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Polarization formalism for elastic scattering of
leptons by spin 4 and spin 1 particles in the one
photon exchange approximation

By W. S. Woolcock

Research School of Physical Sciences, The Australian National University,
Canberra, A.C.T. 2601

(4. IX. 1985)

Abstract. A simple and transparent method is used to obtain the polarization parameters
(analyzing powers and spin correlation coefficients) for elastic scattering of a polarized lepton beam by
a polarized spin 3 or spin 1 target when the polarizations of the final particles are not detected. The
expressions are obtained in the one photon exchange approximation, but the lepton mass is retained
throughout and the calculation is made entirely in the laboratory frame.

I. Introduction

The elastic scattering of a polarized lepton beam by a polarized target was
studied by Dombey [1] for a spin 3 target and by Gourdin [2, 3] for a spin 1
target. In each case a sum was made over the spin states of the final particles,
corresponding to an experiment in which the polarization of neither final particle
is detected. The calculations were made in the one photon exchange (1yE)
approximation, and the results are summarized in the review article by Gourdin
[4]. However, they are not given in the form of expressions for the standard
polarization parameters and, particularly for a spin 1 target, it is slightly uncertain
what these parameters should be in terms of the results of Ref. 4. Moreover, the
lepton mass is set equal to zero. While this is a good approximation in most
experimental situations, it turns out to be almost as easy to retain the lepton mass
throughout the calculation. One can then see which polarization parameters
vanish identically in the 1yE approximation and which are small because of the
smallness of the lepton mass compared with the target mass and the lepton beam
energy.

In this paper we present a simple and transparent method for obtaining the
analyzing powers and spin correlation coefficients for the elastic scattering of a
polarized lepton beam by a polarized spin i or spin 1 target, when the
polarizations of the final particles are not detected. We work in the 1yE
approximation, but retain the lepton mass throughout and make the calculation
entirely in the laboratory frame. There is no need to make use of the Breit frame.
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We find that there is an error in one of the results of Ref. 4 for a spin 1 target. In
Section II we derive the necessary kinematical results, write the expression for
the differential cross section and give the 1yE approximation. We deal with the
part of the calculation arising from the lepton vertex in Section III and proceed to
derive the polarization parameters for spin 4 and spin 1 targets in Sections IV and
V respectively. It is useful to have these results collected together in one place in
a consistent notation.

II. Kinematics, cross section and the one photon exchange approximation

In the laboratory system the initial 4-momenta are

pi=(E.Y), pr=(M,0), (2.1)
and the final 4-momenta are

pi=(E" 1), pr= (\/M2 + Ti, T), (2.2)
where

T=IT|, E?=mi+l?, I'=||

and similarly for doubly primed quantities. The lepton and target masses are m,
and M respectively, and / and T refer to beam and target quantities. We define
the 4-momentum transfer g as

q=p;—p/=pr—Pr (2.3)

The angle of scattering of the lepton in the laboratory frame is denoted by 6,
while 67 denotes the angle between the outgoing target particle and the beam
direction. It is convenient to use two frames of reference in the calculation. In the
(xyz) frame the 3-momenta of the particles are

I'=(0,0,I'), V=("sin6,0,"cos8), T=(—Tsin0y,0,cosO;). (2.4)

In the (123) frame on the other hand we have the 3-momenta
I'=(l"sin 6, 0, I’ cos B7), T=(0,0,T7). (2.5)

The y-axis and the 2-axis coincide; this axis is perpendicular to the scattering
plane, in the direction of I' X1” or T X 1'. The z-axis is along the beam direction,
while the 3-axis is along the direction of the outgoing target particle. The x-axis
and the 1l-axis are then defined by the requirement that the triads be right
handed.

As well as 6 it is convenient to use another second variable 7 to characterize
the scattering. It is defined by

—q*=4M*n. (2.6)
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It follows from (2.1)-(2.3) that
4M*n =2(E'E" - I'l" cos 8 — m?) |
=2M(VM*+T?> - M)=2M(E' — E"). (2.7)
The equality in (2.7) leads to a quadratic equation for /", whose solution is

I" (ME'+ m?)cos 6 + (E' +M)(M2— m? sin 15?)1’2
I' (E'+M)*—1"cos* 0

(2.8)

It also follows from (2.7) that
T*=4M*n(1+1n), E'"=E'-2Mp,
I'-V=[?-2M(E' + M)n,
I'-T=I0'Tcos 8 =1'-(I' =1")=2M(E' + M)n. (2.9)

To obtain an exact expression for 7 in terms of E’ and 6, we use

—1I'l"cos 6 I’Z(E' sin? @ + M — cos 8(M? — m; sin® 8)"?)

1= 2M(E’ + M) 2M[(E' + M)* — I'* cos’8] (2.10)
Note that 7 increases monotonically as 6 increases from 0 to s, and that

n(7)=U*/QE'M + M*+ m}).
Since I"=1' — T, it follows that

TXI'=TxI'=1'XVY. (2.11)
Further,

TXI'=1!'"T sin 8,0, 1, 0) (2.12)

in either frame of reference and, from (2.9),
(I'T sin 67)* = 4M*n[(E'* — 2ME'n — M*n) — mi(1 + n)). (2.13)

To write the differential cross section we need the expression for phase space
in the laboratory system. The differential of Lorentz invariant phase space,
expressed in laboratory system variables, is

luZ dQLAB

dLips =
PS4 E + M) = E'l cos 6)

(2.14)

Using (2.8) and the further result

(E'+ M)(E'M + m?) + I'? cos 8(M? — m7 sin® 8)'?

E”= :
(E'+M)*—1"cos* 0

we find that
I"'(E'+M)—E"l'cos 8 = l’(M2 — m? sin® 9)1/2.
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Thus, from (2.14),

dLios (lu)z ! dQLAB
1IpS =\ - A
P ') 4(M?*— m?sin® 6)"?

(2.15)

Since the differential of cross section is

__ diips P
- [(p; prT)z _ mlez]l/z 16712’

do
it follows from (2.15) that

dQ/)ias ') 64m*M(M? — m? sin® )% '

The next step is to write T in the 1yE approximation. The standard result is

7= 25 ) 40 ) (T 720 o, .17)

and this result is substituted into (2.16). So far we have suppressed the spin
indices of all the particles. We are assuming that the polarizations of the final
particles are not detected, and therefore sum over their spins. But we consider a
polarized beam and a polarized target, described by density matrices p’ and p”.
We can then no longer simply write |T4* in (2.16). Instead, using the 1yE
approximation of (2.17), we have

do «’F Vo up
( ) = 2714 28 8
dQ/iap  16M“I"*(1 — cos 0)
x@n)° S (FPTTHO Wy (17 IO IV yols

x (2m)° >, (TA[JL0) [0u”) (TA"| JZ(0) [0A ) o1, (2.18)
M
where
e (L)z I'"*(1 — cos 0)*
I'n/ 4M?(M? — m? sin® )%

Using (2.8) and (2.10), one finds after some manipulation that

M [1__ m7(1 — cos 6) ]~1
(M? — m7 sin® 8)'* M(M + (M? — mj sin* 6)'7?) ’

F= (2.19)

provided that mj << M?. We shall continue to include the factor F (which depends

only on 8), though even for a muon beam and a proton target the approximation
(2.19) will be very good.
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III. The lepton vertex

For a spin 3 point particle the matrix element of the current is
QaY> (V| J2(0) Vr')y =2ma™ ")y, u" ('), (3.1)

where the conventions of Bjorken and Drell [5] are used throughout. Using (3.1)
we then evaluate the quantity

g*g"2m)° Y, (FPTTL @) ") (1] J,(0) I1r)

=(E"+m) " xCV(E +m)1—y V]y*(voE" =y - V' + m1)
X yH(E'+m)1—vy 1]y,

where y denotes a rest spinor satisfying y,x = x. Using the fact that an odd
number of spatial y-matrices gives zero when placed between rest spinors, we find
for this expression the following results:

v=0, u=0 2(E'E"+Y 1"+ m));

v=0, u=i 2(E"l; + E'l))+ (E' + m)i(c X1");
—(E"+m)"'Cmy(E' + m)) +1' - i(e X1');
+(E'+m) Yio- ' X +i(l' XI");6-1');

v=j, u=0 2E"lL+E')—(E +mi(ecXl)
+(E'+m) 'Cmy(E' +m) +1 - 1)i(e X 1'),
—(E'+m) (e ' X +i(l XV);6-1');

v=j, w=i 2M(E'—E"&;+ 2L+ L)+ 2m(E' — E")i€ 0
+2ieg (I — (E' +m) " Y(E" + m)i)o -1,

It is understood that these expressions stand between the rest spinors. We have
put the spatial index below when 3-vectors are involved. The 3-vector ¢ is defined

o,=02, o0,=0%, o3=0"
where

o™ =3i(y"y" — v'v"). (3.2)
Then

b o _ .
=YY = 0,0; = 0; 1+ igyp.0y,

and this relation is used in deriving the above results. Note that the o; are 4 X 4
matrices; there is no need to specialize to the familiar representation involving
Pauli matrices.
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The lepton density matrix is
prs =23 +o-p)x*”,

where the polarization vector p' satisfies 0= |p/| =<1. The sum over 7', s’ means
that we multiply the results in the previous paragraph by i(1+ ¢ - p’), take the
trace and use tr 1=4, tr 0, =0. To write the final result in its most convenient
form, we use equations (2.9) and (2.11)-(2.13) and introduce the vector

I'=1'—("-T)T/T?>= (' sin 07, 0,0) in the (123) frame.
A substantial amount of manipulation then leads to the following results:
v =0, u=0  4E"*-2ME'n— M*p);
2E*—2ME'n — M*n)T,

= =i '~ Mn)l; +iVi;
v=0, p=i 4(E'— Mn)l; + M+ 1) i
. 2(E?—=2ME'n—M*n)T, .
=j = '— Mn)l; + —iVi
V=1 U 0 4(E n)] M(]. e n) l J
: : wm  2(E' = Mn)(IT; + TI)
= - néd.. 4§ gED 5 1
V=], u=1i 4M*nd; + 41 MQ + 1)
E'?>—=2ME'n — M?n) — M*(1 + 0)]T,T, .
+ [( n 5 7’) 5 ( n)] j+l€fjka.
M“(1+n)
In the (123) frame the vectors V and W are given by
V= 2T(—m,p;, my cos O7pL + E’ sin 8,p., 0), (3.3)
W = 4Mn(m; cos O7p% + E' sin 6,p%, mp},
—mysin O7p, — 2M{E'(E' — Mn) — m{(1 + n)}(I'T)"'p). (3.4)

Though the components of V and W are conveniently written in the (123) frame,
the components of the beam polarization vector p’ in the (xyz) frame have been

used in (3.3) and (3.4), since experimentally one uses a longitudinally or
transversely polarized beam.

IV. Results for a spin 1 target

For a spin 3 target there are two form factors F,, F, defined by the equation
Q2r)* (TA'| J.(0) [0A") = a“X(T)[2MFy, + ikF0,,(pr — p7)"u?(0).  (4.1)

Using (3.2) and the Dirac equation for both the initial and the final spinor, we
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may replace the square bracket in (4.1) by
2MGrpy — (Gy = Ge)(pr + p)u/(1+ 1),

where
Gc=F — nkkE, Gy =H + kFE.

We have used G rather than the customary Gg to denote the charge form factor;

this then agrees with the usual notation for a spin 1 target. The quantity x is the

anomalous static magnetic moment of the spin  target particle in units (2M)™".

Hermiticity of the electromagnetic current implies that G- and G, are real

functions of 7 in the spacelike region 1 >0, and G-(0)=1, Gy(0) =1+ k.
There is a further simplification. Since, using the Dirac equation,

a(yy - (pr —pu’)=0,

it follows from (2.3) that in the calculation we can replace pr by pr. The square
bracket in (4.1) can then be replaced by

It follows that

(2m)° 2, (TA"TJ(0) [ou’) (TA"| J(0) [0A’)

= 2Mx<”’>"[GMyV = (G%_(IG:L(?'T)V] (YoVM?+T*—v-T+ M1)
_(Cu—G)@PDu]. o
8 [GM"“ M(1+n) ]X ’ e

where = implies that equality in (4.2) holds for the purpose of calculating the
right side of (2.18). In evaluating the right side of (4.2) we need to take account
of the change of sign for covariant indices when p, o take spatial values.

As in Section III the density matrix is

phu =XV H(1+ 0 P,
with 0 <|p”| =1. Evaluating the right side of (4.2), then including the density
matrix and summing on A’, u', we arrive at the following results:
v=0, u=0  4M¥Gc+nGpy)2(1+1);
v=0, u=i 2MGy (G + nGy)(1 + 1)~ '[-
v=j, #=0  2MGy(Gc+nGy)(1+n)"[~
w=i 4MZG%477(551 - ifijkPJ{)-

T, +i(TX PT)i];
T, —i(TXp")];

v=j,

Now inserting these results and those given at the end of Section III into the right
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side of (2.18), we have, using (2.9) and (2.13),

(38)
dQ LAB - l’4(1 — COS 6)2
o [(E'2 —2ME'n — M?n)

{(Ge + 1Gy)* —2Gu(Ge + nGu)n}

1+n
sm(BM?n + (E'> = 2ME'n — M?n) — M?n — m3)
GCGM '_r ( TXV 1 )]
M pT (TX V) + — " 1iw)|. @43
taarn)? TV Glnp - (st (4.3)
From (3.3) and (3.4) it follows that, in the (123) frame,
TXV
—=2M — I _ tof I { 4.4
M+ ) Mn(=mcos Ozp, = E'sin 61p%, —mipy, 0), (4.4)
TXV
_— 1 — _ x l
M+ 1) sW =2Mn(0, 0, —m, sin O,p;
—2M{E'(E' — Mn) — mi(1 + n)}('T)™'p?). (4.5)

The expression for (do/dQ2); 55 in terms of the polarization parameters is
(see, for example, Ohlsen [6])

(doldQ)Las = I(1 + A\py, + Ajp; + Capipi + Cuapips

+ Copsps + Capipi + Caap'pd). (4.6)
From equations (4.3)—(4.6) we can read out the required results. They are

a’F [(E’zw-ZME’n — M?n)
I'*(1 — cos 6)* I'*(1+n)

LA, =LA =0,

«’F 2GcGy(E' + M)Mmm*?

IO=

(G%+nG%4)+( n—mi) G%l],

IOCxl = =

I'Y(1—cos 8)? D

B s — «*F 2G3[(E'* —2ME'n — M*n) — mi(1 + n)]"*Mmm?
0%“x3 1:2(1 — COS 9)2 1:3(1 i n)llz ’
e g «’F 2G.GyMmm

0 I'*(1 — cos 8)* [? ’

B e «*F 2GcGyl(E" —2ME'n — M*n) — mi(1+ n)]"°’ME'n
0%z1 lr2(1 — COS 9)2 lr3(1 4 n)m x
1Cae - F 2GL[E'(E' — Mn) — mi(1 + n)]Mn**

0F= T 1"(1 = cos 6)? (1 +n)"? '

The expression for I, is the exact form of the familiar Rosenbluth formula.
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The two analyzing powers are identically zero in the 1yE approximation and
there are three spin correlation coefficients which are proportional to the lepton
mass and will normally be small. The expressions for C,; and C,; are the exact
forms of the approximate expressions given by Gourdin [4]. Our results have
been written in terms of the components of p” in the (123) frame. However,
experimentally it is easiest to polarize the target in the beam direction. One
therefore wants to write spin correlation coefficients in which the components of
p’ in the (xyz) frame are used. The results are

Cxx = Cxl cOos BT = Cx3 sin 91‘, sz = Cxl sin BT + Cx3 COoS BT)
C,,=C, cos 8 —C,sin 67, C,,=C,; sin 87 + C,3sin O,
where, from (2.9) and (2.13),

E'+M 172 )
Ccos 9T=(l,(1+n))?,2 : sin 6 =

4.7)

[(E™—2ME'n — M*n) —mi(1+ m)]"™
ll(l + n)1/2 *

(4.8)

Besides I, the easiest quantities to measure experimentally are C,, and C,,. C,,
would be too small to measure in the case of an electron beam, but for a muon
beam of energy up to a few hundred MeV, C,, and C,, would be of comparable
magnitude.

V. Results for a spin 1 target

There are now three form factors; in the notation of Arnold, Carlson and
Gross [7],

(27)*(TA"| J5(0) [0A")
= —[Gie(") - (1) = Gse (") - qe(X) - q/2M°)(pi + P,
+ Go(e(A)ue(1) - ¢ — £(1"), e(A") - @), (5.1)
where ¢ is the polarization 4-vector of the spin 1 target, so that
e(A') - pr=¢e(A") - pr=0.

Hefmiticity of the current ensures that the form factors G;, G,, G; are real
functions of 7 in the spacelike region n > 0. The charge, electric quadrupole and
magnetic dipole form factors are introduced via the equations

Ge=(1+351G,— 351G, +3n(1 + n)G;,
GQ=G1_G2+(1+T])G3, GM=G2

Then G¢(0) =1, G,(0) = Q (the static quadrupole moment of the target particle

in units M?) and G,(0)=u (the static magnetic dipole moment in units
M),
In the calculation we may use the same trick as for the spin 3 case and

(5.2)
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replace py by pr. To perform the sum over A" in (2.18), one uses

2 €A, e()0 = =80 + (PP (PP o/ M2,

A"

Further, since €(A') is the polarization vector for a particle at rest,
e(A')-q=¢€(A") - pr=—¢(1") - T.
One also needs the relation

q-pr=1q>=—-2M".

A tedious but straightforward calculation using (5.1) and (5.2) shows that

(2Jr)6§ (TA"[J3(0) [0p") {TA"| JE(0) [0A")

=4(pp)y (PDul(Ge — 3nGp)e(1') - e(u’) o
+ {1+ 1)7'Go(Gc + inGp + nGy) + 4G )e(A') - Te(u') - T/M?]
+4Mn(1 + n)Ge(u'),e(A'), — Gie(u’) - Te(A') - Tgy,,
—2Gu(Ge —3nGo)[e(X') - T(p), e, +e(u’) - Te(A'), (0]
+2Gu(Ge +3nGo + nGy)[e(u’) - T(p7),e(A"), + e(A") - Te(u'), (P, ].
(5.3)

From (5.3) one can read out immediately the expressions for the four choices of
(v, 1)

Now combining (5.3) with the results for the lepton vertex given at the end
of Section III, we obtain

@m)° >, (XI5 s ) (1| J40) 1'r') o188

rrsr; r

X (2)° 2 (TA"[J7(0) [0p") (TA"| T(0) [04")

G
=16Me(u") - e(A)(E"™> - 2ME'n — M*n)(Gc — inGp)® + M*n*(1 + n)G3/]
+4e(u’) - Te(A') - T[(1 + )" Y(E'> = 2ME'n — M?n)
X {4Go(Gc +51Gp) + Gi} + (M*n — m})G3]
—16M(E' — Mn)nGoGy(e(u') - T'e(A") - T+ &(u’) - Te(A') - T')
+4M(Ge + 3Gy + 3nGy)Gi(e(A') - Te(u') - V —g(A') - Ve(u') - T)
+16M*n(1 + n)G3e(u’) - Ve(A') -1 + 4M>n(1 + 1) Gige(A)e(u’), Wi,
(5.4)

where V, W are given by (3.3), (3.4).
We now introduce the density matrix for a spin 1 particle using Cartesian
tensor operators for the tensor polarization (again see Ohlsen [6]). Then

pr.=eA)pTe(u),
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where ¢ is now treated as a 3 X 1 matrix and the 3 X 3 matrix p” is

pT =31+ 3(pTs, + pls, + p3ss) + 3(p1os12 + PraSas + P3iS31)
+ 15011 — PR)(S11 — $22) + &P 33533

with
0 0 0 0 0 ¢ 0 —i 0
$1= 0 0 —i ¥ 8§, = 0 0 0 5 §3 = i 0 0 ’
0 i O —i 0 0 0 0 O
S,-j=%(s,-sj+sjsi)—2ﬂ3,
so that
(0 0 0 00 1
3 010 3 0 3
S12=_5 1 00 5 S23=_§ 0 0 1 5 S31=_§ 0 0 O y
0 00 [0 1 1 00
-1 00 (1.0 0
S11_522=3 010 5 8§33 = 01 0.
0 0O 0 0 -2

The restrictions arising from the requirement that all the eigenvalues of p” be
nonnegative are complicated, and need not be discussed here. We have now to
take the expression in (5.4), which may be put in the matrix form e(u')*Me(1'),
multiply by p7., and sum over A’, u'; the result is tr(Mp”). The terms on the
right side of (5.4), when combined with the various matrices appearing in p’,
then give the following contributions:
eu)-eA)  1;—3, 520, 50
e(A)-ve(u')-w I3—=v-w, s— —ivXw,
s12—> —3(vyw, + v,wy) and similarly for a3, 531,
S11— S22 3(— v + vomws),
33> (U1wr + vawy — 203m3);
igg€(A")e(n");Wy 1,—0, s—2W,  s5,;—0.
Referring again to Ohlsen [6], (do/dQ) s is written in terms of the
polarization parameters as
(do/dQ)Las = L[1 +P;’A; +3p3A5 +3pRAL + i(pl — pR)(AL — AD) + IphAT
+ 300 1Ca + 3PP Cs + 0P 12C 12 + 3P0 35C 25
+ %Pipzrcyz + %P;Pglcym + %P;(Pfl - Psz)(Cy,n - Cy,zz) I %P;P%Cy,ss
+3pP1Ca +3ppiCis + 3pipaC. 12 + 3p2p 3 C 2] (5.5)
Since the polarization parameters of the lepton beam are contained entirely in the

vectors V and W we see that the vector analyzing powers A], A and the seven
spin correlation coefficients involving the tensor polarization of the target all
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vanish identically in the 1yE approximation. There remain three tensor analyzing
powers and five spin correlation coefficients involving the vector polarization of
the target (just as in the spin 3 case).

The results for these eight quantities can be read off from (5.4). For the spin
correlation coefficients, the right side of (5.4) leads to the expression

8MG(Ge + 3nGo)p” + (T X V) +4MnG3pT - (T XV +2M(1 + n)W),
o P

from which one reads off the spin correlation coefficients using (4.4) and (4.5).
Using (2.18), (5.4) and (5.5) and the results just above (5.5), one comes to the
following results:

o’F E'*-2ME'n — M?
! 1= (G2 + 4G + 306

-
71?1 - cos 0)? =

2(2M*n — m7
«’F

LAY = 2(E' — Mn)[(E'*—2ME'n — M*n)

['*(1 — cos 6)*
_ mIZ(l 3 n)]1/2n3/2GQGM:

«’F
I AT _AT — r 12 __ Pon 2 e 2
o(A1; 2) 1,4(1 . 9)2l(E 2ME'n — M"n) —mi(1 + n)InGay,
«’F
loAs = - I'*(1 — cos 6)*
X [(E"”?=2ME'n — M*n)n(3Go(Ge +3nGp) + 3G
+ %(2M2n2 —mi)n(1+n)Gil,
a“F
LG = — I'5(1 — cos 0)? 3(Ge +3nGp)Gy(E' + M)Mmn>*(1 + n)'?,
a’F 2 ~2 2 i 2
bCo = = 5 = aor g JOM(E™ —2ME"n = M)
—mi(1+ n)]"*Mmm*(1 + n)"?,
a’F 4 1
LGy = — I*(1 = cos 0)? 3(Ge + 31Go) Gy Mmn (1 + n),
CYZF 4 1 12 ’ 2
I()Czl = = l'5(1 . 9)2 §(Gc + 37]GQ)GM[(E —2ME n-— M n)
—mi(1+n)]"?ME'n(1 +n)"?,
«’F PR — 2 32 12
LCps= GulE'(E'—Mn) —mi(1+n)IMn™"(1+ n)™

I'5(1— cos 9)2°

As far as one can understand the way in which the results are presented on page
71 of Ref. 4, our exact expressions for the three tensor analyzing powers seem to
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agree with the approximate expressions given there. However, one of the results
for A, or A; given in Ref. 4 is incorrect by a factor 2.

As for a spin 3 target, one wants to write expressions for the polarization
parameters which refer to components of the vector and tensor polarizations of
the target in the (xyz) frame. For the spin correlation coefficients, (4.7) holds as
before. For the tensor analyzing powers we have the relations

AL =cos207A% + 1sin20,(AT, — A2,) — 3 sin 26,A%,
AL - AL = —sin 20,47 + (3 + cos 207)(AT, — AL) + 3(1 — cos 2601)AT,
AL =sin26,;A% + 3(1 — cos 207)(AT, — AL) + 3(1 + 3 cos 26,)AT;,

where cos 87, sin 6 are given by (4.8). Experimentally it is possible to have the
polarization direction of a deuteron target along or transverse to the beam
direction. The technique for making such a polarized target produces tensor and
vector polarization together, so that eventually it may be possible to measure
some of the spin correlation coefficients (with a polarized lepton beam) or
perhaps the analyzing powers AL, — Al and AL (though the currently attainable
degree of tensor polarization is small).

Measurements of I, at various energies and angles suffice to separate
Gt +8n°GY from G%,. However, the measurement of a suitable polarization
parameter is needed to distinguish G- and Gy. It is hard to see which type of
experiment is most likely in time to provide this information. If both the beam
and the target are unpolarized, the recoiling leptons are unpolarized if the spin
state of the outgoing spin 1 particle is undetected. When, however, the spin state
of the outgoing lepton is undetected, the recoiling spin 1 particles have a tensor
polarization characterized by parameters ps;, (p1; —p2) and ps3;, where from
reciprocity ps = —A%, pi—pn=AL — AL, psz=AZL. If one could determine,
by measuring the asymmetry in a suitable second scattering, the quantity
pPxn=AX;, one could thereby distinguish G- and G,. We have seen that
experiments with a polarized target could also do this.

With extra work, the methods of this paper could be extended to calculate
polarization transfer coefficients. For example, when a polarized lepton beam is
incident on an unpolarized spin 1 target, the recoiling spin 1 particles have, in
addition to the tensor polarization given in the previous paragraph, a vector
polarization whose parameters are given by

p1=C,pt+ C.pl,
p2=Cypl,
5= _C3xpi - Cszplz-

For a spin 3 target, the same relations also hold for the polarization of the

recoiling target particles. More elaborate calculations could be made to obtain
other polarization transfer coefficients. For example, we have calculated the
coefficients which give the polarization of the outgoing leptons in terms of the
polarization of the lepton beam, when the target (spin 3 or spin 1) is unpolarized.
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However, experiments to measure these and other polarization transfer
coefficients seem a remote possibility.
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