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SPACE-TIME COMPLEXITY IN SOLID STATE MODELS

A. R. Bishop, Theoretical Division, and Center for Nonlinear

Studies, Los Alamos National Laboratory, Los Alamos, NM 87545,
USA

1. Introduction

In this Workshop on symmetry-breaking it is appropriate to
include the evolving fields of nonlinear-nonequilibrium systems
in which transitions to and between various degrees of "complex-
ity" (including "chaos") occur in time or space or both. These
notions naturally bring together phenomena of pattern formation

and chaos and therefore have ramifications for a huge array of
natural sciences [1,2] -- astrophysics, plasmas and lasers,
hydrodynamics, field theory, materials and solid state theory,
optics and electronics, biology, pattern recognition and evolu-
tion, etc. Our particular concerns here are with examples from
solid state and condensed matter.

We emphasize three general points: (1) As has been said
about many-body physics, "more is different" -- not just quanti-
tatively but qualitatively. This is equally true of the subject
of chaos. The elegant developments [3] of recent years under-
standing classes of one-dimensional maps is extremely important,
motivating as it does hopes of "universal" scenarios for transi-
tions to chaos. However, much remains to be understood -- e.g.,
how to characterize the qualities of the chaos itself and how to

incorporate realistic many-degree-of-freedom systems into low-

dimensional maps scenarios. One response has been to merge the
complementary faces of strongly coherent ('"soliton-like") space-
time structures with intrinsically incoherent chaotic notions
[1,2]; (2) The last remark leads directly to the observation
that spatial pattern formation (as a typical quiescent precursor

to chaos) and low-dimensional chaos are frequently intimately

related, with strong remnants of the coherent structures
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persisting in the chaotic regime and the associated collective
coordinates providing (at least conceptually) a basis for mode
reduction. We frequently refer to "self-organization" and to
"coexisting coherence and chaos" and these are usually important
to tramsport and predictability. Complexity in space-time is an
appropriate concept also because it is becoming increasingly
clear (see below) that space and time should be placed on a com-
mon footing and partial differential equations, cellular auto-
mata and coupled map lattices viewed in a unified manner. In
particular, mappings to higher dimensional equilibrium

(Hamiltonian) systems with competing interactions (leading to

inhomogeneous ground states, i.e. long-time attractors) appear
to be a unifying key [2]; (3) Finally, we emphasize our belief
that condensed matter materials, and models thereof, will play
an increasingly central role in studies of space-time complexity
-- because of the great variety of laboratory scale, highly con-
trolled materials which are available. There is of course
direct practical importance for, e.g., device performance, but
these are also accessible stepping stones to probing far more

general issues of space-time complexity. Imaginative experi-
mental designs in the condensed matter field are now expanding
rapidly in number [4]. Of special interest is the availability

of controlled, reproducible reduced-dimensional materials --

e.g. polymers, quasi-one and two-dimensional materials, layered
compounds, surface structures, artifically structure materials
(e.g. by molecular beam epitaxy). Such real systems provide the
basis for probing true space-time competition but without yet
facing full three-dimensional turbulence.

Our own recent concerns with solid state models exhibiting
space-time complexity have focused on three separate kinds of

contexts. First, we may consider purely structural disorder in

classical equilibrium Hamiltonian systems with competing (incom-

mensurate) interactions or periods (the analogue of purely tem-

poral problems with two or more incommensurate frequencies).
Such competitions are now appreciated to occur in a large

variety of solid state materials. They are responsible for
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ground states and free energy minima which are spatially inhomo-
geneous. Very familiar experimentally-observed examples are [5]
commensurate-incommensurate phase transitions where the incom-
mensurate phase is a distribution of kink- or domain-wall-like
"discommensurations,”" which may be regularly distributed in a
superlattice or locally-pinned (e.g. by lattice discreteness) in
an irregular ("chaotic") metastable configuration. Much is now
known, both experimentally and theoretically, about such "frus-
tration" problems but much remains to understand -- particu-
larly, large amplitude dynamics or the introduction of several
competing length scales (see section 2).

Second, we have examined [1,2] a range of classical space-
time dependent systems corresponding to nonlinear partial dif-
ferential equations (p.d.e.s) or coupled systems of large num-
bers of nonlinear ordinary differential equations. Since much
of condensed matter modeling is built around nonlinear oscilla-
tors, we have concentrated on systems such as driven, damped
(i.e. non-Hamiltonian) sine-Gordon equations with various
boundary conditions and in one and two dimensions. These are
representative of many quasi-one- and two-dimensional materials
[1,2]. Such studies fit into the growing field of perturbed
p.d.e.s motivated by many different physical problems [1-4,6].
It is increasingly appreciated that there are typical ways that
space-time complexity (attractors such as space-time intermit-
tency) is manifested. This begins to unify behavior not only in
classes of p.d.e.s, but also cellular automata and coupled map
lattices [1,2]. We have reviewed results on classical space-
time complex systems elsewhere [1,2]. Here we recall only two
general lessons: (i) both localized (~ "solitons") and extended
(~ "radiation") modes almost are always involved in the transi-
tion to chaos and the chaotic evolution; and (ii) synergetic
mappings are now becoming apparent between p.d.e.s and cellular

automata and higher-dimension equilibrium Hamiltonians [2,7].

The effective Hamiltonians exhibit competing interactions and
this provides the conceptual basis for "inhomogeneous" space-

time attractors as in the purely spatial chaos mentioned above.
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Third, solid-state physics can provide [8] some interesting
new quantum Hamiltonian models with which to study the poorly
understood concept of "quantum chaos", i.e. quantum and semi-

classical behavior in integrable and nonintegrable quantum
Hamiltonians (see section 3).
2y A Model with Three Competing Lengths

The simplest description of incommensurate solid state the
structures is based on a one-dimensional Frenkel-Kontorova model -
with free energy [5,9]

N
z

rry
H

2 (V(UL) + W(U 1-U.) - u(Ug-Upd (1)

where W is the nearest-neighbor interaction potential between
particles each of which moves in a nonlinear local potential V,
e.g. V(U) = cos U. {Ui} are, e.g., displacements and p is a
chemical potential. Usually W is taken to be a harmonic spring,
e.g. W= (Ui
There are a number of variations on this basic model which may

+1-Ui-£)2, with equilibrium lattice constant £.

be important. One is to include non-convex interparticle inter-

actions, which can arise from, e.g., RKKY magnetic couplings. To
be specific we consider [10] an extreme Ising-like form for W:

i+1 - Uj = 29 or g,. (2)
In model (1) with harmonic springs there can be only two incom-
mensurate lengths, £ and 2n. However, with the modification
(2), 215 2, and 2n may all three be incommensurate.

It has been possible to investigate the mean-field states
of the general model (1) and (2) analytically and numerically
and the results are surprisingly complicated [10]. To sum-
marize: (i) Typically, we find many intermediate phases as we
vary p. This is in contrast to results where a uniform lattice
constant is imposed, which predicts a first order transition;
(ii) The average separation between phases forms a partial
"devil's staircase" [9]; (iii) Most surprisingly, the plateaux
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of the staircase occur at certain incommensurate concentrations
characterized by the three lengths, and all of the incommensu-
rate configurations are locked; (iv) The locations of most of
the plateaux can be predicted on the basis of a circle map
(below); (v) If both 24 and 22 are rational with respect to the
2n periodicity of V(U), then a finite number of transitions
occur, all of which are first order. We now briefly describe
some of these features.

A direct (but non-trivial) evaluation of the minimum energy
states provided key input for a constructive theory (see
Ref. (10)). This will be illustrated with 21 and 22 taking the
specific values (y3.5 + 45 - J2 - 2)n and ny3.5, respectively.
In Fig. 1 we show the (free) energy per particle FE/N versus the
"configuration magnetization" M(0 < M < N), with M = 2 o_ and

n
o_ = 0or 1 for Un+1‘Un =4, or 22, respectively. Adding a

f?nite chemical potential term p(UN-UO) = uM simply tilts the
whole function F. Note that FM is (at least very close numeri-
cally) continuous, convex, and has several most prominent sharp
corners. The locations c¢(=z M/N) as a function of p are shown in
Fig., 2 (N =5 x 103). Note that the mean lattice constant

2 = (1-c)21 + cﬂz. We observe a typical partial devil's stair-
case and the magnification [10] suggests near completeness in
some regions. Since ¢(p) (¢ = 1l-c¢) appears to increase mono-
tonically, this supports the convexity of FM' For each state
(step) we can calculate the integrated probability D(v) to find
a particle between 0 and v (< 2rn) with D(v) = N-l z 0(v-Ui

mod 2n). D(v) is shown in Fig. 3 for the configurations {Ui}
corresponding to the corner of Fﬂ (i.e. plateau of ¢c(p)) at

M = 253 (i.e. ¢ = 0.832). Note that the U, are distributed in a
finite number of bands (the non-horizontal lines in the figure)
to which particles are restricted. Furthermore the particle
density within the bands is uniform. These are the primary
observations which permit an analysis [10] based on a trans-
formation from the linear map, T(xX) = x + 2, or 2, mod 2n, to a
so-called "one-circle band structure'.
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Fig. 1 Free energy per parti- Fig. 3: Integrated particle
cle F/N versus mean magnetiza- density D(v) (see text) for a
tion M/N or concentration c, 3-band configuration.
for chemical potential p = 0.
(After Ref. (10).
Fig. 2 Minimizing concentration ¢ of
FM versus B4. Steps are labeled by

y u:y allowed p values (see text) in range
- _ (-2,000, 2,000).
e
o The one-circle band structure
analysis shows [10] that the minimum
“l: L energy configurations should be char-
- = Toow acterized by a set of just four

»

integers p, q, r, s, and this is con-
firmed numerically. These numbers determine the total width of
the bands and mean lattice spacings. The plateaux widths depend
in detail on the form of V(U). For each set of integers p, q,
r, s satisfying certain topological constraints there exists a
one-circle band structure and vice-versa, and the corresponding
configurations are incommensurate with explicit form Ui - U0 =
f(iw + B) -f(B), where f(x) = x(,Q1 - s6)/w + xpb6/2n + g(x), g(x)
is 2n-periodic, 6 = L5219, and B is an initial phase. The wave-
vector of the modulation is w = 2n(}ll + 2nr - s8)/(2nq - pé),

and the concentration of lattice constants L4 is c(p) = [p£1 -
2n Int(p21/2n)] /(2nq-pé) with q = Int(p6/2n) + 1. Note that

there can be several possible wavevectors (which depends on r
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and s as well as p) for a single configuration labeled by p
since the mean lattice constant only depends on p: see
Ref. (10) for several examples.
3. A Quantum Chaos Model

We briefly summarize recent results obtained for the
following 3-spin model [8,11]:

H=1J

" Mw

. {8;°8,41 *osisi, b . (3)

i
Here J > 0, -1 < 0 < 0 and boundary conditions are periodic.
Thus we have a triangle with antiferromagnetic coupling and
easy-plane symmetry for o < 0. The interest in this and similar
models is that we can easily control both "quantumness" p(h ~
), and integrability, because (3) is integrable for o = 0 but
1ncrea51ngly nonintegrable as ¢ decreases from 0. We have used

these controls to study quantum irregular spectra [8], and
associated wavefunctions [11]}, as functions of both nonintegra-
bility and quantumness. In this way we numerically identified:
(i) scaling in the statistical averages of second-order differ-
ences of eigenvalues (i.e. curvatures of E(g)) as S » « (i.e.
the semiclassical regime); (ii) quasi-fractal features in the
level distribution for irregular spectra; and (iii) so called
"fat fractal" [12] properties discriminating wave-functions in
regular and irregular regimes.

Since our aim is to understand semiclassical (S » 1) ana-
logues of classically chaotic and nonchaotic regimes, we briefly
summarize the classical results. (Of course, there is a possi-
bility that the classical limit S = » is a singular point.)
Model (3) is in fact very interesting classically in its own
right: for o # 0 it presents a 4-dimensional phase space and,
by varying o and energy E, a systematic study of Arnol'd diffu-
sion will be possible. Because the coupling is antiferromag-
netic, complex ("chaotic") dynamics occurs at low energies and
the frustration is overcome at high energies. Specifically,
studies of Poincaré surface sections and power spectra show [8]
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Fig. 4: Schematic variation of classically
regular and chaotic regions as E and ¢ are
varied. Hatched and speckled regions cor-
respond, respectively, to "global" and
"localized" chaos. Remaining regions
contain dominantly

regular orbits.

Fig. 5: Quantum energy

levels for S = 22% and

16% (insert) with o = -0.3. Fig. 6: o-dependent quantum
See Ref. (8) for details. energy levels for S = 16% with

that at low energies near the ground state E

E = E/S(S + 1). Fractal diagnos-
tics for the regions indicated are
reported in Ref. (11).

c = -1.5J the phase

space is dominated by regular orbits corresponding to spin

waves. With increasing energy the phase space is still re-

stricted but there are some "ergodic" K.A.M. trajectories, i.e.,

irregular orbits in bounded regions of phase space. Above a

lower "transition energy" diffusion through all phase space

occurs and there is "global'" chaos. Above an upper "critical"
g PP
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energy region, orbits again become regular K.A.M. This senario
[8] is summarized schematically in Fig. (4).

We now ask whether quantum analogues of these various
regimes can be identified. Dynamic quantum properties are
presently under investigation -- for example the quantum
propagator and the energy-dependent diffusion coefficient. Be-
cause of the (numerical) control of both S and o, it has already
been possible to discover new features in the static properties
of eigenlevel distributions and associated wavefunctions. We
briefly mention three properties.

First, the energy level distribution itself, for large S,
already shows [8] evidence of the classically chaotic regimes.
In particular (see Fig. (5)), a "critical” or "crossover" energy
Ec(o) is evident: for E EC, energy levels are irregularly
distributed, whereas for E > E_ steps of well-separated
clustered levels dominate. It is natural to associate the
structure for E > EC with quantized periodic orbits. The co-
existence of band-like and localized energy level regions for
0 < 0 is somewhat reminiscent of Anderson localization [13].
The essential ingredient involved in quantum irregular spectra.
is the avoided crossing (repulsion) of nearby levels -- see
Fig. (6).

Motivated by Fig. (6) and by the success of scaling
theories in Anderson localization [13], we have examined [8] as
our second criterion the local curvatures of the o-dependent
energy eigenvalues, viz.

22E/a02 = [E(o + Ac) - 2E(o) + E(o - ac)l/(ac)2 . (4)

This assesses a sensitivity of eigenvalues to the nonintegra-
bility parameter. Convergence was obtained with Acg = 5 X 10-4
and statistics were improved by averaging over similar energy
ranges (c.f. Figs. (4-6)). The statistical averages grow with
increasing S below a critical (o-dependent) energy (the quantum
analog of Ec) but are essentially independent of S above this
energy. The characteristic trends for large S are most evident

in terms of the dimensionless standard deviation
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g(s) = <(a%E/a0? - <a2E/n0%5)2551/21p 28 002 (5)
where averages <---> are taken in appropriate energy ranges. We

have found [8] strong numerical evidence for a large S scaling
behavior:

g(As/g(s) = aBO) | (6)

Strikingly, the exponent B(o) is > 0 in irregular regions of the
energy level distribution and < 0 in the regular regions, and we
have proposed B(o) = 0 as a promising criterion for the quantum
version of classical chaotic-nonchaotic crossovers: neither the
irregularity of the spectrum E(o), nor the local curvatures for
fixed S provides an adequate criterion.

It is tempting to think of Fig. (6) and result (6) in terms
of "fractals" [3]. One might imagine a successive similarity of
the energy level structure (as a function of ¢) on smaller
scales (> n) as S is increased. 1In fact our third criterion has
focused on the associated wave function structure. We have

found [11] that projected binary patterns of wavefunctions
exhibit a self-similar scaling property for large S, whose
exponent and variation for increasing S appear to connect the
classical chaos with a quantum analogue in a natural way -- the
semiclassical wavefunctions vividly display their integrable or
nonintegrable nature. Technically, true fractal behavior does
not obtain, but rather so-called "fat fractal" scaling recently
proposed [12] for low-dimensional classical maps with chaotic
phase space orbits punctured by holes of K.A.M. or periodic
orbits.
4, Summary

We have advocated our belief [1,2] that complexity (the
symmetry-breaking transitions and the complexities, including
chaos, themselves) in spacetime represents the new, and in many
respects accessible, frontier for dynamical systems research,
succeeding the exciting systematics discovered for low-dimen-
sional maps [3]. Many elements of analysis are involved in this

nonlinear-nonequilibrium field from applied mathematics and
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theoretical modeling to large-scale and dedicated computing and
cellular automata to imaginative experiments. Likewise, the
physical applications occur in essentially every scientific
discipline from biology to astrophysics. Here, we have
emphasized [4] the growing importance of condensed matter and
materials science, which can provide bench-top experiments and
the possibility of real systems in reduced dimensions.

We are indebted to discussions and collaborations with

several colleagues, especially S. Aubry, K. Fesser, and
K. Nakamura.
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