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Lyapunov exponent, scale symmetry and
chaos in Yang-Mills equations

By W.-H. Steeb and J. A. Louw

Rand Afrikaans University, Department of Physics PO Box 524, Johannesburg
2000, Republic of South Africa

(7. X. 1985)

Abstract. The chaotic motion of a Hamilton system which arises in classical Yang-Mills
equations is investigated. The one-dimensional Lyapunov exponent is used for characterizing the
chaotic states. Since the equations of motion are scale invariant the connection between the scale

symmetry and the one-dimensional Lyapunov exponent is given.

Matinyan et al. [1] derived from classical Yang-Mills equations in Minkowski
space with underlying Lie algebra su(2) the Hamiltonian

H(p, x) (l/2)(pf +pl + pl) + x\x\l2 + x\x\l2 + x\x\l2 (1)

with the equations of motion

*l=Pl, *2=P2, *3=P3 (2a)

Px -Xx{xl + xl), p2 -x2(xl + xl), p3 -x3(x2x + xl). (2b)

Special gauge conditions have been imposed so that the resulting equations do

not depend on the space coordinate. The quantities xt and p, (i 1, 2, 3) are
related to the vector potential (compare Matinyan et al. [1] for details).

The simplified system where x3(t) p3(t) 0 has been studied in detail by
Matinyan et al. [1], Carnegie and Percival [2] Chang [3], Steeb and Kunick [4],
and Steeb et al. [5].

In the present note we study the chaotic behaviour of system (2). Since

system (2) is scale invariant, we also study the connection between scale

symmetry and the one-dimensional Lyapunov exponent.
Instead of system (2) we can also investigate the system of second order

differential equations

x\ -xx(xl + xl) (3a)

x2 -x2(xi + xj) (3b)

x3 -x3(x2x + xl). (3c)

Particular solutions can be found as follows: (a) x2(t) x3(t) 0, Xx(t) Cxt + Ci
(analogously for x2 and x3); (b) Xx(t) x2(t) x3(t) with x + 2x3 0. In case (b)
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we have a periodic solution which can be expressed with the help of elliptic
functions. Obviously, xx(t) x2(t) -x3(t) (and so on) leads to the same
equation.

To characterize chaotic orbits we introduce the one-dimensional Lyapunov
exponent (Contopoulos et al. [6]). We slightly modify the definition so that we
can apply the scale invariance of the system (2). Let i, Ft(x) be an autonomous
system of differential equations (i 1,.. n). In the present case we put
jc4 =pi, x5 =p2, x6 =p3. Therefore, n 6. The variational system is given by

y E {3Fildxk)yk.
i l

In the present case we have

yi y4, h y5, y3 y6

y4 -(xl + xl)yx - 2xxx2y2 - 2xxx3y3

y5 -2xxX2yx - (x2y + x\)y2 - 2x2x3y3

y6 -2xxX3yx - 2*2*3y2 - (x\ + x22)y3;

(4)

(5a)

(5b)

(5c)

(5d)

Any set of initial data x10, xn0, y10, yn0 gives a solution
Xi(t, Xxo, ¦¦¦ xn0), y.it, Xxo, • • xn0, y10, ¦ ¦ ¦ yn0). If the system xt F;(x) is

defined on a compact manifold and preserves a measure for almost all
Xxo, ¦ ¦ ¦ xn0 and for all y10, y„0 the limit

1

lim-In ||y(0|| A(*10, xn0, y10, yn0)
t—>=o t

(6)

exists, where ||y(f)|| denotes the norm of yx(t), ¦ ¦ ¦ yn(t)- The quantity A is called
one-dimensional Lyapunov exponent. In the following we use the Euclidean
metric. For studying the connection with the scale invariance we slightly modify
the definition, namely

A(*io, xn0, y10, ¦¦¦ yn0) := lim - ln ((jx/yxof +••' + (yJyno)2)m- (7)
t—»°° t

For our numerical computation of A, we integrate directly system (2) and system
(5). Our numerical results strongly suggest that there is no regular region and that
the motion is always irregular except for special orbits, like the periodic orbits
that form a set of measure zero. Besides the "trivial" periodic orbits discussed
above (xx ±x2 ±x3) (in this case the problem is one-dimensional) there are
genuine two-dimensional and three-dimensional periodic orbits. For the case

x3(t) 0 Steeb et al. [5] proved that the trivial periodic orbits are unstable. They
have calculated the index of stability [7]. In the present case it can also be proved
that the trivial periodic solution are not stable.

Let us now describe the connection between the scale invariance and the
one-dimensional Lyapunov exponent. Let

Pi-*oc2pi (8a)a % OCX,
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and

y,-*ay, (i l,2,3), y,-*«2)* (/ 4,5,6). (8b)

The systems (2) and (5) remain unchanged (scale invariance). For the Hamiltonian

(1) we obtain H(ax, a2p) a4H(x, p).
We notice that in the language of singular point analysis r 4 is a resonance

(Kowalewski exponent). Notice that system (2) does not pass the Painlevé test.
We find a logarithmic psi-series for the main branch. The resonances are
-1,1,1, 2,2 and 4. If we put x3(t) 0, then we find a psi-series with complex
resonances. Due to a theorem of Yoshida [8, 9] the equations of motion cannot
be algebraically intégrable.

Now the one-dimensional Lyapunov exponent given by equation (7) is not
scale invariant but

X^aX. (9)

This means the following: Given two sets of initial values

{*io,..., *6o, yw, ¦ ¦ •, yso) (10)

and

{xy0, -Tgo, y10, y^} (11)

where

xm axa (i 1, 2, 3) (12a)

xi0 a2xi0 (i 4, 5, 6) (12b)

yio=ayio (« 1,2,3) (12c)

y>o=cx2yi0 (i 4, 5, 6). (12d)

Then it follows that Ë a4E and A aX, where E H(xi0, pi0),
Finally let us give a numerical example. Let

*io x2o x30 0 (13a)

*40 (0.3)1/2, i50 (0.4)1/2, X6o (0.1)1/2 (13b)

yio y4o 0.1, y2o y5o 0.2, y30 y5o 0.15. (13c)

Consequently, Ë 0.4. Let a2 2. Then E 0.1. From numerical studies we find
that A 0.32 and A 0.225. It follows that A/A 1.42. This coincides with the
"theoretical" value a 21/2.

The results discussed above can be extended to higher dimensions. Let us
consider the Hamiltonian

//(*,p) (l/2)Ép2 + (l/2)Éx2;c2 (14)
i l i<j
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with the equations of motion

n

Xi=Pi, Pi -xi\yjx2. (15)
/=1
'TV

For arbitrary n the equations of motion do not pass the Painlevé test. The
equations of motion are invariant under t—> a~lt, xt—* axt, p,—» a2pt. Then for
the Hamiltonian we find again H(ax, oc2p) a4H(x, p). Our numerical investigations

for n 4, 5, 6 (we have calculated again the one-dimensional Lyapunov
exponents) strongly suggest that there is no regular region and that the motion is

always irregular except for special orbits, like the periodic orbits. Due to the scale

invariance we have to do our calculation only for one energy shell.
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