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Abstract. We consider the non-linear diffusion of a single stochastic variable with white gaussian
noise. For the equivalent Fokker-Planck description, we use its mathematical correspondence to the
Schroedinger equation to provide a general recipe for constructing classes of exactly solvable models.
We illustrate our method by considering particular examples: these include diffusion problems in
double barrier potentials with discrete or continuous spectra. We then use these models to discuss the
decay of an unstable or a metastable state in presence of fluctuations. The non-linear decay in such
models is found to exhibit complex behaviour not deducible from a linearization procedure. All the
results are analytic and exact.

1. Introduction

The evolution of systems far from their thermodynamical equilibrium is

particularly sensitive to fluctuations near the unstable equilibria of their equations
of motions. Indeed, it is the fluctuations which either drive the system to its final
stationary state or which are able to produce phenomena of nucleation type
where the final global state is reached by diffusion over an activation barrier. It is

therefore essential to study in detail, various behaviours which may be expected
when an initially unstable (or metastable) state decays in presence of fluctuations.
Such situations find a natural mathematical framework in the study of stochastic
differential equations (SDE) and, when the Markov property constitute a good
idealization, their associated Fokker-Planck equations which describe the evolution

of the transition probability densities (TPD).
One of the basic difficulties occurring in the study of the decay of unstable

(or metastable) state in presence of fluctuations, lies in the fact that the

*) Supported by NSERC of Canada.
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linearization procedures fail to produce reliable approximate results. Indeed, the
TPD's of Gaussian types, always associated with linear SDE with white Gaussian
noise (WGN) fluctuations, never present a multi-modal character which will be

recognised in this paper to be more the rule than the exception even when
relatively short transients are considered. While, when the diffusion in double-
well potential is considered, it is clear that a transition will occur from an initially
delta peaked TPD to a bimodal TPD (according to the scenario discussed by Van
Kampen [1]), it is far less intuitively clear what the behaviour of the TPD will be
in away, purely repulsive monotonie potential (single barrier). This is one of the
questions we address ourselves in the present paper and which we shall discuss by
means of various exactly soluble models.

Our work is organised as follows: In Section 2, we formulate diffusion
problems in one dimension for a fluctuating variable x which obeys a stochastic
differential equation. We use the well-known Feynmann-Kac functional integral
representation of the TPD and its equivalent form consisting of a development
over the complete set of eigenfunctions of an associated Schrödinger problem [la]
to establish elementary results. We use this correspondence to solve exactly new
diffusion problems. The spectrum of these new models is obtained from the
original TPD by a global translation (shifted spectrum dynamics), in which the

parameter ô (see Section 2) provides a tuning for the potential of the diffusion
problem. We then provide a general criterion for the occurrence of a transition
from uni-modal TPD at short times to an even-modal TPD at time of the order of
the large time scale introduced by Kramers [2].

In Section 3, we illustrate the results of Section 2 by considering specific
models leading to simple calculations but which by no means exhaust the
possibilities. We discuss diffusion in asymmetric double barrier potential with
discrete spectrum, diffusion in symmetric double barrier with purely continuous
spectrum and diffusion in a single symmetric barrier which has a continuous and
discrete spectrum. The asymptotic behaviour of these potentials is either
quadratic or linear. Some applications of these models are discussed at the end of
Section 3.

In Section 4, we discuss the decay of initially unstable states in presence of
noise using the models solved in Section 3. We observe that the decay of the TPD
is complex and may, according to the values of external parameters controlling
the shape of the potential, proceed via transitions from an odd (uni-) modal initial
state to an even-modal shape, even when the drift is monotically repulsive (single
barrier). The variety of possible behaviour are summarised in Table I at the end
of Section 4.

In Section 5, we discuss the behaviour of the mean path in the diffusion
problems for asymmetric double (or single) barriers with discrete spectrum (one
of the models introduced in Section 3). For this class of processes, the first
moment takes an extremely simple form which permits us to investigate its
behaviour for any transient time. The first moment corresponds to a macroscopic
order parameter for the fluctuating variable x. Phenomena like boomerang
behaviour or short time stabilization of the mean are observed (see Fig. 4).

In Section 6, the reader will find a brief summary and the conclusions.
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2. Diffusion problems in one-dimension

Let us consider the stochastic differential equation (SDE) of the form:

dx (- — Q(x))dt + y/2dWt

(-2af(x))dt + y/2dWt; aeU, xeU, (2.1)

where Q(x) stands for a generalised thermodynamic potential and dW, is the
white Gaussian noise (WGN) with the statistical properties [2]:

(dWt) 0 (2.2a)

(dWtdWT) ô(\t-r\) (2.2b)

Due to the choice equations (2.2a, b), the stochastic process x(t), the
solution of equation (2.1), is itself Markovian and its transition probability
density (TPD) obeys a Fokker-Planck equation (FPE) of the form [2]:

-P(x,t\xo,0) &P(x,t\xo,0)
at

d_

dx u x"'~ x"' ' '""' ~" '

dx2
2a— (f(x)P(x, 11 x0, 0)) + —2 P(x, t \ x0, 0) (2.3)

with the usual properties:

P(x, 11x0, 0)>0 VxeU, VteU+ (2.3a)

P(x, 0 | x0, 0) o(x -x0) (2.3b)

/
Jn

P(x, 11 x0, 0) dx 1, VteU+, Vx0eU. (2.3c)
R

Now we introduce the notation:

f(x) £[ln(cp(x))]^Ps(x) Ccp-2a(x), (2.4)

where Ps(x) is the time-independent solution of equation (2.3) and C a constant.
From equation (2.4), it is then obvious that:

<K*)>0, VxeU. (2.4a)

The TPD, solution of the FPE equation (2.3), can be written in terms of a

functional integral in the form [3]:

P(x, 11 xo, 0) C<j)~a(x) P dp exp f - f (^- + V(x)) dt},2) (2.5)
Jxo.o I Jo V 4 /J

where the dot stands for the derivative with respect to the time, C is a constant

2) The proper definition of the measure dn is considered in [3]. This integral is the well-known
Feynmann-Kac formula [3].
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which depends on jc0 and the effective potential V(x) has the form:

V(x) a2f2(x)-a-f(x)

-acp 1(x)

dx

ildx2 Hx) + a(a + l)cp~2(x)
d_

dx
4>(x)] (2.6)

In a completely equivalent manner, the TPD, equation (2.5), can be

developed on the basis of a complete set of eigenfunctions of a Schrödinger
problem, namely [la]:

P(x, 11 xo, 0) <p-«(x)ct>a(xo) ^spys(x)Z(xo)

xexp{-[E(s)-E(0)]t}, (2.7)

where 5^(jc) are the J£2(R, dx) solution of the Schrödinger equation:

-^ ST,(x) + [E(s) - V(x)]Z(x) 0 (2.8)

In equation (2.7), the notation f,sp stands for the summation over the entire
spectrum which may contain, when xeR, both discrete and continuous parts.
Furthermore when the stationary state Ps(x) Ccf>~2a(x) is normalizable, the
spectrum E(s) contains the eigenvalue E(0) and the ground state of the
Schrödinger problem reads:

S?o VCct>-a(x). (2.9)

From equations (2.6) to (2.9), we find the following elementary results:

Lemma 1 (Shifted spectrum dynamics). Assume that the TPD P(x, t \ x0, 0) is

known for a particular effective potential V(x) corresponding to the SDE:

d-2a- {In cj>(x)}dx

Then V SDE of the form:

dt + y/2-dW,, X € I

dx -2a6£ {In cp6(x)}] dt + y/2dW„ x e l

(2.10)

(2.11)

where cf>ö(x) is a positive definite solution of the equation:

-a6cp6\x) d?Mx) + aô(a6 + l)cp-2(x) £cpa(x)J V(x) + ô, (2.12)

the TPD associated with the SDE. equation (2.11), is given by:

Pô(x, 11 x0, 0) C0cpa(x)cprô(x)e-s'P(x, t \ x0, 0) (2.13)
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where the normalization factor C6 is:

Cö 4>-a(xo)4>t(xo). (2.14)

Proof of Lemma 1. Introduce equation (2.12) into equation (2.5) and note
that the exact differentials with respect to the time factorise out of the functional
integral; (i.e. each path tube is ponderated by the same factor). Then equation
(2.13) follows immediately.

Finally, equation (2.14) follows from (i) the normalization of P(x, t \x0, 0),
(ii) the fact that:

P6(x, 0 | x0, 0) Q4> a(x)4>r6(x) ó(x - xo)

and (iii) the conservation of probability.

(2.15)

Lemma 2 (Multimodal character of the TPD). Assume that (p(x) cp(—x),
Vx eR and that E(0) in the expansion equation (2.7) is an isolated eigenvalue in
the spectrum. Let AE(s) {E(0) — inis^0 (E(s))} < 0 stand for the smallest non-
vanishing term in the exponential of equation (2.7). Then, for t?$ |AE(s)|_1, the
TPD associated with the SDE equation (2.1), behaves as:

(even-modali
I odd-modal J

sign \ A.E(s) 2cx4> \x)-^cp(x)
x=0

IS
[>0
.<0

(2.16)

Proof of Lemma 2.

cj>(x) <p(-x)^>P(x, t\ 0, 0) P(-x, 11 0, 0).

x=0
Moreover we have: — 0(jc)

dx
origin is (using equation (2.3)):

d2

dx

0. Hence the curvature R of P(x, t | 0, 0) at the

R=^-2P(x,t\0,0) P(x, 11 0, 0) — ln P(x, t\0,0)
x=o tdt

2a<j>-\x)—2<i>(x)
x=0

(2.17)

Hence from the expansion equation (2.7) the assertion follows.

Corollary 1. Assume that P(x, t \ x0, t0) is known and is associated with the

effective potential V(x) as in equation (2.6). Assume further that we have:

limP(x, 11 x0, 0) Ps(x)

with

Ps(x) dx<™

(2.18)

(2.19)
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Hence Vo>0 and cf>0(x)>0 satisfying equation (2.12), the TPD has the form
given by equation (2.13) so that:

limP0(x,t\xo,0) 0, (2.20)
(—»oo

i.e. the stochastic processes generated by cpô(x) does not admit a finite stationary
state.

Moreover, we have in this case, for t > <5_1,

,„ „. (even-modal^

sign \-ô-2a6cpô1(x) rf2,ndA?MX\ J * Co0}"

Proof of Corollary 1. Equation (2.20) follows obviously from equation
(2.13). Equation (2.21) follows from equation (2.13) and (2.7) by noting that the
smallest term in the exponential of the development equation (2.7) is, in this
case, given by ô.

Property 1 (Extended Darboux-Zheng transform [4]). Consider the
Schrödinger equation (2.8) with V(x) defined by equation (2.6). Introduce the
integral transform:

<fs(x) Xa(x)p4>(z)VX) dz. (2.22)

The eigenfunction ips(x) obeys the equation:

È
dx

2ii>s(x) + [E(s)-V(x)]ys(x) 0 (2.23)

where in equation (2.23), the transformed effective potential V(x) is obtained
from V(x), equation (2.6) by the substitution a*-^-a.

In particular, for a l, the case is fully discussed in [4].
Let us close this section by noting that we are pursuing the extension of the

present analysis to vectorial stochastic processes for which the stationary state
obeys the detailed balance condition.

3. Exactly soluble diffusion processes

This section is devoted to illustrations of Lemma 1 introduced in Section 2.
These illustrations are by no means exhaustive but are chosen to cover
representative possibilities.

Models A

Let us choose:

cj>(x) exp{{\x2}; xeU, aeU+ (3.1)
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corresponding to the class of SDE (see equations (2.1) and (2.4)):

dx {-lax) dt + y/2 dWt (3.2)

which is the famous Ornstein-Uhlenbeck (OU) process for which the TPD reads

[la]:

_ V^exp {-a(x- xp exp (-2at))2(l - exp (-4at)) *}
rovyX, l Xo, V) — j—r - vmni/2 W-J>>

(n[l - exp (-4at)\)
In view of equation (2.6), the effective potential V(x) reads for the choice

equation (3.1):

V(x) a2x2 - a. (3.4)

From Lemma 1, we conclude that a class of shifted spectrum dynamics can
be obtained by solving:

'£.
-dx2'¦aôcp6\x) Mx)] + aö(aö + l)4>-\x)

d I2
— <t>d(x)\ =a2x2+ô-a (3.5)
dx J

with:
0a(*)>O, VxeU. (3.5a)

In particular for aö —1, the equations (3.5), (3.5a) admit positive definite
solution [5]:

Ai\-l>XiXrZi)\ ™z2/4
ct>ô{x) e'

where:

z \f2ax
<5>0

and [5, 6]:

\ß\<ßc y/2T(o+i)(T(o))-\

(3.6a)

(3.6b)

(3.6c)

The restrictions equations (3.6b, c) are imposed to guarantee the property
equation (3.5a). The function xF\{a, b, z) stands for the Kummer function [7].
Note that for ß 0, cpô (x) is symmetric whereas a nonzero ß introduces
asymmetry in the function cpô(x).

Therefore, introducing equation (3.6) into equation (2.11), taking into
account that a6 — 1, we obtain the class of dynamics:

dx L2-ln(<Mx» dt + y/2 dW„ x e I (3.7)

for which the TPD reads: (using equation (2.13) with equation (3.6)),

PA(x, t)x0, 0) Pou(*, 11 x0, 0)e'öt

xFx(ô!4a, \, ax2) + ßy/2äx xFx(ô/4a + j \, ax2)

xFx(ô/4a, i ax20) + ßy/2äx01F1(ô/4ar + |, \, ax2,)
(3.8)
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and equation (3.6b) together with corollary 1 of Section 2 implies that

\imPA(x,t\xo,0) 0. (3.8a)
(-»oe

The stochastic process equations (3.7) and (3.8) has been fully discussed for
ß 0 in [8]. This situation corresponds to a symmetric cp6(x). For 0<\ß\<ßc
given by equation (3.6c) c/)ô(x) is asymmetric. Let us briefly recall the properties
of the thermodynamic potential Qô(x) associated with the SDE equation (3.7):

(a symmetric double
barrier) when ß 0, ô < a
(a symmetric single
barrier when ß 0, ô 5= a
(an asymmetric double
barrier) when 0 < ß « ßc, ô < a
(an asymmetric single

_ barrier) when 0 < ß « ßc, ô > 0

(3.9)
Finally V \ß\ < ßc and Vô e R+ we have:

lim Qô(x) -ax2. (3.10)
|j.|-»o=

According to equations (3.9, a), the thermodynamic potential £2;(x) is always
asympotically repulsive which immediately explains the result (equation (3.8a)).

Models B

Let us now consider the case:

<j)(x) cosh (x), aeU+, xeR (3.11)

from which we have, (see equations (2.1) and (2.4)):

dx (-2a tgh (x)) dt + V2 dWt, xeR (3.12)

The TPD associated with equation (3.12) has been calculated in [9] and reads

PVkX, 11 x0, 0) [cosh (x)]-2a{z + [}, (3.13)

n=o nl 1 (2a + 1 — n)
2a+X8n(x) (-l)n2a-nT(-n + a + è)[cosh (x)]

and

f (2^)-x f dpe-(a2+"2>'[i/>(p, x)q(-n, x0) + ip(-pi, x)ip(u, x0)] (3.13c)
¦> JR +
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with:

375

V(p, x) e,>Jccosh (x)2Fx

where 2Fx

— a, a + 1, 1 + tgh(x)
1 + i\i 2

(3.13d)

a, b

c
; z stands for the Gauss hypergeometric function [7].

Furthermore in equation (3.13a) the summation is over

w 0,l, 2,..., Af, a-l<M<a. (3.14)

Hence, from equation (3.14) we see that if a<l, the eigenvalue spectrum is

purely continuous.
According to equations (3.11) and (2.6), the effective potential V(x) is, in

this case:

V(x) -a + a(a + l)(tgh (x))2 j _ a{a + 1)(sech {x))i (3-15)

Now, we use the Lemma 1 of Section 2 to generate a new class of dynamics
by considering equation (2.12) which with equation (3.15) reads:

-aô<p-\x)y—2ct>6(x) + a6(a6 + l)cp-2(x) -^(x)J
a2 - a(a + l)(sech (x))2 + ô. (3.16)

In particular, for aô —l, we calculate in Appendix A, the solution of
equation (3.16), which reads:3)

y + Vô--a2

<Mx) [cosh(x)]-Vô-*2 2Fx 2

i

with the

r

definitions and restri :tions:

-ï T Vi - «i« + 1)>

ae
r« i il
.°'vr2. [0, 0.2C 71 • • •],

-, l-y-yjô-a27
;(tgh(x))2 (3.17)

(3.17a)

(3.17b)

ô>o2>0, (3.17c)

y + \[ô=CA?>0. (3.17d)

The asymptotic behaviour of cp6(x), Eq. (3.17), reads (see Appendix A):

lim 4>6(x) ~ [cosh (x)]vïr^~ exp {Vô - a2 \x\), (3.18)

and from equation (3.16) itself with a6 — —\, we have:

-i r d2 11
4>ô Wl^^MJ =6-a (3.19)

3) For the sake of simplicity, we confine ourselves to the symmetric solution. Asymmetric cases can
also be considered.
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Hence, the Lemma 1 of Section 2 implies that the SDE

dx L2-{ln<Mx)} dt + yj2dWt; x e I (3.20)

with 4>ô(x) given by equation (3.17) admits the TPD given by equation (2.13),
namely in this case:

PB(x,t\xo,0) PU.x,t\xo,0)e-0'

[cosh(x)]ar-%/ó-a22F1
y + Vô~-

2
i
2

-a2
r

1 - y + y/ô - a2

2 ; (tgh(x))2

[cosh (Jto)]-^-^
y + Vo^

2

i
2

-a2 1 - y + Vô - a2

2
; (tgh(xo))2

i (3.21)

Moreover from the corollary 1 of Section 2, we immediately have:

lim PB(x, 11 x0, 0) 0 (3.22)

Q6(x) is

which is consistent with the fact that the potential Qô(x) is of repulsive nature.
Indeed from equations (2.1), (2.11) and (3.18), we have:

lim Qô(x)= lim - 2 ln [cpô(x)] ~ -2V<5 - a2 \x\. (3.23)
|x|-»oo \x\-^™

Near the origin, the thermodynamic potential Qô(x) behaves like (see

equation (3.19) and remember that cpô(x) <ps(~x)^Q,5(x) Qô(—x)):

"a symmetric single barrier for ô > a (3.24a)

.a symmetric double barrier for 0 < ô < a (3.24b)

Let us remark that the condition equation (3.24b) is compatible with the
restrictions equations (3.17b, c, d) (take for instance: <* 0. l:->y= —0.1258,
0 0.08).

We close the discussion of the models B by pointing out the following
additional features:

The fundamental difference between the diffusion problems in double (or
single) barriers discussed in models A and B is as follows:

- The asymptotic behaviours of Qô(x) are
models A: quadratic (see equation (3.10)), (3.25a)

models B: linear (see equation (3.23)). (3.25b)

- The spectrum governing the dynamics are

models A: purely discrete (shifted spectrum
of the OU process) (3.26a)

models B: purely continuous (shifted spectrum
of the Wong process
witha<l) (3.26b)
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- Using the property 1 of Section 2, it is possible to solve exactly the double
well problem (instead of the double barriers-model B). We therefore have the
possibility of solving exactly a diffusion problem with a double-well
thermodynamic potential whose dynamics is governed by a purely continuous spectrum.
The same remark applies for the models A and has been fully discussed in [5].

Models C

Let us now consider the choice:

cj)(x) sech (x), xeU, (3.27)

giving rise to the SDE

dx (2a tgh (x)) dt + y/2 dWt. (3.28)

This is a repulsive Wong process (i.e. a-—» -a in equation (3.12)).
The effective potential V(x), equation (2.6), reads with equation (3.27):

V(x) a2- a(a - l)(sech) (x))2 (3.29)

and hence, according to Lemma 1 of Section 2, a shifted spectrum dynamics
results by solving the equation (see equation 2.12)

.2

7^)ô1(^)[^5 4>6(x) + a6(a& + !)0a2(*)[^ cp6(x)

a2- a(a - l)(sech (x))2 + Ô, (3.30)

4>s(x)>0, VxeU. (3.30a)

Choosing a6 (a — 1), a positive solution of the non-linear equation (3.30)
is immediately found in form:

cp6 (x) cosh (x), (3.31)

with

<5 l-2<*. (3.32)

Using equation (3.31), and the choice aô a — 1, equation (2.11) reads:

dx [2(1 - a)tgh(x)]dt + y/2dW„ xeU. (3.33)

Now, for ar> 1, equation (3.33) is identical in form with equation (3.12) (up
to a unity shift of a in equation (3.12)). An application of Lemma 1 of Section 2,
immediately gives the TPD associated with the repulsive Wong models, equation
(3.28). Indeed we have:

Pw-\x, 11 xo, 0) Pc(x, 11 xo, 0)e(2a-1\L_ r, 'n-2. (3.34a)
[cosh(x)]1-2cr

[cosh (x0)]x
and hence

l2tt-l
P?(x, 11 xo, 0) Pw-\x, 11 x0, 0)e«-2°*lœS^X)lZx ¦ (3.34b)

[cosn (x0)\
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In particular, for a 1, we have (a 0 in equation (3.12) gives rise to the
Wiener process):

PU.X, 11 x0, 0) (4nt)~m exp { - (* Xo)
} (3.35)

(x - x0)2
I x0, u; [*jii) exp -j —

and hence:

«*. W 0) -<«r»|fg.- exp { - fe-^2}. (3.36,

The result equation (3.36) has previously been obtained in [10a]. For <x l, this
model C has also been applied recently to the relation between stochastic

processes and quantum measurements [10b].
This model is also important in discussing the role of solutions from the

Master equation and its approximate Fokker-Planck equation. Recently a form
of Master equation with a one dimensional nonlinear, one step transition
probability has been solved exactly [11]. We can show that this Master equation
reduces in the Fokker-Planck approximation to the diffusion process of equation
(3.33). The solution for such a Master equation [11], specifically its spectrum, is
found to the qualitatively different than that for the corresponding Fokker-
Planck equation.

Other applications using for instance the quantum mechanical Morse
potential as V(x) can be also considered to generate non-linear soluble diffusion
problems.

4. Decay of unstable states - study of the transition probability density

The problem of the precise role of the fluctuations near the unstable
equilibria occurs in numerous situations encountered in systems undergoing phase
transitions and has therefore stimulated much activity [1, 3c, 12-20]. The basic

difficulty of this question, as clearly mentioned in [la], lies in the fact that the
linearization procedure fails to give reliable results. This is obvious if one
considers the decay of an initially delta peaked TPD at x 0 in Figs, la and 2a. It
is indeed clear that any linearization procedure around x 0 and for t in the
medium or large transient will fail to relate the transition from uni- to
multi-modal probability densities which are expected for these situations.

Somehow more surprising is the case of the decay of a purely repulsive
situation Fig. lb which is always recovered when small to medium time transient
phenomena are discused for the case Fig. la. One can indeed raise the question:
Does the linearization procedures give at least qualitatively reliable results for
this case? This question is interesting since if for instance bimodal TPD arise in
situtions like Fig. lb, then the transition is not explained by the scenario
introduced by Van Kampen [1]. Indeed according to [1], the bimodal shape of the
TPD expected in situations as Fig. la results from the "compactification" of the
wings of the TPD in the region where Q(x) is attractive. While this is obviously
sufficient to give rise to a multimodal character of the TPD, we will show that it is
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*fl(x)

379

n(x)

Figures la, b
Qualitative shape of the thermodynamic potential Q(x) for various situations considered in the text.

/not necessary. To' discuss this question, the shifted spectrum dynamics is

particularly well-suited since it gives an insight of the possible behaviours.
Let us immediately start with the example (Model C of Section 3):

dx (2a tgh (x)) dt + \[2 dWt. (4.1)

For a 1, the TPD is given in equation (3.36) and it is advantageously rewritten
in the form (when x0 0):

Pl(x, t\0,0)
1

4\fnt exp{-fe+^)2}+-p{-fô+VF)2}2y/t
(4.2)

which is a superposition of two Gaussians. Let us however remark that each of
the Gaussians in equation (4.2) are not the solution of a diffusion process of the
Wiener type which reads as equation (3.35).

Furthermore, from the sign of the curvature R (of the TPD equation (4.2)) at

lû(x)

ii ii(x)

?-x

2a

Figures 2a, b
Qualitative shape of the thermodynamic potential Q(x) for various situations considered in the text.
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x 0, we immediately deduce:

ir. ^ f unimodal for t < \
P(x,t 0,0 is J 4.3

Lbi-modal for f >i.
Hence, the result equation (4.3) explicitly shows that ior t>\, a simple

linearization procedure (around x 0) for which a uni-modal Gaussian will be
obtained Vt e R+, fails to describe the qualitative behaviour of F(x, 11 0, 0).

As the simple solution, equation (4.2), is only valid for a l in equation
(4.1), one can now infer whether the behaviour given by equation (4.3) is generic,
VaeR+. It is indeed important to realise that changing a in equation (4.1)
corresponds in fact to changing the strength of the fluctuations in the model:

dx (2 tgh (x))dt + y/2 g dWr, (4.4)

where:

x at and g a~112. (4.4a)

Let us now discuss the shape of the TPD associated with the repulsive Wong
process equation (4.1). We shall consider two regimes (ctr>l and a<l)
separately.

(i) ar>l
This situation corresponds precisely to the SDE models C studied in Section

3. Let us now discuss the curvature R at the origin of the TPD equation (3.34b).
We have:

R =-^2Pc(x, t\0,0) e«-2a*^2[Pw-\x, 11 0, 0)(cosh (x))2*"1]

: e(1-2a)'Pw-\x, t\0,0) ^\n(Pw-\x,t\0,0)-2(a-l))
at

+ 2a-l
(4.5)

where the square bracket term in equation (4.5) has been obtained by using
equation (2.17) with cp(x) cosh (x) and a^a-1 corresponding to the Wong
process Pw~\x, t\x0, 0). Now from [9] (see also equations (3.13a, c)) we have
for PX(x, t\0,0):

AE(s) E(0)-iniE(s) { ;<"-£ f ^ «f> (4.6)
{s+o} l-2(ar-1) +1, for a>2.

Hence from equation (4.5) and (4.6) and the Lemma 2 of Section 2, we end
with:

(2«-i)tR [pw\x,t\0,0)[-(a-l)2+l] for l<ar<2 and t>\a-l\~2
I P\V\x, r|0,0)[-2(ar-2)] for a>2 and f>|3-2ar|-1

(4.7)
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From equation (4.7) we conclude that:

' even-modal for 1 s a < 2

381

Pc(x, t\0,0) is <

and ts |ar — l| 2

odd-modal for a > 2

and t>\3-2a\~1

(4.8a)

(4.8b)

It is interesting to emphasize that the quantitative shape of Pc(x, t \ 0, 0) is then
strongly related to the existence of a discrete spectrum. Indeed, we know from
equation (3.14) that

Pw\x, t\0,0) has
(a purely continuous spectrum) for 1 s or < 2

(a discrete and continuous spectrum) for a > 2

which then leads to the qualitatively different decays of the TPD as given in
equations (4.8a, b).

(ii) case a < 1

This particular regime requires some attention as to the associated

Schrödinger problem reads (see equations (4.1) and (2.8)) [21]:

—2 STs(x) + [E(s) + d2- a(a - l)(sech (x))2]^(x) 0, (4.9)

which for a < 1, corresponds to a scattering problem in presence of the potential
sketched in Fig. 3.

The spectrum is therefore purely continuous and reads:

E(s)-E(0) a2 + s, seU+ (4.10)

and hence the smallest term in the exponential of equation (2.7) is:

AE(taS) -a (4.10a)

aV{

Figure 3

Sketch of the potential V(x) for Model C, with a< 1 studied in Section 4: see equation (4.9).
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With equation (4.10a), the Lemma 2 of Section 2 implies:

sign[-ar2 + 2ar]>0 for 0<<*<1
t^a'2 (4.11)

-t>Pc(x, 11 0, 0) is even-modal.
Let us however remark that for a 0 (no drift term), we have the Wiener

TPD which, being Gaussian, stays uni-modal Vt eR+. This fact is consistent with
equation (4.1) which gives no information for this particular limiting case.

From the above analysis, we conclude that for a > 2 the TPD associated with
the SDE equation (4.1) stays odd-modal for t>\3-2a\'1 while for 0<<x<2 it
suffers a transition to an even-modal shape for t > a~2. This clearly shows the
complexity of the decay of the TPD which according to equation (4.4a) stays
odd-modal when small fluctuations (small g--Marge a) are considered; while
large fluctuations, even of the additive type, generate new dynamical features,
i.e. even-modal TPD.

Let us now investigate some other situations. Let us consider the Models A
of Section 3 in the symmetric case, namely ß 0 in equations (3.6) and (3.8). In
this case the corollary 1 immediately holds and we have; using equations (2.21)
and (3.5) with a6 —1:

sign[-ô + 2^1(x)[-|5^(x)]| J

sign [ô — 2a]

<0, ô<2a
l>0, ô>2a.

Hence from the corollary 1, we deduce for <*> |<5|_1

(4.12)

.„ „. f odd-modal for ô<2a
PA(x,t 0,0) is 4.13

I even-modal for 0>2a
and here again transitions are observed. In fact in [8], we have studied these
models in full detail and shown that the exact critical time tc for which the
transition odd to even modal (in this case uni- to bi-modal) occurs obeys the
equation

tc a~lìn{óX2a)' a-° (4-14)

which is positively defined for

0<2a<ô. (4.14a)

Finally, we investigate the behaviour of the Models B of Section 3. In this
case we have (equations (2.21) with a6 —1 and 3.19):

sign{-<5 + 2(ô-ar)} <5-2<* (4.15)

for which we draw the same conclusion as from equation (4.13).
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To close this section, we recapitulate in Table 1 below, the various features
of the models studied.

Table 1

Models Q(x) (qualitative) Spectrum Shape of the TPD (qualitative)

A*

A*

A*

Bt

Bt

Bt

Ct

Ct

0<<5<a
double-barrier

az~ô<2a
single-barrier

ô>2a
single-barrier
0<<5<ar
double-barrier

a^ôs2a
single-barrier
<5>2a
single-barrier
0-£or.s2
single-barrier

a>2
single-barrier

discrete

discrete

discrete

continuous

continuous

continuous

continuous

continuous
& discrete

unimodal VteR +

unimodal V? e R +

bimodal for t a a-"1 In (<5/<5 - 2a)

unimodal Vf e R +

unimodal Vf e IR +

bimodal for 13= |<5|_1

bimodal for t > ar~2

unimodal VteR +

*) We have proved in [8] 1 /odd um\ „
+\ \ that for these situations.
<) We conjecture J \even bi/

5. Behaviour of the mean (x(t))

In [8], we have studied the behaviour of the mean (x(f)) defined by:

(x(0) xP(x, 11 x0, 0) dx, (5.1)

for the case ß 0 of the Models A of Section 3. Here, we shall extend the
discussion to the asymmetric thermodynamic potential Qô(x) obtained from
equation (3.6) and (3.9) for 0=f \ß\ <ßc defined by equation (3.6c). In Appendix
B, we indicate the calculation of (x(t)), equation (5.1), when the TPD is as in
equation (3.8). We find:

<x(0) xo e~a"2 + y(a, x0) sinh (y)
where

y{a'Xo) 1-2ax-0(ÌxQs(x)

(5.2)

(5.2a)

From equation (5.2) we conclude that the velocity of the mean — (x(t))
(v(t)) may vanish at the critical time t* defined by:

(v(t*))=0=>
t* a~x ln (2y~1 - 1), (5.3)
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4fì8(x)

<x(t)>

Figure 4a
Qualitative behaviour of the mean (x(t)) for initial conditions.

which is positively defined if:

y<l. (5.4)

From equation (5.4), the following behaviours may occur (see Fig. 4a, b):
(i) For X0 located at the extrema of Qa(*)> t* is identically zero, (y 1 =>

f* 0)
(ii) 0<öl4a<\, \ß\«ßc, (Fig. 4a)
For 0<Xo<Xc and XA<X0<XB, equation (5.4) is obviously satisfied and

we observe boomerang behaviours of the mean path (X(t) This phenomena is

intrinsically due to the non-linearities as it is intuitively clear that it comes from
the diffusion over the barrier.

(iii) Ôl4a>\, (Fig. 4b)
For 0<Xo<Xc, the condition, equation (5.4), is obviously satisfied and the

mean (x(i*)) presents the boomerang behaviour sketched in Fig. (4b). Therefore
for short transient, the mean (x(i*)) is stabilized as compared to the deterministic
path. While this is intuitively clear from the diffusion over the barrier Xc, such
behaviour is of course not obtainable from any linearization procedures.



Vol. 59, 1986 Decay of unstable states in presence offluctuations 385

n8(x)

f

<x(t)>

Figure 4b
Qualitative behaviour of the mean (x(t)) for initial conditions.

Let us close this section by mentioning that the above behaviours are typical
for processes like nucleation and boomerang behaviours of (x(r)) are of course
not restricted to the particular diffusion processes viz. the Models A of Section 3,
as it is clear from an intuitive point of view.

6. Summary and conclusions

Our major interest in this paper has been to explore the behaviour of the
transition probability density (TPD) characterizing the decay of an unstable (and
metastable) state in presence of fluctuations. As clearly remarked by Van
Kampen [1], the linearization procedures are not available to discuss this type of
problem for medium and large transient time. Therefore we carried out our study
using exactly soluble models. We started in Section 2 by introducing a general
procedure (shifted spectrum dynamics in Lemma 1) to construct exactly soluble
models of diffusion equations from already known ones. The new models so

generated (see our illustrations in Section 3) are particularly well-suited to discuss
the decay of the TPD of unstable states which we discussed in Section 4. The
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models treated include the diffusion in asymmetric double or single barrier
potentials with purely discrete spectrum, symmetric double or single barriers with
purely continuous spectrum, and a single symmetric barrier with mixed
continuous and discrete spectrum. The shape of the TPD was analysed for large
times (t~x first eigenvalue of the spectrum [2]) and presented complex
behaviour in certain cases directly related to the existence or non-existence of
discrete eigenvalues in the spectrum. We observed in particular the transition
from uni- to even-modal shape of the TPD for monotonie repulsive potentials;
such transitions cannot be explained in the context of Van Kampen's scenario for
the decay. Indeed due to the fact that the potential is, in our case, purely
repulsive, there is no possibility of "compactification" of the wings of the TPD in
regions where the potential is attractive. In Section 5, we briefly discussed the
time dependence of the mean path in asymmetric double- (or single-) barriers.
Boomerang behaviours and short time stabilization due to fluctuations were
observed, both behaviours being obviously not obtainable via linearization
procedures.

Appendix A

For the choice aô — 1, equation (3.16) reads:

d2
—2 cpô(x) {ô + a2- a(a + l)(sech (x))2)00(x). (Al)

Introducing

y(y -l) -a(a + l)^y=-i^y/i-a(a + 1) (A2)
cbô(x) [cosh (x)] V(-sinh2 (x)), (A3)

equation (Al) takes the form:

[-sinh2 (x)][l + sinh2 (x)] —^-^ ^(-sinh2 (x))

+ [ê + (ry)sinh2(x)]d(_si^h(;c))^(-sinh2(x))

r + ô - a. ^_sinh2^ 0 (A4)

Equation (A4) is immediately recognized to be the Gauss hypergeometric
equation [22] with the solution (we confine ourselves to the symmetric cases):

i/»(-sinh2 (x)) 2F,

y + y/ô-a2 y-y/ô-a2
-sinh2 (x) (A5)
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Now we use the properties [22]:

/». x
/a,c-b,

2Fyhb' (l-z)XFx(
\c, ; zl lc,

387

(l-z)-"2F1-b r-i c-a,b,

c,

z-l/

z-l/
and equation (A5) with (A3) takes the respective forms:

<M*)

[cosh (x)] -Vô-a2 Fi

[cosh (x)Yô-a\Fx

y + yfô~--a2 1-y + y/ô-a2
2

y

2

i
2

y-Vô~--a2 1-y-y/ô-a2
2 >

2

i
2

tgh2(x)

tgh2(x) (A7b)

By imposing the coefficients in equation (A7a) to be positive, we get the

conditions of equation (2.17) which in turn imply cj)0(x)>0, Vx from the

expansion of 2fJ ;z).

Equation (A7b) is used to get the asymptotic development. Indeed we have

[22]:

(a, b, \ is absolutely convergent on the

2X c, X
and we have [22]:

unit circle for Re (a + b — c) < 0.

F (a' b -l] r(c>r(c-"-fe>

c, ¦ (c-a)F(c-6)

From equation (A7b) we have:

Re (a + b - c) -2V<5 - az < 0
and:

r(c)r(c -a-b) ra)r(2Vö^^z)

(A8)

(A9)

(AIO)

(AH)
r(c - a)T(c -b) T(y + y/ô - arz)r(Vô - az - y)

'

Using equations (3.17a, d) we see that the constant equation (All) is

positively defined and hence the asymptotic behaviour of (A7b) reads:

Yk/ö— a2
4>6{x) izrz^ [cosh (x)P (A12)
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Appendix B

Here we calculate the integrals of the type:

(xm(t)) N(t) i xm exp {-a(t)[x - y(t)]2}
Jr

x[^ix)+ßxA4'xi)
2\ / 1 ^2X

dx (Bl)

where a(t), y(t), p and £ are defined in equations (3.8) and (3.3).
We introduce the integral representations [22]:

,,2\

and

iFi(t, \x)=^) JN"^2""1 cosh (V2Xx) dX (B2)

.Fx(fi, \, Ç) Y^y- l+e~^2""1 sinh (V5 Ax)dA. (B3)

Introducing equations (B2) and (B3) into equation (Bl), exchanging the
orders of integration yields after simple but long calculations:

}• (B4)

(x(t)) x0| e~ °"2 X 2 sinh (atf/2)

2gx01F1(g + 1, 3/2, xg/2) + ßxFx((i, 1/2, xg/2)

^(Ç, 1/2, x\l2) + 0xo ^(p, 3/2, xg/2)

Defining:

^ f x2l la 1 1 x2\ _„y1(a,x) exp|-—1^^- + -,-,^ (B5)

« -. f *21 „/a 3 3 x2\ ,„^y2(a, x) x exp | - — jjF^- + ->2>^) (B6)

and using [7]:

—yi(a, x) + \xyx(a, x) (a + h)y2(a + 1, x) (B7)

d
—y2(a, x) + \xy2(a, x) yx(a + 1, x), (B8)
dx

the form equation (B4) can be reduced to equations (5.2) with (5.2a).
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