in a far from
equilibrium state. This system will evolve to reach eventually a new equilib-
rium state in which it is formed of two phases, one rich in A (concentration
CA) , the other rich in B (concentration cB) . What is the dynamical evolu-
tion between the initial and final equilibrium states is the question one would
like to answer.

Transmission electron microscope experiments show that two different sit-
uations occur. A metastable system phase separates via the birth and growth of
droplets and one speaks of nucleation process.An unstable system phase sepa-
rates via the formation of a finely dispersed precipitate which gradually
coarsens. One speaks of spinodal decomposition. In both cases, it is suitable
to distinguish two distinct regimes : the early and late time regimes. The main
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features of the dynamical ewvolution for all cases is summarized in Table 1.
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Figure 1 : Phase diagram temperature-concentration for a binary alloy. C
is the coexistence curve, S the spinodale line. M and U

are respectively the metastable and unstable states.

Note that the hamogeneous nucleation and the spinodal decomposition are
just two asymptotic limits of a same phenomenon. Indeed, the spinodale line is
a mean-field concept and thus one should observe a smooth crossover between
the two limit cases when one varies continuously the concentration of the alloy.
Note also that the hamiltonian describing the static properties of the binary
alloy can be mapped onto the one of an Ising system. Working at fixed concen-
tration means in Ising terms working at fixed magnetization.

A very important quantity accessible to experiment is the nonequilibrium
structure factor S(q,t). Experimentally one finds that after a transient
time to following the quench, S(q,t) scales according to [1,2] :

Sg,t) = 1 (e)Fix(t)] (1)

where x(t) = gL(t) and d is the dimensionality of the system. Thus the
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Table 1

M. Droz H.P.A.

HOMOGENEQUS NUCLEATION
(dynamical evolution of a metastable
state)

SPINCDALE DECOMPOSITION
(dynamical evolution of an unstable
state)

EARLY

TIME

Localized droplets with finite size,
needed to initiate the phase
separation.

Instability towards large localized
fluctuations.

Finite activation energy.

Critical droplet radius Rc'
Droplets with R < Rc shrink and
with R > Rc grow.

- Spontaneous formation of a finely
dispersed precipitate (inter con-
nected pattern).

- Instability towards small and long
wave-length fluctuations.

- No activation energy.

TIME

Growth of the droplets of the
minority phase.
Well defined droplet interface.

— Growth of the interconnected pat-
tern.

- Formation of well defined inter-

faces
problem is characterized by one lenght L(t). Eg. (1) expresses the self-
similarity observed in the coarsening of the pattern. Moreover, L(t) behaves

for large times as

L(t) mA +BtU[1 +t T+ ...]

(2)

The exponent n is called the growth exponent and characterizes the long time

behaviour of L(t).

In view of what we know from the theory of critical phenomena, it is a

natural question to ask if there exist or not some universality classes for these
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far from equilibrium phenomena. If universality holds what are the parameters
which define an universality class. The theoretical problem one has to face
is to compute from first orinciples the structure factor. This is a difficult
problem. The main approaches will be briefly reviewed in the next section.

2. Theoretical Approaches
Three types of approaches have been used for this problem [1] :

2a. The semi-microscopic approach

The microscopic degrees of freedom (i.e. the local concentrations c, or
the local spins si) interact with the heat bath. The evolution is given in
terms of a master equation for the probability P{c,t} that the configuration

c = {ci} is realized at time t, namely

d Plc,t} = -Zm(c,c')P(c,t) + Elm(c',c)p(c,t) . (3)
c c
Most of the physics is contained in the transition rate w{c,c'). This rate
can be chosen in such a way that the order parameter (i.e. the concentration
or the magnetization) is conserved or not conserved. This leads respectively
to the well known Kawasaki [3] or Glauber [4] dynamics. The structure factor

is given by

'§ij (t) = 'I(':r{ (c; = <ej>) (e = <c;>)Ple,t)] . (4)
The equation of_ moticon for gij (t) follows from (3). It turns out that, ex-
cept for a special choice of w in the one dimensional case with non con-
served order parameter [4], the equation of motion for gij (t) is not closed.
Higher order correlations are involved and one has to face an infinite hier-
archy of equations. Accordingly, there is no analytical solution to this prob-
lem.

Different approximations have been proposed. In two dimensions, an ad hoc
real space renormalization group method leads to reasonable results for the
Ising model [5] but its applicability to other models is questionable [6]. The
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most widely used technique to compute the structure factor in this semi-micro-
scopic framework is the Monte Carlo method [7]. However, this technique is not
free of difficulties. Different values of the growth exponent can be obtained
by using different spin updating in the Monte Carlo simulation [8,9].

2b. Phenamenological cluster dynamics

In this less microscopic approach, one considers the time evolution of
n(2,t), the average number of clusters of size £%. This is a generalization
of the celebrated Becker-Doring theory of nucleation [10]. We shall not dis-
cuss this phenomenological approach in details here (see for example [11]).

2c. Semi-macroscopic approach : field theory for coarse—grained variables

Instead of looking to the problem on a microscopic scale, one considers
coarse—cgrained variables c(;(,t) . The c(gz,t) are obtained by averaging
the microscopic variables c; over domains of size D of the order of the
correlation length & of the system. The description is thus semi-macroscopic.
The coarse-grained free energy functional F{c(:_z) }, describing the equilib-
rium properties of the system, could in principle be camputed from the micro-
scopic hamiltonian [2], but one seldom is able to perform explicitly this
procedure. One rather assumes a phenomenological Ginzburg-Landau form for
F{c(:;)} such as to reflect the physical properties of the microscopic model,

i.e. the presence of a phase transition at Tc. Accordingly,
Fle@} = JdRE T’ + £(0)] (5)

where f(c) isan one well potential for T > Tc and a two well potential for

T < TC. R
Through the coarse-graining process, the dynamics of the field c(x,t)

is now given by a non linear Langevin equation [2]. Here again, the various

conservation laws should be taken into account. Two particularly simple models,

corresponding respectively to a non conserved or conserved order parameter,

and called "model A" and "model B" in the literature [12], are character-

ized by the following Langevin equations :
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atc(i,t) = -M —‘:f—— + E(X,t) (6)
’ @ sc(x,t)
-
where <E(x,t)> = 0,
> > -+ >
<E(x,t)eE(x',t")> = —2kBTMd6(er')6(t—t') (7)

M' for model A
and M = (8)
a

MVE for model B
X

The binary alloy is thus described by model B. In this case, the equation of
motion for the structure factor is [2]

(2)

2 2 2
dts(qlt) = -2Mg [Kg~ + fO 1S{g,t) + ZKBTMJ +

+ 3 1), ( S (q,t) (9)
n>3
where Sn(q,t) is the Fourier transform of <§ (n D& (x,t) 60(0 t)> with

sc(x,t) = c(x,t) - <c(x,t)> and f(n)

(3"€/3c )eq.

Again, the equation of motion for S(g,t) 1is not closed. Higher order
correlation functions appear. A general solution is not possible and one has
recourse to approximations. Two regimes should be distinguished : the early
time and late time regime.

Note that a description of the dynamics in terms of non linear Langevin
equations has been widely used in the framework of the critical dynamics when
approaching TC fram above. It turns out that in this case, the universality
-classes are characterized by [12] :

- the dimensionality of the system d

- the number of components of the order parameter n
-~ the symmetry of the model

- the conservation laws

- the "hydrodynamic modes".

This could give same clues about the universality classes for the first order
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phase transitions.

3. Early and Late Stage Approximations

Let us return to the simple case of the binary alloy, or the Ising model,

and discuss some important approximations.

3a. Early stage approximations

The simplest approximation consists in neglecting the non linear terms in
the equation of motion (9) for S(g,t), keeping [13] or not [14] the noise
term. The main feature is that the structure factor initially grows exponen-—
tially with time for all g smaller than a critical value q.- Such an ex-
ponential growth is only correct for very early times. The only reasonably
successful early time theory of spinodal decomposition which treats the non
linear dynamical effects is due to Langer, Bar-on and Miller [15]. Their theory
is a particular truncation of the exact equation of motion (9) which is plau-
sible but not systematic. The higher order correlation-functions Sn are ap-
proximatively expressed in terms of S and of the moments of the one point
distribution functional P1{c,t}. With the ansatz that P‘I is the sum of two
Gaussians, the calculation of S(q,t) is carried out numerically. It turns
out that this approach quite satisfactorily explains the main qualitative
features of the early time development. However, focusing on long wave-length
instabilities, this theory is not able to describe nucleation and growth.

3b. Late stage approximations

For late stages, the interfaces between phases are well defined and
gently curved. Accordingly, it is natural to look for a description in terms
of dynamics of interfaces. At great deal of effort has been recently devoted
to the dynamics of interfaces for a system whose order parameter is non con-
served (model A). These works are based on the so-called kinetic drumhead
model. A deterministic version of this model was first derived by Allen and
Cahn [16]. They showed that the normal component of the interface velocity is
simply given by :

v = KM'T (10)
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where T is the mean local curvature of the interface, which is acting as a

driving force. The average domain size is L(t) ~ t1/ 2 and thus the growth
exponent is : ‘
n=1/2 (11)

in good agreement with experimental results for 2 and 3 dimensions.

A non deterministic version of this problem has been worked out by
Kawasaki and Otha [17]. Several developments of these works have been perfor-
med. Otha, Jasnow and Kawasaki [18] obtained an approximate solution of the
Allen—Cahn equation in d-dimensions. They derived an explicit form for the
structure factor in 2 and 3 dimensions which is in reascnable agreement with
Monte Carlo studies of the kinetic antiferromagnetic Ising model. The scaling
function F depends explicitly on the dimension d. The role of the thermal
fluctuations on the interface dynamics has been considered by Grant and Gunton
[19]. There is campetition between the flattening of the interface due to the
driving force associated with the curvature and the roughening of the inter-
face due to thermal fluctuations. This leads to a slowing down of the growth
process. However, this slowing down does not show up in the growth exponent but
only in the amplitudes. Note also that all the above works do not treat prop-
erly the non linear aspect of the problem.

In the case of a conserved order parameter (model B), one has one of
the few reasonably well established theoretical result. The late stage growth
of droplets in the case of a small initial supersaturation has been solved by
Lifshitz and Slyozov [20]. The growth exponent in this case is :

n=1/3 . (12)

This value is in good agreement with some experiments in 2 and 3 dimensions.
The above results show how the conservation laws and the dimensionality
enter into the determination of the growth exponent. However, only the case
of an one component order parameter was considered until now. Many questions
remain unanswered such as : what is the role played by the number of compo-
nents of the order parameter (i.e. the degeneracy of the ground state), the
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depth of the quench, the presence of disorder in the system ?

4, Recent Developments

We briefly review what is the present situation concerning the above

questions.

4a. Degeneracy of the ground state and depth of the quench
An old phenamenological argument due to Lifshitz [21] and rederived more

recently by Safran [22] claims that if the degeneracy p of the ground state
is too large, there is a slowing down of -the growth mechanism due to the pin-
ning of the vertices formed by the intersections of interfaces. More quanti-
tatively, it is predicted that if p >d + 1, then L(t) ~ &nt. This predic-
tion has been tested by Monte Carlo simulations in two dimensions. For g-state
Potts model on a triangular lattice no pinning has been observeci and the
growth exponent vary smoothly from n = 1/2 for g=2 to n=~0.42 for
q > 26 [23]. For the same system on a square lattice, the results are similar
to the triangular case for a quench at a temperature T > 70.5‘1‘0. For
T < ().5’1‘c pinning is observed [24]. The situation is somehow similar for the
N-state clock model [25]. However, it is yet not clear if there is pinning or
not at low temperature. o

Recent studies on classical xy model with anisotropy (for which p = 4)
lead to the introduction of the concepts of "soft wall" or "hard wall" between
phases [26]. This would lead to two different universality classes related to

the rigidity of the interfaces. The situation is thus still very unclear.

4b. Quenched disorder in the system
Recent Monte Carlo simulations for 2 -dimensional Potts models with quen-
ched disorder [27] have shown that the characteristic lenght L(t) was grow-

ing for intermediate times similarly to the pure case. However, for large time,
the interfaces get pinned by the quenched impurities and the growth mechanisms
stoos.

In conclusion, we see that many questions about the universality classes

in kinetics of first order transition are unanswered. The reason is that we do
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not have yet a good and camplete theory to explain the (real or numerical)
experimental results. Only asymptotic predictions (early or late stage) are
known. All theories assume that for late stage the growth is finally dominated
by one mechanism. However, a worse situation could happen. Recently, Fukurawa
speculatively suggested a possible chaotic competition between various growth
mechanisms [28]. It results corrections to the growth exponent similarly as
intermitency does in turbulent flow.

Even in the simplest case in which one mechanism finally dominates, it
would be crucial to know when one has reached this asymptotic regime. Thus, it
would be of great interest to know how one crosses over from the early stage
to the late stage.

At lot of work remains to be done but progress is slow due to both the

non linear and non equilibrium character of the problem.
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