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On the equations of motion of an
N-component charged fluid

By T. Aaberge')

Département de Physique Théorique, Université de Genéve, 1211 Geneve 4,
Switzerland

(2. IX. 1985)

Abstract. We construct equations of motion for a fluid consisting of N charged chemical
components. The basic assumption is that the dynamical vectorfield is the sum of two terms: a
‘conservative’ term, being a Hamiltonian vectorfield associated with the energy function of the system;
and a ‘dissipative’ term, being a gradient vectorfield associated with a family of functions. The
resulting equations conforms to the standard expressions for the equations of motion for such systems.

1. Introduction

According to the laws of thermodynamics, a thermodynamic system is
defined by giving one of the thermodynamic potentials referred to as the energy
4, the free energy f or the entropy §. The theory contains the prescription for the
construction of any of the other two potentials once one of them is known. These
laws tell us moreover, that the entropy of an isolated system is monotonically
increasing during the evolution. Isolated means here that the system is thermally
and mechanically isolated and that there are no external fields. The total energy,
total momentum etc. are thus constants of motion. Clearly, the information about
the nature of the dynamics contained in the laws of thermodynamics is rather
limited. It tells essentially only that it is not a Hamilton dynamics; the dynamical
vectorfield y could however, be a gradient field.

A study of books and papers on thermodynamics [1, 2, 3], reveals that x is
always taken to be the sum of two terms: A Hamiltonian vectorfield x” defined
by the energy function and leaving the entropy invariant, and a vectorfield x“
describing the directed transformation of mechanical and other forms of energy
into heat. Much less is ‘kmown’ about the structure of x© than of y”. One
assumes only that some of its components must have a certain form. In this paper
we will show that these conditions are compatible with the assumption that y© is
a gradient vectorfield constructed from a family of functions 7, the dissipation
function.

The information that goes into the dissipation function is assumed to be

) Visitor; private address: N-5801 Sogndal (Norway).
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contained, partly in a map ¥ and partly in a function r. v which is assumed to be
a submersion describes the dissipation mechanisms that are generally valid
physical laws while r contains the information about the dissipation coefficients of
the particular system under consideration. The dissipation function is then given
asr=roy.

The complete information about the dynamics of a thermodynamic system
could thus be contained in two functions # and r and a map v, where moreover,
y is the same for a whole class of systems. It is clear that if this is true, then the
task of determining workable models by successive trial and error, guesses and
experiments, 1s much simplified. In particular, models simulating the behaviour of
systems close to critical points are more easily obtained due to the results of
singularity theory and catastrophe theory which limits the number of possible
models. From a more theoretical point of view, the additional structure imposed
on thermodynamics by our assumptions and constructions, might become a study
of its own. In fact, one can probably make statements about the dynamics that
are valid for general v and r or classes of u and r. As concerns v, it should be the
object of a study of its own. It may be related to invariance properties under
group actions, and its study may thus a priori be completely dissociated from
dynamical considerations.

Our main motivation for this study has however, been the construction of a
dynamics for multi component systems. Not only does the combinatorial
possibilities introduce complications when one tries to establish the equations of
motion for such systems ‘by hand’ (establish the equations of motion for the
3-body celestial mechanics problem using Newton’s laws and the law of attraction
and compare with the derivation using the methods of hamiltonian or lagrangian
mechanics), but we do not even have any clear idea of what would be the analog
to Newton’s laws when we have mutual interactions between fluid components.
The methods employed in this paper presents a possible solution to these
problems. Due to the different nature of the variables of different classes of
thermodynamic systems, it is not very convenient to give the general theory. We
have thus chosen to consider the class of N-component charged fluids. The theory
is general enough to admit systems described by energy density functions that
depend, not only on the extensive variables, but except for the entropy density,
also on their derivatives to the order gq.

The state space of a thermodynamic system is a Banach manifold B(%),
being represented as a function space over space X =R’ The states thus are
sections y:X— & of a fibred manifold 7:%— X. Moreover, the extensive
observables of the system being functions F:%(%)— R, are represented as
integrals y— F(y) = [, fd’x, where f:J,(§)—R is a function on the g-jet
extension %,(%) of €, i.e. of y and its derivatives up to order q. Now, given
¢, %,(€) is canonically given; moreover, ., is a functor, thus morphisms of & are
lifted by ¢, to morphisms of #,(%) [4]. There also exist functors % between the
category of fibred manifolds and the category of Banach manifolds [5]. However,
presently one does not know which one to choose, i.e. which topology to choose
on B(%) in thermodynamics. Whatever this might be a main part of thermo-
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dynamics can be formulated and a number of formal properties can be studied
using the standard methods of differential calculus on & and #,(%). This is what
we will do in the following. A brief exposition of these methods, and the notation
we will use is found in an appendix to this paper.

To give a detailed account of the content of this paper, we will briefly
describe the construction of x” and € for a one component system associated
with an energy density function u that does not depend on the derivatives of the
extensive density variables, i.e.

u:4—R; (x, s, m;, p, B, D))= u(x’, s, m;, p, B'D")

The assumption is that ‘all’ information contained in y* is already contained
in u. It is well known that the hamiltonian vectorfield constructed for the
conjungate variables (w, p), (P, s), (D, A;) and related to the extensive vari-
ables by

m;=pVw +sV,® = ApA,;
B e 8ijijAk
satisfy the conditions that one puts on y“ a priori. In fact, it leaves invariant the

energy, momentum and mass, and moreover, conserves the constraints V,D’ —
Ap =0 and V;B* = 0. Computing x“ one finds

x7(p) =V, u(x', s, pViw + sV, ® — ApA,, p, D', e%*V,A;)
= —Vi(pv'(. .))
xZw)=—=V,u(..)=—v'(..)Viw —pu(..) + 1AV
x"(s)=Vou(..)==Vi(sv'(. .))
xH(®) = -Vu(. )= —vi( )V -T(.)
xH (D) =Vu(..)=e"*V;H,(..)— Apv'(..)
x7(A;)=—Vpu(..)=—E..)

where V,, = 3,, — V, 3y, etc. denotes the ‘functional derivative’, v’(. .) = 3, u(. .),
u(..)=30,u(..), H(..)=0gu(..) and E’(..)=0p u(..). Thus, for example,
x™ () is obtained from

X (pViw +5V,® — LpA;) = x"(p)Viw + " (Vw)p
+x"(s)V:@ + xH(V,-@)s —Ax"(p)A; - AxH(A)p
Computing this expression and changing variables one obtains
=-V{nv' - ED’ — HB + 8{(—u + m,v* + up + E,D* + H,B*))

The computation of the stress tensor t! depends on the assumption that u does not
depend on x' explicitly. This assumption and the assumption that u is invariant
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under rotations are naturally imposed on energy function densities describing
isolated systems. The invariance condition implies that 8¢, is symmetric in the
indices ij, and thus that the angular momentum is conserved. Notice that the
linear dependence of 7; on A; in the dynamical variables is necessary in order to
conserve the constraint V,D’ — Ap = 0.

The vectorfield ¥ leaves invariant the entropy and does thus not satisfy the
Second Law. In fact, no hamiltonian vectorfield could, since hamiltonian
vectorfields do not possess attractors. We must therefore add to x” a vectorfield
xC that is transverse to the equi-entropy submanifolds and tangent to the
equi-energy, equi-charge, equi-momentum, equi-mass and equi-angular momen-
tum submanifolds. This is not enough however. It can be shown that x”
constructed above is zero on the extrema of the entropy in the constant charge,
energy, momentum and mass submanifolds and thus also on its maxima. y© must
have these maxima as attractors.

To construct < we will first consider the conditions determining the extrema
of the entropy in the submanifolds of given energy, momentum and mass.?)
These are partly determined by the zeroes of the first derivatives (variations) of
the entropy with respect to vectorfields tangent to the above mentioned
submanifolds. The result is

V; 3us(x', u, m;, p)=0

Vi amkS(. 9 .) + C,-]-Zklvl aan(. P .) = 0

V,‘ aipS(. . .) =(
Together with a further extremal condition obtained by variation with local
deformations, we possess a complete set of extremal conditions for the entropy
and are able to show that the extrema of the entropy are equilibrium points for

H . . . . o .

x"'. Returning to our immediate problem, we see that if we let 7 be a family of

functions parametrised by the intensive variables, of the extremal conditions
given above,

(. )(V:B, Vi, Vv)
where 8 =3,s(. .) etc., then, automatically ¥ defined by

x0(u) = Vg = =V, 8y,5

XG(JTL') = VJt[F = _Vi anQiF

x%(p) = Vo ==V, 0y, F
are tangent to the equi-energy, equi-momentum and equi-mass submanifolds.
Moreover if we assume that 7, depends on the “squares” of the extremal
conditions, x is zero on the extremal states of the entropy. The direction of the

evolution is expressed by a condition on r. It turns out however, that in order to
have a vectorfield x© that leaves invariant the angular momentum also, we must

>)  We assume for simplicity that we have no charge and no fields.
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put further conditions on 7, In fact, 7 , can depend only on certain
combinations of the extremal conditions. In other words,

FCy=Te )y

where vy express the map defining these combinations. References to the
literature on the subject can be found in [6].

2. Definition of the system

The local observables of an N-component charged fluid are functions on the
g-jet extension ¥,(%) of the fibred manifold

%u = {(xi) Sns Tni> Pn Di’ Bl) € RB X er X R?’N X Rj-:{ X Rs X R3}
where the fibration is defined by

€.—>X; (X, Sn Wi Pu, D', BY) > (x)
1.€. _

jq(%u)_) {(xi’ Sihs swmy Bi, Sn,z') Py Bfi: “eey Sn,ilmiq’ T Bfi]miq)}
Thus, the extensive local observables of entropy-density s,, momentum-density
7, and mass density p, of the nth component, electric displacement D* and
magnetic polarization B’ are represented by the functions #,(%,)—> R

§,(x% 5,y .. ) =35,

ﬁu'm'(. § .) — .n'm'

Pn(. . ) = Pn
Di(...)=D¢
Bi(...)=B¢

By construction, these function constitutes a set of coordinate functions for the
fibers of &,. We will however, also need to consider the local extensive
observables of total entropy density, total momentum density j;, total mass
density p, total angular momentum density /; and total charge density g which are
given by the functions
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— kl_j?
LG . )= eud®i(.. )
N
q(...)= 2 A
n=1

where € and J are the usual summation symbols and A, is the unity of charge on
unity of mass of the nth component.
It is assumed that the constraints

&=0 and a4=0

are satisfied for

N
&I}1(gu)_) R, ()'_)D:: - Zl A'npn

i: $.(%8,)—R, ()~ B

The constraints express two of Maxwell’s equations.
According to the laws of thermodynamics, a thermodynamic system is
uniquely defined by its energy function, i.e. in this setting by the energy-density &

i:g,(%)—R

If the system is isolated, then i is homogeneous i.e. J,iii =0, and invariant under
rotations. In any case, we assume that & does not depend on the derivatives of
Spy VS, = 8s,01.%)

To a given set of extensive observables we have a corresponding set of
intensive local observables. In the given representation these are the temperature
T,, the velocity v;, and chemical potential u, of the nth component, the electric
field strength E; and the magnetic field strength H;. They are represented by the
functions $,(%,)— R

T.()=3,a()
P()=V, a()
() =V,,a()
E(.)=Vpa()
ﬁ;() = Vgi(.)

for a system described by the energy density function . # is said to be the
potential function in this representation called the energy representation.

Since 7, = 3, i >0, the map

Pus : Fq(u) = Fo(&;)

3) Vs = as - Vi as,,- + Vivj as!,j e
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where

={(x', u, Oy, i, P, D', BYeR*XR XR¥ 1 x--- xR?
=>s, m=1,...,N—1
n=1

is a diffeomorphism. On &, u appears as a coordinate function and s as a
potential function.

3. The dynamics

The evolution of a thermodynamic system during a time interval [¢,, t;] is
described by a curve c on the state-space %B(€). c is a generalized solution of an
ordinary differential equation on %(&,), the equation of motion

€= x°Jq(c)
where x denote the symbol for the dynamical vectorfield on B(%). x = x*V,, is
represented as a differential operator on #,(%), its coefficients x“ are functions
on #,(%).

The only explicit assumption on the dynamics usually given is the following
version of the Second Law of Thermodynamics:

f §> f 5, Vi, >t
c(r2) c(h)

e., the entropy is a Lyapounov function for the evolution ¢ of an isolated
system. However, if one looks at standard formulations of thermodynamics, one
finds that these satisfiy stronger requirements. For example:

The Dynamical Postulate. The dynamics of an isolated system is supposed to
be described by a vectorfield y such that

(a) x=x" + x© with
() =V.t¥ and ij(s) =(

(b) (1) x7(2)=V.Ly" and 2 (@) = VL.
(2) X (J) Vk and XG(]) Vk él
3) x"(@)=V. g and y“(p) = V,{;
(4) x"(B") = £"V,L}, and x°(B') = £™V;£5,
(5) 27(3) = V,¢" and x°(4) =V, C;?'
(6) 511@Hk 6kchz and 611 Gk CG:
(7) 2(@) = Va(D*) and xG(q) V(D)

The conditions under (a) express that the dynamical vectorfield can be
written as the sum of two terms, one that conserves the total entropy, and one
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with respect to which the total entropy is a Lyapounov function. The conditions
under (b) moreover, tells that each of the terms are vectorfields for which the
energy (1), the total momentum (2), the total mass (3), the magnetic flux through
any closed surface (4), the total charge (5), the total angular momentum and the
constraint function & (7) are conserved. Clearly, given a priori a dynamical
vectorfield y these conditions may not determine a unique separation of y into
two terms satisfying the conditions under a) and b). In the following we will
however, ‘“construct” a dynamical vectorfield y that satisfies these conditions, by
constructing x and x© separately.

4. The Hamiltonian term y"

Let € be the fibred manifold
%—_-— {(xi,v Waus Pus ¢n) Sny Di: Ai)g . '}"_)X: {(xi) € [R3}

and let w be the symplectic form on the fibres
N
=, (dw, A dp, + d¢, A ds,) +dD’ A dA,
n=1

Moreover, denote by ® the submersion
j 1(%) - (gu

i i
(x > Wn, pn! ¢m Sn» D ’ Air wn,i) pn,i; ¢n,i3 JEAE N Ai,j)
i . ik
—> (x » Sn) pnwn,i + sn¢n,i - A‘npnAi: pn: Dl; EU Aj,k)

The Hamiltonian of a system is by assumption the density
hA =0 qu(q)) :fq+l(g)_> R
obtained by taking the pullback of its energy-density
a:%,(6,)—R
Proposition. The pushforward under ® of the Hamiltonian wvectorfield

(=V,.h V., h, =V, h, YV, h, Vah, —Vph) is the vectorfield ™ whose components
are

25, = —Vi(s,V, 1)

XH(ﬁ'ni) = Vj(”nivn,,ﬁ) ) A ”njvann,-a

| —5,V:V, 0 + 4,0,V il + €340,V AB*
XH(ﬁH) = "Vi(PnVn,,ﬁ)

N
KDY = ™YVt = Y, 1,0,Vs,8
n=1

x(BY) = — ™V, V uth
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Proof. The proposition is proved by direct computation using the formulae
of Paragraph 8. W

Theorem. The vectorfield x™ computed above satisfies the conditions of the
dynamical postulate.

Proof. (a) is automatically satisfied since s is a constant of motion for x*. (b)
is proved by computation and inspection, thus

: N
(1) XH(ﬁ) = _Vt{ Zl (Snvsnﬁ + J'L’njvﬂnjﬁ + pnvpnﬁ)vxmﬂ
+ £ijkVDiﬁVBkﬁ} = V,’Cfi

N
(2) XHGi) = _Vi{ 21 (Jrnivnnjﬁ) + Pl— D'Vpli — BVgil
N

- 55(—:1 + > (T Va, B+ PV, 0+ 5,9, 0)

+ D*V il + Bkaka)} = Vi
where P! is a solution of the equation

V,Pl= 2 (5,V; 8, 8 + my V.V, 1+ p, V.Y, i)

+ D*V, Vit + BV, V gt — V(=0 + Z N
n=1

+ 4 Vs, 8 + pnV,, 0) + D*V el + B*V gei)
i.e. P=P, + P, + P, + Py where each term looks like
pi Oyl
+p"1 ap i—piV;, 3

+pii1i2 apl_lizju _pulvlz ap! z u +pr V a

Pu;

+pii1----iq_1 ap,-,- v ("1)q_1 t'vi1 e V; 4 ap‘ i 1,’2
1 g-1 9=
N
(3) XH(ﬁ) = _Vi Zl pnvn,,,ra = Vin)ﬁ
(4) x"(B') = —"™VV it = ™V, 08,

N
() 27(@) = =V: 3 2p, Va1 = VLS
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(6) holds because # is invariant under rotations and thus a function of
elementary invariants only.
(7) holds. W

The vectorfield x is a generalization of the Euler—Maxwell vectorfield for a
one-component charged fluid [2]. In fact, if n =1 and 4: ,— R is of the form

Slmm; i pi
2p +u0(s)pJDJB)

ﬁ(S, i;, P, Di, Bl) =
then the velocity v’ = 87x;/p, and
Hyg, i j i ij kpl 1 A
(W) =—-vVu'+ 67(E; + g1 v"B") —-;Vj

where E; = Opillg and p = —ily + 5 9,y + p 3, 1.

As another piece of justification of ™ we will show that the momentum-flux-
density tensor is the stress tensor, i.e. the ‘intensive variable’ for the deformation
tensor. Thus, let ¢,, T € (—¢, €) be a flow on R”. It is said to define a deformation
by the map

¢‘v : gu'_> %u) (Sn, .7'L'm-, pn: Di’ Bl) —> (j((pl‘)sn Q (pt’ j(@r) axi(p.;”n]o (pr
J(@)Pn° e, [(@:)(8:9%) D o o, j(9:)(3.007) T B )

where j(¢,) denotes the jacobian determinant of ¢,. The generator of ¢, is easily
determined, it is given by the vectorfield

(Vi(sngi)J 'n'njvz'&j + Vi(ﬂnjgi)’ Vi(pngi): _Djngi £y Vj(Digj)’
—B'VE' + V,(B'E)

where & is the generator of ¢,. A deformation of & is a derivation in the direction
of the above vectorfield. A computation shows that it is given by

_ &ivk jj:_{k

Notice that we have assumed that &' is tangent to the boundary of @ i.e.
@ (0D) =93P V1 €[—¢, ¢

S. The equilibrium conditions

The equilibrium conditions for a given system are the conditions determining
the maxima of its entropy with respect to a certain class of variations 7. The
conditions fall into two classes, the extremum conditions and the maximum or
stability conditions, which will not be discussed here. The extremum conditions
express that the entropy is extremal with respect to the variations by local
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deformations, and with respect to the variations, that leave invariant the total
energy, the total momentum, the total mass, the total angular momentum, the
total charge, the total magnetic flux through any closed surface, and the
constraint function «.

The local deformations are generated by vectorfields of the form

(V,-(u&i), ﬂ"njvigj & Vi('n'nj‘f::i): Vi(ansi)) Vi(pnsi)’ _Divi;:j + Vi(ngi)’

~B'V,E + V,(B'E))
where &' is a vectorfield on X = R? tangent to 39, the boundary of @. To specify
the other vector fields belonging to the class 7, it is convenient to introduce

coordinates corresponding to the conserved quantities. This is accomplished by
the following diffeomorphism

é— 4
(u: ﬂ:m') Gn) pns Di} Bt)_> (uJ ji; pmi: q: P, Un’ nna Di: BI)

where j;, g and p has been defined already and

m m
E Pallm+1 ~ Pm+1 Z Ty
a=1 a=1

pmi =

% D3

Do

1

Nn = 2_1 Pm+1

One then verifies easily that the vectorfields y with components of the form

x(@) =V.L,,

X(fi) = Vi ]"H‘ L™ %y ;’5
¥ Bew) = i

x(q) = VinJ

x(P)= Vigii‘

x(7,) = Xnn

X(ﬁt) ! C; + Sijkvj'wk
X (B i) = EijijCBk

are those which together with the local deformations form the class 7.
The extremal conditions then read

x(&)=0 XET
or in more detail; the variation by local deformations give

1
i(74i) =0
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while the variation in the other directions give

V:0.85§=0
V,-ijf T Ciegkmvmvjls“ =0

Notice that the sixth condition is implied by the fourth. It is thus superfluous and
will be dropped in the following.

Let B, Q), @', ¢, U, T,, v,, e; and h; denote the intensive variables cor-
responding to u, ji, Pmi> G> P> On, Ny, D' and B’ with respect to §, i.e. =
3,8 Q' = V,§, etc. One can relate these to the intensive variables in the original
coordinates in the energy representation. Thus, for example

.3
T
. 1 & puvl 1.,
Q= —— n ”E__Vt
Tngl P T
1/, \
w:n=_§: lm+1 2 ﬁ
n 1w§1pﬂ’

1 .
e =— ?(E, + & V'B¥)
1 .
h;=— ?(I'Iz — &3 V'D")

which are recognized as the inverse temperature, velocity of the center of mass on
temperature, relative velocities between sub-systems on temperature and the
electric and magnetic field strengths in the center of mass frame of reference on
temperature. The expressions for ¢, u and v,, are combinations of chemical
potentials, charge densities, mass-densities and velocities on temperature.

Before starting to look at these conditions we would like to remark that
neither the derivation of the local extremal condition, nor the derivation of the
global conditions has any particular frame reference. This is shown by the fact
that the extremal conditions admit as solutions states that describe a system
whose center of mass move with uniform velocity V. Thus, putting V' =0, an
inspection shows that the extremal states are critical points of ¥, i.e. x is zero
on the equilibrium states in the center of mass frame of reference.
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6. On the construction of the gradient term in the dynamical vectorfield

Let F denote the space of the possible values for the intensive variables in
the entropy representation,

F={(B, Q, @', ¢, v, Tp, Vi, &, h)E - - -}

and let ¢, denote the map

F(&)—>F
W, ji, - . )— (3,8, V8, ...)

The global extremal conditions can then be formally written

BicF1¢,=0

(Ql] + ‘:ikCﬂka) o $1¢p,=0
@' op,=0

(é — ‘13,:)°o¢1¢s =0

S °c,g1¢s = O

n® ¢’s =0

Vn B ¢s =0

(ﬁi,f - ﬁj,i) o $1¢p,=0

Let y: $,%— M denote a submersion such that

D

>

6jk ag,kiwot = 6ik agﬁwrx

B = =85 "

ahi'i'lpa = —ahl.’l_lp“

awqu)a = atn_iwa — av"'iwa = aei,j’l/)“ = 0

for a=1,...,dim#, and let r:#4— R. By pullback with 3 we obtain a
function

F=roy: $,F—>R

We define a family of functions by dividing the variables of 7 into two groups, i.e.
Fig.2,0,0.n)(B,i> ij: @', @.i» Vis Tny Vs €1, hi;)

The gradient of 7(.) is by definition
grad 7)(.) = V,F () = (=V: 8 F, =V; 0aif, . . .)

and y“ is assumed to be given by

xG = grad 7o $,¢,
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Definition. A function 7 given as above and satisfying the additional
conditions

(i) ‘Clausius-Duhem’

j(ﬁ’i p.F(y+ QR 3qif() + 0 Buf(y+ @i 94 F)
Y

N
+0,;8y,¢y+ 2 (T, 05,7y + Vu 00,7 ()
n=1
+e; ae,f(.) + hi,j 8,,”1"'()) °j2¢s d3x =0

(ll) f()(0)=0 and grad F()(O)-:O
(iii) 7 has the units entropy density on time will be called a dissipation
function.

Theorem. Any vectorfield x° constructed from a dissipation function in the
above manner satisfies the dynamical postulate.

Proof. By inspection. W

The map vy is assumed to contain the information about the dissipation
mechanisms, and the function r is assumed to contain the information about the
dissipation coefficients. Presumably 3 should be the same for the whole class of
systems described by the same kind of observables, i.e. as for example the

N-component charged fluids, while » depends on the systems particular physical
and chemical properties.

To exemplify this, let M ={(a,¥v,6,¢ ¢, 0,,, A, 7,,v,)} and let y be
defined by
o =3676,Q4Q,—2p7'Q'B,)
+3Q(Y; - 2B71QB,)
+36961,72Q4QB B, + 3(QB,.)
Q7 - BTIQB QI+ BRI
67B.B,;
A=68"Gvv;— B vu B, + 372V B.B,))
e=06"G(ei— ¢ )e,—¢,)— B 'ole.— ¢.)B;
+387%9°B.8,)
£= 5ij5k1(711(hi,k - hk,i)(hj,l - hl,,-)
— ﬁ_lh.ﬁ k( il hl,]') -+ %ﬁ—z(hiﬁ’khjﬁ,l - hiﬁ,}‘hkﬁ,l’))

=26w w’,

S <
I
S o
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The components of x are then given by
x° (@) =V(6"kV,T + 8, 0"V* + ce®(E; + 1, V¥B' + @ )
+ e e (H; — £,,0V"D)WV(H,, — £, V'D") + Culilh ;)
X GGi) = Vjojkaki
XCBmi) = 8;; 89 _ra’
x°(@) = —V(7cs(E; + &, V'B™ + D))
x°(P) =Vi(8%c,u;)
x°(6,) =3, r
x°(M.)=3,r
x°(D') = —&Ycg(E; + €3, V'B™ + @ )
X G(Bi) = —=V;(cae” e}V (H,, — Emno V" D))
where

0 = N(6“Vix+ Vi = 367VE) + £V,

1
T]='i;8ar

1 2
3 =?(§ 3,1 + 3,r)

1 2
K=(?) dsr

1
CE=?a£r

1
CB=7,8CP'

1
CM=?aAr
®=-T¢

We recognize in x°(i2) and x°(j;) standard expressions for the dissipative part of
the dynamical vectorfield of a viscous fluid [1]. This “proves” that the dissipative
term in the dynamical vectorfield is a gradient vector field and that the hypotheses
on which we based its construction are quite reasonable. The choice of vy is
however, a function of the result we wanted to obtain; it is possible that this
choice can be improved and that one can establish v at least partially by means of
symmetry-considerations etc.
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With the above choice of r(, as a family of functions on /, the dissipation
coefficients are also families of functions on .#. The procedure can be generalized
by assuming that r(y:#,(#)— R. The only change this lead to in the above
expressions concerns the dissipation coefficients; thus, n = (1/T)V,r: £,(M)— R,
etc.

7. Non isolation

In the preceding discussion about the dynamics we have assumed that the
system is isolated. We do believe however, that the basic ideas behind the
construction of the dynamical vectorfield should still be valid if this condition is
abolished.

External action is simulated by ‘non-conservative’ boundary conditions or
external electromagnetic fields. However, formally this amounts to the same
thing, because one can reestablish the standard ‘conservative’ boundary condi-
tions by a map that may be time dependent and induced by a space map, at the
cost of introducing fictive ‘external fields’.

An immediate consequence of introducing an external action is thus to
‘modify’ the thermodynamic potentials, either by a direct introduction of the
external fields, or by the pullback with a map that reestablishes the ‘conservative’
boundary conditions. In either case, both the homogeneity and isotropy of space
is broken, and this will show up in the thermodynamic potentials, as for example
the energy-density. Thus, even if the Hamiltonian term is derived in the same
way as for the isolated system, the conservation laws it satisfies in this case will no
longer all be valid.

As concerns the computation of the gradient term of the dynamical
vectorfield in the isolated case, it seems to be reasonable to assume that this can
be done in the same way as for the isolated case, even if the second law of
thermodynamics is no longer valid.

8. Appendix: Mathematical preliminaries and notations

Let w:€— X be a fibred manifold and denote by #,(%) the g-jet extension
of €— X [4]. #,(%) is a manifold for which there exist canonical fibrations over
$.(€), 7?7 (0<r<gq),E,n§ and X, x° Let (x'),i=1,...,n, denote local
coordinates on X and (x, y*), =1, ..., m, on . The corresponding canonical
coordinates on ¥,(%) are denoted by (x',y%) where B, is a multi-index,
B.=(0,i,...,i,) modulo any permutation, i,=1,...,n, and u=0,1,..., g;
y8,=y%o=y% The dimension ¥,(%) is thus n + m[(g +n)!/q! n!].

The canonical dual bases of the 1-form and the vectorfields on #,(%) are
denoted (dx’, dy% ) and (8x', 3y% ). Another interesting pair of dual bases are
(dx’, w,) and (V;, 9y%,), where

Wfa’def’isu—yi"ﬂmdx"““, u=0,...,n—1
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and

Vl=ai+yﬁ aaﬁ=axi+yﬁ:ay°’+"‘

+1 -y
+ytll lq 180’ i

where we have assumed a generalized Einstein’s summation convention.

The vectorfields x on #,(€) such that w’% (x) =0 are called horizontal
vectorfields. They are ‘tangent’ to X, and of the form x'V,. The vectorfields on
F£,(&) of the form

V,-]---th“ay.%#=x“8ya+v,-ayﬁ+- Vo VX%,
are called vertical vectorfields. They are “tangent” to the fibres of €— X.

A g-differentiable section

7:X—> 8, (x)~ (', y*(x"))
can be uniquely prolonged to a section

]q(‘}/) :Xﬁagq(g)’ (xi)}_) (xi’ ya(xi)x axiy w(xi): vovs Oggn e ax"qy a(xj))
On the other hand, a section j: X— #,(%) is the extension of a section y: X— &
if and only if j, 8, = V;°j,(7); or equivalently, j*wg = 0.

Let x be any horizontal vectorfield and let f: #,(€)— R be any function that

is the pullback of a function §,(%)—R (0=r<g) under the canonical
submersion $,(%)— #,(%). We then have

xX(F)dq(v) = ('Vif) 2 fg(v) = X" jg(¥) 3uif 2ja(¥)
This shows that V; is the total derivative. Moreover, it may be considered as a
linear map of functions with the property that if f:#%(€)—R then
Vif: % +1(€)— R; in particular, V,y% =y% 1.

The exterior differential algebra on #(%) obviously has horizontal and

vertical subalgebras. In particular, the horizontal n-forms (X-volume forms) are
given by

£ L i i
F=F g, et - de
Let y be a section of €— X; then,
f : 1 i i
F(}’)sz:Jf°]q(}/)—!£i1...,-ndx1/\---/\dxn (*)
v X n!

will be referred to as the integral of f over y.

Let B(€) denote a set of sections X— &, endowed, with a differential
Banach structure. A horizontal n-form f then defines a function

F:B(€)—R

by (*), provided the integral exists for all y € %(%).
The exterior differential dF of a differentiable function F:%B(%€)—R is a
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linear form on the vectorfields on %B(%); i.e. x—dF(x), where dF(x)(y) is the
derivative in the direction y at y

1
aF(x)(y)= 1333 3 (F(y +tx)— F(y))
i B gt 1 i i
= fx(ayﬁyf)ofq(y) gy = = ax"#x °]q(Y) ; Eipoeiy dx't A -+ A dx'o

1 . , 3
= jx“Vyafj €;...;, dx"1 A + -+ A dx'» + surface integrals
A n!

where
Vye=(=1)"V, -- 'Vi,. ayfrﬁ =9y« —V, 8y§+ e

A vectorfield on (%) is a symbol and a set of boundary conditions. It will be
assumed in this paper that the boundary conditions forming part of the definitions
of the vectorfields on (&) are chosen in such a way that the surface integrals
vanish. Notice that the symbol for a vectorfield on B(&) ““is” a vertical vectorfield
on $,(%). Part of the differential calculus on %B(%) can thus be deferred to a
differential calculus on the horizontal n-forms by means of differential operators
of the form x“V,.. Thus, the integral of

- 1 _ .
X(f) =xavy“f_ 8;‘1...,' dxiA o Adxhs
n! "
differs from the integral of
1 : .
df(V Vix a)’_s) ay,f,fV zX Eipoi, AXT A+ o+ A dx'n

only by a number of partial integrations making appear vanishing surface
integrals. By abuse of language we will thus say that x(f) is the derivative of f in
the direction y, or write x(f) = df(x). Most of the time we will drop the volume
form and write only x(f) for x“V,«f where f is a function, x(f) is then also a
function. The force of this notation lies in the fact that if a curve c:[t;, t;]— B(%)
is a solution of an ordinary differential equation

¢ =x°jg(c)
on B(€), then x(f) measures the variation of f along c, i.e.
(fojq(c)) =x() °jq(c)

This means that a function f (or n-forms f) is a constant of motion for ¥, if there
exists functions &’ such that

x(f) = V.i&f

To justify the above definitions of differential operators one has to show that
their definitions are invariant under isomorphisms of %,(%) induced from
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isomorphisms of €— X of the form

$:E—>E; (x', y) = (x', 9(x', y)

The isomorphism ¢ : €— & induces an isomorphism

F00: 3(8) > F,(); (', y75) = (& Vi, -V, 9°(x', ¥))
The canonical bases (3x', 8,2 ) and (8x', 3, ) of T ,#, 1€ are related by the
tangent map, i.e. ! ‘
3,2 = (8,2 F)op By + (8,aVip P)op Sy + - - -
+ (azavh e Viq,ltp_l.&) - ¢ ayﬁ-l...i A

aza_ .= (aza i le e qu_l¢—13)o¢ aJ"a

”1'"‘771 "]'"q—l '-’1‘]11—1
The V; in the above formulae is to be considered as

Oy +2z7p,,, 0

z%,
This notation is justified by the following proposition.

Proposition. The local form of V, is invariant under morphisms of the above
class.

Proof. The proof follows from the observation that y’; and z7s, are related
by the tangent map T ¢, ¢, thus, in simplified notation
(Bxi+2,+3,)° £,07 =0 + (T Fy19 - ¥)iT5'Fy-19 - 3,
=axi+y,,-'ay=vi .

Under a general isomorphism $#,(%)— #,(€) which is induced by an
isomorphism ¢ :€— &; (x, y)— (p(x), ¢(x, y)),

Vie £,0 = (34¢)7Y,

Proposition. The bases (V=) and (correspondingly defined) (V<) are related
by

Voo Zy = (3,2¢F) 71V,
i.e. the components of x = x*V,« transform by

x> (B ™)y o Fpp ™

Proof. By computation. W
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