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On the decomposition of relativistic quantum
field theories into pure phases

By Wulf Driessler') and Stephen J. Summers?)

Fachbereich Physik, Universitidt Osnabriick, D-4500 Osnabriick, Federal
Republic of Germany

(17. V 1985)

Abstract. We give two new, independent, sufficient conditions that individually insure that the
extremal decomposition of a Wightman state on the polynomial algebra (equivalently, the Borchers
algebra) of a relativistic quantum field is actually a decomposition into pure phases, i.e. the clustering
property is satisfied in each extremal state occurring in the decomposition. Moreover, the
corresponding representation also decomposes into a direct integral of irreducible representations
with unique vacua.

I. Introduction

For more than twenty years [1] integral decompositions of representations
and states on the polynomial algebra ?(R9) of a relativistic quantum field @(x)
satisfying the Wightman axioms have been studied. The primary aim from the
point of view of physics has been to decompose a given quantum theory into its
component pure phases. It is known [2] that if w is a vacuum state on P(R9),
then there exists a decomposition w = [ w; dv({) of w into extremal, vacuum
states w, on P(R9).

Here extremal means that both the strong and weak commutants of ?(R¢) in
the corresponding representation consist of multiples of the identity (for details,
see Section 2). The representation of ?(R) associated with w also decomposes
into the direct integral of the representations associated with the w, occurring in
the decomposition of w. However, it has been shown [2, 3] that, as opposed to
the situation in the bounded algebraic formulation of relativistic quantum theory
[4,5], the extremal states w, are not necessarily pure phases, i.e. the cluster
decomposition property [6,7] may not hold in each w, appearing in the
decomposition of w.

Abstract necessary and sufficient conditions have been given [8] under which
the elements @, of the decomposition of w do indeed fulfill the cluster
decomposition property. However, these conditions do not seem to be readily

'y Present address: SternstraBe 5, D-5800 Hagen 1, Federal Republic of Germany.
%) Address after July 1, 1985: Dept. of Math., University of Rochester, Rochester, NY 14627,
USA.



332 Wulf Driessler and Stephen J. Summers H.P.A.

verifiable in concrete cases. Until now, there appear to be two known sets of
usable sufficient conditions under which the extremal decomposition must yield
only pure phases. The first one [1, 3] requires, stated for a scalar, Hermitian field,
that each symmetric field operator @(f) be essentially self-adjoint on the standard
domain D, and the spectra resolutions of the self-adjoint closures @(f) [ D, and
@(g) | D, commute if the supports of f and g are spacelike to one another. The
second one [9, 10] demands that the Schwinger functions obtained by analytically
continuing the Wightman functions of {w, ¢(x)} to the purely imaginary time
points are the moments of a Euclidean-invariant probability measure that satisfies
a certain positivity property (this approach excludes Fermi fields). For both of
these sets of sufficient conditions there are examples of nontrivial quantum field
models in which they hold.

In this paper we present two new, independent, sufficient conditions, one of
which clearly weakens the assumptions made by Borchers [1,3]; the second
condition holds in many known quantum field models and is expected to obtain in
all models with a positive mass gap. The first condition requires that there exists
at least one ‘intrinsically local’ field operator ¢@(f;) [11], i.e. a field operator
whose closure @(f,) [ D, (which need not be selfadjoint) is ‘local’ with respect to
its own Poincaré transforms — see Section 2 for an exact definition. The second
condition assumes that all operators @(f), with fe $(R4) having a Fourier
transform with compact support, satisfy a generalized H-bound, i.e. for each such
test function f there exists a strictly positive function F; on [0, «) such that
|@(f)F;(H)|| <<, where H is the generator of the time translations for the field
@(x). In both cases we shall show that a von Neumann algebra & can be
constructed to which some closed extension of every field operator @(f) is
affiliated ([12] - see Section 2), and that the central decomposition of & yields a
direct integral decomposition of the representation of ?(R?) associated to any
vacuum state w into irreducible representations with unique vacua and satisfying
the rest of the Wightman axioms. Further results that may have independent
interest are proven along the way.

For the sake of simplicity of presentation, we shall consider only scalar,
Hermitian quantum fields, but all the results can be straightforwardly extended
for any relativistic quantum field with finitely many components satisfying the
axioms of [7]. We shall also assume the fields to be tempered distributions, but
here again the results are valid for larger classes of generalized functions, e.g. for
those considered by Jaffe [13]. All results holds for space-time dimension d =2, 3
or 4.

In Section 2 further background and the main results are given and briefly
discussed. Section 3 presents the proofs in the case of fields satisfying generalized
H-bounds, and Section 4 gives the necessary details for fields with a suitable
intrinsically local operator ¢(f,).

II. Main results

In this section we shall introduce notation and state the main results of the
paper, postponing most proofs to the following sections. @(x) will denote a
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scalar, Hermitian relativistic quantum field satisfying the usual axioms [7] with the
possible exception of the uniqueness of the vacuum. Thus there exists a separable
Hilbert space %, in which a strongly continuous, unitary representation U(%) of
(the universal covering group of) the Poincaré group ! satisfying the spectrum
condition acts. If P, is the projection in # onto the subspace of all vectors
invariant under the translation subgroup of U(21), it is assumed there exists a
vector Q € Py such that D,= Z(R%)Q is dense in ¥, where Zy(R?) is the
* -algebra of all polynomials of operators {@(f) | f € #(R?)} including the identity
I on #. It follows easily from the axioms of [7] that there exists, for any n € N and
any f € #(R%"), an operator @{f} symbolically defined by

Pif) = [ d% df, L x)e@) @) (on DY),

The polynomial algebra of such operators is well-defined and denoted by #(R9),
and D, = 2(R%)Q is a dense, invariant domain of definition for all elements of
P(R%). Other subalgebras of P(R?) we shall have need of are the following:

Poc(R?) (resp. Z.(R?)) is the polynomial algebra of operators {¢(f) | fe DR}
(resp. {@(f) |fe H(R4)}, where H(RY)={f|fe D(R?} with f the Fourier
transform of f).

It will be assumed that the decomposition theory [14] of von Neumann
algebras is familiar to the reader. A von Neumann algebra & in a separable
Hilbert space # is decomposed with respect to a maximally Abelian algebra Z in
&', the commutant of &, to yield a standard Borel measure space (S, v) and
measurable families ({— %#({)) of Hilbert spaces and ({— #({)) of von
Neumann algebras such that

& ®
2’6=L #H(Z)dv(f) and .94=L A(8) dv(E). (2.1)

For v-almost all £, #£({) is irreducible in #/({). It is also possible to use Choquet
theory to decompose any state @ on & into pure states {®,} on &, so that the
associated GNS representations {, } of & are irreducible. However, unless w is a
normal state on &, (2.1) will not, in general, hold for this decomposition.
Similarly, given ?(R9) (in %) and the state  on P(R?) determined by
(Q, - Q), it is possible to consider the decomposition of either the state or the
representation of ?(R9) in #. The former has been carried out for a general
quantum field theory in [15] using Choquet theory and the nuclear spectral
theorem. The decomposition of the representation, which includes the former as
a special case and carries more information, was studied in [2], where, due to the
fact that P(R?) is an algebra of unbounded operators, it was found necessary in
general to extend the representation in a certain sense and to decompose this
extension. The extension was necessitated by the fact that the weak commutant
(P(R?)),, (see (2.2)) of P(RY), which is the analog to &', is in general not an
algebra, and a decomposition with respect to a maximally Abelian algebra in
(P(R%)),, will not necessarily result in a decomposition into irreducible repre-
sentations, i.e. representations in which the weak commutant is trivial.
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However, whether one decomposes the state or the representation, it can
happen [2] that the extremal states in the decomposition do not satisfy the cluster
decomposition property, i.e. in the associated irreducible representations the
subspace of Poincaré-invariant vectors has more than one dimension. As
previously mentioned, necessary and sufficient conditions that assure that the
resulting extremal states do cluster have been given in [8]. These conditions are
difficult to verify directly in concrete models. Two sets of sufficient conditions
have been isolated [1, 3, 9, 10] that are useful in certain models.

We shall be occupied with the consequences for the decomposition theory of
a relativistic quantum field that follow from two new, independent conditions on
the field. Under either of these conditions the extension of the representation of
P(R?) performed in [2] will not be necessary, and the resulting extremal states in
the decomposition will satisfy clustering, i.e. the extremal decomposition of the
representation results in a decomposition into pure phases of the theory. First we
define what it will mean to say that the field ¢(x) satisfies a generalized H-bound
(H is the generator of the time translation subgroup of U(%1)).

Definition 2.1. A quantum field @(x) will be said to satisfy a generalized
H-bound if for each f € #(R?) there exists a monotone decreasing function F; on
[0, ), with F(x)>0 for all x €[0, <), such that F,(H)# < D(@(f)”) (where
®(f)~ is the closure of @(f) taken on D) and ||@(f)”F(H)|| <.

Any quantum field with a positive mass gap is expected to satisfy a
generalized H-bound, and this expectation has been verified in a large number of
concrete field models [16, 17, 18].

The second condition is a special case of a concept that was introduced in
[11]. If X is a closed operator and X = U |X| is its polar decomposition, the von
Neumann algebra a(X) generated by X is that generated by U and the spectral
projections of |X|. If & is a von Neumann algebra and X is a closed operator, X
is affiliated with & (in symbols, Xn«/) in the sense of [12] if for every unitary
Ue ', the commutant of &, UXU'=X. a(X) is, in fact, the smallest von
Neumann algebra to which X is affiliated.

Definition 2.2. If ¢(x) is a quantum field, the operator @(f,)(f, € #(R%)) will
be said to be intrinsically local and locally associated with the bounded set
0, cR?if D, = #,,(R?)Q is dense in %, where ?, (R?) is the polynomial algebra
of the operators {UA)@(f,)U(A)"*|Ae 2L}, and if the von Neumann algebra

a(e(f,) I D,) = a, generated by the closure of @(f,) | D, satisfies: U(A)a,U(A)™' =
a, wherever O, , is spacelike relative to 0, A € 1.

Of course, if the field satisfies the assumptions made in [1] (see Introduc-
tion), then every field operator @(f) with fe $(R?) having e.g. strictly
nonvanishing Fourier transform is intrinsically local. A simple example of a Bose
field that is not known to conform to the hypotheses of [1] but for which all ¢(f)
are intrinsically local, f € $(R?) as above, is @(f)=:@g: (f) for any odd n =3,
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where @g(x) is the free scalar field (for even n =4 one must simply restrict  to
the even particle subspace of Fock space; then such operators are intrinsically
local in this subspace).

Before stating the main result, we must introduce further notation. If ? is a
#-subalgebra of 2(R9), the weak commutant ?! of 2 is defined to be:

P, ={AcB(¥)| (AD, X¥) = (X*D, A*W),VXeP, &, ¥eD}). (22

B(#) is the set of all bounded, linear operators on #. The strong commutant %
of 2 is given by

P.={AeB(HK)|AD,c(X) and [A, X]P=0,VXeP, ®eD,}.

X (or X~) will always signify the closure of the operator X | D;. And X* will
always mean (X | D,)*. Note that if A € ?/, then AD(X) < D(X) and [A, X]=0
on D(X) for any X € . Of course, ?. < ?.,. For further, general properties of
such sets of operators we refer the reader to [19, 2].

In the following, it will be important to know that if & is a von Neumann
algebra contained in %], then for each X € % there exists a closed extension X of
X | D, (not necessarily equal to X) such that Xns{’. Indeed, X is the closure of
D, of the operator defined by XA® = AX®, ® € D,, A € «. Finally, we remark
that, in the following, sets of vectors with overbars signify the norm closures of
the given sets.

Theorem 2.3. Let @(x) be a scalar, Hermitian quantum field satisfying the
axioms of [7], possibly excepting the uniqueness of the vacuum. Then if either (1)
@(x) satisfies a generalized H-bound or (2) there exists an f, € D(R?) with
£.(p)+0, ¥p e R% such that ¢(f,) is intrinsically local (and locally associated with
O, o> supp (f.)), then there exists a von Neumann algebra s{ such that

() '=Z(A)=AN A’

(i) o' =PR),;

(i) A'Q =Py and U(P])c o;

(iv) under the central decomposition of s [14] the Wightman functions of
@(x) decompose into a direct integral of Wightman functions, i.e. there
exists a standard Borel measure space (S, v) and measurable families of
Hilbert spaces ¢ — #(C) and von Neumann algebras C— s4(L) such that
for any n €N, (£}, < F®R?),

(@ (ITot))= [ Weth ... £)av@),

and {W.(xy, ..., x,)},cn satisfies all Wightman axioms [7] including
clustering for all ¢ € N < S with v(S\N) = 0; moreover

(23] oD
% = f #(E)dv(E), o = f s4(8) dv(Z),

A(L) = B(H(L)) v-almost everywhere, and for all e N, H(C) is the
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Hilbert space obtained by the reconstruction theorem of [7] from
{(We(xy, oy X)) b nens With Q(8) the (up to a factor) unique vacuum
vector in (&) and Q = [P Q(&) dv(§);

(v) all conclusions of Theorem 3.3 of [2] hold with (P(RY), D,) (our
notation) = (A, &) (their notation);

(vi) for any feF(RY) for which |@(f) g(H)|| <, the estimate
()~ (O)g(H(E)|| <« holds for v-almost all §, where H= 2 H-
(€) dv(0).

Remarks. 1) What is actually shown in the following proof is that if there
exists a von Neumann algebra & satisfying (i)—(iii), then (iv)—(vi) hold. It is
proven in the subsequent sections that (1) or (2) implies the existence of
satisfying (i)—(iii).

2) Clearly, condition (2) weakens the assumptions made in [1]. On the other
hand, the hypotheses of [9, 10] would seem to exclude application to Fermi fields,
while, we reemphasize, the methods of this paper are applicable to any quantum
field with finitely many components.

3) For reasons of space we do not list the conclusions of Theorem 3.3 of [2],
which concern continuity properties of the decomposition of the representation
and can be, in any case, read off the following proof.

4) The assertion (vi) is an extension of a result in [20].

5) There is an abundance of test functions f, € Z(R9) satisfying f,(p) # 0 for
all p € R¢, as is easily verified [11].

Proof. Under the assumption (1), the existence of & satisfying (i)—(iii)
follows from Prop. 3.6 and 3.10. Under the assumption (2) these results are given
by Prop. 4.1 and 4.2.

Turning to (iv), let (S, v) be the standard Borel space and {— #(&) and
§— #(8) be the measurable families of Hilbert spaces and von Neumann
algebras arising from the central decomposition of & [14]. Then

2] (5 7]
%:L H(E) dv(E), sa¢=fs A(&) dv(8),

and by (i) and (iii), () = B(#({)) and dim ((P,#)(E)) =1, for v-almost all .
Since U(?]) < o, one can use [21] to conclude that there exists a measurable
family £— U(21)({) of strongly continuous, unitary representations of the
(covering group of the) Poincaré group satisfying the spectral condition such that
UPY) = [ UPI)(&)dv(E) and such that (P,3)(&) = Py(§)#(E) for v-almost
all . Thus the vacuum in v- almost all phases #/(¢) is unique (up to a factor). Of
course, with Q= [P Q(&) dv(£) one has Q(&) € P(£)%#(&) and U(A)(E)Q(E) =
Q(&), YA e P1, for v-almost all ¢ (independent of 1).

By (ii), for any X € ?(R¥) there exists a closed extension X that is affiliated
to &f. From [22, 23] it is known that this extension also decomposes under the
central decomposition of & into densely defined, closed operators X = [© X({)
dv(g) for which D(X)>® = [? ®({)dv(L) is equivalent to ®(E)e D(X(L))
v-almost everywhere and [ || X(&)®(&)||? dv(§) <. These assertions hold, in
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particular, if X =g(f), for any feS(R¢). By Theorem 6.3 in [24], if

{@(f,)"HIX, is a finite set of such decomposable closed operators, then the

closure of IIY; @(f,)~ on its natural domain of definition (which contains D,) is

also decomposable, and for v-almost all &, (ITY.; @(£)7) (&) = I, ¢(f) ()",
where the bar signifies the closure of the operator on the natural domain. Hence,

(e (Low)a)=(e. (ot ) o)
- [ (2@ (o) ®2@®) @)

- [ (0@ ([T ot @) a@)ave)

Since @ € D(@(f)™) implies ®() € D(p(f)~(£)) for v-almost all £, this equals

REG! (ﬁ P () (0))2A8)) av (&),

F(R?) and P are separable, and it is possible to pick a countable, dense, linear
subset ¥ = #(R?) and a countable, dense subgroup # = ?1 so that the induced
action of ? on ¥(R?) maps & into itself. Then there exists a set N < S with
v(S\N) =0 such that for each {eN, (II¥; @(f;)"(£))R(f) is multilinear on
&, YN € N, and such that

vaO(I1 et ©)2 = ([T o) ©)20,  Vre?, NeN.
(2.3)

(f, is the image of f under the induced action of A € ?1 on s(R?).) From [25] or
[26, Section 1.4.4] one may conclude that there exists a set Nyc N with
v(S\N,) = 0 such that for all { € N, the mapping

7: ([Toth)o—(IT et (©)20),  nen, 2.9
i=1 i=1
is nuclear as a map from D,, viewed as a nuclear vector space with the standard

topology (see [1]), into (), and there exists for each n e N a norm || |4,
continuous in the topology on ¥(R“") such that

KQ(C)’ ([[1 ‘P(ff)’"(?))g(?)ﬂ =COL® - Bfyllsm CE)<»,  (2.5)

for all {f,}7_, = &. Hence, by (2.3) and (2.5), the strong continuity of U(?1)({)
and the continuity of the induced action of 21 on ¥(R¢),

Wlh - £ =(200. (Tet)@)20)  ten,
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can be extended uniquely to a Poincaré-invariant, tempered distribution on
F(R4"), for any n € N. The remaining axioms of hermiticity, local commutativity
and positive definiteness of {W,(x,, ..., x,)},n can be shown similarly, at the
possible cost of throwing out a set of v-measure zero; this is left to the reader.
The clustering property of the Wightman functions W, (x,, ..., x,), neN, for
v-almost all { is implied by the uniqueness of the vacuum in #({) and the other
Wightman axioms [6, 7].

In light of (2.4) and (2.5) the assertions made in Theorem 3.3 of [2] hold with
(P(R4), D,, T;) (our notation) = (4, 9, E,) (their notation), as is easily verified.

Finally, since the group U(%!) is contained in &/, H must be affiliated to &/
and is, therefore, decomposable into positive, selfadjoint operators H({) [23] that
are the generators of the time translation subgroup of U(21)(&) [21]. For any
f e #(R?) such that ||@(f)~g(H)|| <=, one has, calling once again upon Theorem
6.3 in [24],

D
o(f) g (H)® = p(f) g(H)® = f (@(f) g (H)®)() dv(£)
D
= f P() (O H)ODE) dv(E), Ve %

But g(H)(§) =g(H(&)) for v-almost all ¢ [21]. Therefore, ||@(f)~(&)g(H ()|
must be finite for v-almost all &, since ||@(f) g(H)|| is equal to the L*(S, dv)-

norm of ||[(¢(f)"g(H))(§)||. O

III. Fields satisfying generalized H-bounds

Throughout this section we shall assume that ¢(x) is a scalar, Hermitian
quantum field satisfying the axioms of [7], with the possible exception of the
uniqueness of the vacuum, and a generalized H-bound in the sense of Def. 2.1.
We first remark that if @(x) satisfies such a bound, then for any G € Z(R),

le()~GH)|| <=, VfeH(RY). (3.1)

This is clear since with f € #(R?) and F; as in Def. 2.1, ||F,(H)"'G(H)|| <= by
the spectral calculus theorem. Moreover, it is known that (3.1) implies that there
exists a Schwartz space norm || - || s such that

le(N"GEDI =fllsc  VfeFRY. (3.2)
For a proof of this, see the Appendix. A trivial consequence of the H-bound (3.2)
is that Py <= D(@(f)™) and @(f)~ | B, is bounded for any f € $(R?). In fact, P,
can be replaced in these assertions by any spectral projection E _.. , of H with
a <, Henceforth, a vector ® € # such that E _. 5 © = for some a < will be
said to have bounded energy support.

Lemma 3.1. If @(x) satisfies a generalized H-bound, then for any X e
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P.(R?), D(X7) > P(P(RH)Q) and X~ | P(P,(R)Q) is bounded. Thus, Py
D(X").

Proof. Let X € Z.(R9), tesp. Y € Z(R?), be a monomial of degree k, resp.
m, in the field. The general case follows easily from this one. To begin, one notes
that FYQ=s-lim, . G,(H)YQ, with G,(0)=1 G,eP(R), G,=0, and
supp (G,)<[0,n7'], for all neN. For any neN, G,(H)YQe{p{g}Q|ge
F(R¥)} = D,, so that G,(H)YQ e D(X). Since X =[I%, o(f;) with {f}L, <
J#(R%) and the energy support of G,(H)YQ is contained in [0, n~!], for any fixed
N eN there exist functions {F}‘,c P(R) with F =0, such that for any
je{l, ..., k},

B (1T oEED) Gy v = (1T o) Gy e,

In fact, one chooses F(x)=1 for xe[0, N7!], E(x)=1 for x e[-n, N"'+ n,]
where [—7,, n,] is the smallest symmetric interval containing supp (f,), and so
forth. One has then XG,(H)YQ=A,G,(H)YQ, Vn=N, where Ay=1I~,
(p(f,)"E(H)) € B(J). This entails at once that P, YQ e D(X™) and X F,YQ =
ALPYQ. O

Given a field @(x) that satisfies a generalized H-bound, we define the
* -algebra o, to be that generated by the bounded operators

{p(f) " F(H), GH)|feHRY, [ GeDR)}. (3.3)

We shall say that a monomial A € &/, in the generators (3.3) is of order n if it
contains # field operators, irrespective of the other factors in the product. &£, has
been defined so that of = fj, the von Neumann algebra generated by &,
contains all bounded functions of H; therefore F,e «. Moreover, the energy
support of A® is bounded for any A € A, P € ¥.

Lemma 3.2. If ¢(x) satisfies a generalized H-bound, then Q=¥ and
ﬂODlng‘

Proof. For every monomial X =TI, ¢(f), {f;}/-; = #(R?), one has XQ =
AxQ, with Ay =11, (¢(f,)F;(H)) and {F}, = 9(R) chosen as in the proof of
Lemma 3.1. But as Z.(R%)Q is dense in %, the first assertion of the lemma

follows at once. The second claim is clear since F(H)D,c D, for any F e
9R). O

In the next lemma we show that we can replace the test functions f € #(R?)
in (3.3) by test functions f e @(R“) and still obtain the same von Neumann
algebra.

Lemma 3.3. If ¢(x) satisfies a generalized H-bound, then

A =B={e(f)"F(H), GH)|f e 2R), F, G € D(R)}".
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Proof. Since #(R?) is dense in ¥(R9), given any f € @(R%) there exists a
sequence {f,},n = H(RY) such that {f,},.n converges to f in the topology of
F(RY). By (3.2), for any F € 9(R) and ® € D,,

I(@(f) — eMNFE)|| = [|o(f, - HFE)P| = [|f, = fllor ||,

so that ¢@(f,)"F(H) converges in norm to ¢@(f)"F(H). It follows that any
generator of & can be approximated in the norm operator topology by operators
from (3.3), entailing B < . o = B can be shown by the same argument using
the fact that 2(R?) is dense in #(R%). O

Let D = #.(R9)P,%, where Z(RY) ={X"| X e Z,(R%)}. By Lemma 3.1 this
set of vectors is well-defined. Since every vector ® € D has bounded energy
support, (3.2) entails that ® € D(@(f)~) for every f € #(R%). Moreover, arguing
as in Lemmas 3.1 and 3.3, it is easy to see that if {f, },.n = $(R?) converges to

f € #(R?) in the topology of #(R¢), then @(f,)~ converges strongly to @(f)” on
D. From [3, Theorem 1] we now know that for any X € P,.(R%), BbLXQe D(Y")
for all Y € #,.(R9) (indeed, it is easy to see that (ZY) P, XQ=Z"Y P,XQ, VX,
Y, Z € ?,..(R%). Thus, for every such Y the operator P,Y P, can be defined in
P,%. Theorem 2 in [3] informs us that the map %, .(R%) >Y— F,Y P, maps
Po(R?) into an Abelian algebra in P,%. We show that if the quantum field
satisfies a generalized H-bound, then also P,2_.(R%)P, is an Abelian algebra.

Lemma 3.4. If @(x) satisfies a generalized H-bound, then (P,?.(R%)P,)" is a
maximally Abelian algebra on Py.

Proof. Since Py?.(R9)Pyc B(P,#) and P,?,(R%)Q is dense in P, it
remains only to show that P,? (R?)P, is Abelian. It suffices to consider two
monomials X =[I\_, ¢(g,) and Y =112, ¢(f;) in #.(R¥). For each g; and f, pick a
sequence {g*)}, . and {f{"},. in D(R?) converging to g; and f; in the topology of
F(RY). If (ky, ..., k,)eN*, (I,...,1,)eN"and ®, Pe POQ’IOC(R")Q, then

(B(I1 o) @ (I wr) w)

=(([1etm) @ 7(I1 oe)) )

by [3, Theorem 2]. By using the remarks made in the paragraph preceding this
lemma, one can take the limit k,— o and obtain

<(EI cp(g§k‘))‘)¢, <29(g’i‘)‘I‘JO(I_ITI1 m(f,""’))_‘l’>
<(H 1;0(5'(""))‘Po(]__lrf[1 w(f}""))*@, fp(g’i‘)“P>,
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employing the simple fact that @(g)* | D = ¢(g*)~ | D, Vg € #(R?), where g* is
the complex conjugate of g. This process can be continued, yielding

<Po(i=1£[1 qo(gi)‘)fb, (}lrjl qo(ﬁ-)‘)llf> = <(§Il <p()§-))*<D, P(,(izlﬁ[I qo(g,.))*tp>.

Since P, X~ F, is bounded for every X € ?.(R%) and P,%,,(R9)Q is dense in Py,
the proof of the lemma is completed. [

We note that if @(x) satisfies a generalized H-bound, then f— @(f)~ defines
a linear map from ¥(R9) into the set of linear operators defined on D such that
f—=A{%, p(f)~®) is a tempered distribution for all We %, ® e D (use 3.2)).
Thus, (¥, (IT~, (f,)")®), We ¥, ®eD, {f}, < H(R?), is continuous in the
topology induced on #(R¢) by $(R¢) in each variable f; e #(R“) singly. In
particular, it is separately continuous in each variable in the usual topology on
J(R?) (which is simply the analog to that on 9(R?)). Since ¥ (R?) is nuclear
for all d and #(RY) ® ¥(R') = #(R**!), the nuclear theorem entails that
(W, (I, @(f,)")®) defines a unique functional Ty , € ¥'(R). It is easy to see
that, in fact,

Tyolgl = (¥, p{g} @), Vg e XR"), Wed¥ ®eD. (3.4)
We shall need the following simple lemma.

Lemma 3.5. If @(x) satisfies a generalized H-bound, then for any F € D(R)
and any ® € Py, F(H)@p{g} ® = @{h}~® for any g € H(R*"), where

Wos ..o =F(2 p2)E@s - - P

Proof. Given (3.4) and the obvious fact that U(a)p{g} P =¢{g.} P,
where g,(x;, ..., x,)=g(x,—a, ..., x,—a), the proof follows that of Lemma 49
on page 224 of [27]. O

Proposition 3.6. If @(x) satisfies a generalized H-bound, then s{' is Abelian
and 'S = P, ;

Proof. First it is asserted that for any X € ?.(R¢) and A € &,

(P, X PY¥, PLAP,®) = (P, A*P)W, P, X*P,®), VO, ¥ € ¥.

It suffices to consider a monomial A of order n: A =G(H)(I1%., ¢(f)"FE(H)) €
A, {fi}r, = H(R?). By repeated use of Lemma 3.5, there exists a g € % (R")
such that Ay = ¢{g} " for any y € P,3. Thus, P,AP,® = P,p{g} F,®. Since the
linear hull of test functions of the form II", f.(x,), {f;}7-; = #(R?), is dense in
H(R*") in the usual topology, one may use (3.4) and Lemma 3.4 to conclude

(RX™RY, Pop{g} R®@) = (Rop{g}*RY, BRX*F,®).

The assertion then follows easily since @{g}*=@{g*}~ on P, Vg e X (R™),
where g*(x, . . ., x,,) is the complex conjugate of g(x,, . . ., x;).
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Therefore, (P,2.(RY)P,)" < (P,4P,)', implying P,AP,c (PP?.(R)P,) =
(P2 (RY)P,)", since (P,?.(R)P,)" is maximally Abelian on P,%. Hence Pys{P, is
maximally Abelian in Py#, by Lemma 3.2. Since P,d'P,=(Py4F,)' and the
central support of P, in & is the identity (this is a trivial consequence of Lemma
3.2 and [14, Corollaire 1.1.1]), &' is isomorphic to Pysf'P, [14, Prop. 1.2.2], and
hence Abelian. Moreover, o'Q = P, Q is dense in P, (Lemma 3.2). O

We recall a well-known result about the weak commutant of P(R¢), stated in
a form suited to our purposes.

Lemma 3.7. For any P = P(R?) such that U(a)PU(a)™' = P for all a e R?
and such that {X ® | X € P, ® € P,¥ ) is dense in ¥, one has P,,c U(R?), i.e. the
operators in P, are translation-invariant.

Proof. A simple proof using only the spectrum condition can be inferred
from [4]. O

We may now prove the assertions made in Section 2 about the connection
between the von Neumann algebra & and the polynomial algebras of the field

@(x).

Proposition 3.8. If @(x) satisfies a generalized H-bound, then (P?.(R9)).,
(Poc(R)! and (P(R4))! are contained in oA'.

Proof. By the previous lemma, all three algebras commute with all trans-
lations, therefore they commute with all bounded functions of H. It follows easily
that (2.R9).o«’'. Similarly, using Lemma 3.3, (%,.(R%).<c «’. Since
(P(R?)! = (?.(R?))., the proposition is proven. [

Proposition 3.9. If ¢(x) satisfies a generalized H-bound, then ' = (P.(R?),.

Proof. Let X,Y e ?,(R?) be monomials and A'€ «'. Then A'XYQ =
A'AyyQ, with Ay, € o constructed as in the proof of Lemma 3.1. Thus,
A'XYQ =AyyA'Q. But since P € o, one has A'Q2 € F,. Therefore, it is easy to
see that Ax,yA'Q=XYA'Q by using results established in the proof of Lemma
3.1. Of course, by the same argument, A'YQ =YA’'Q, so that A'’YQe D(X")
and [A’, X"]=0 on Z(R%)Q. However, since #.(RY)Q is a core for X, if
® e D(X ™) there exists a sequence {®,}, ., < 2.(RY)Q such that ®,~>® and
X ®,~—>X " ®. Then A'®,~>A'®P, and since X"A'®,=A'XD, for any n e N,
one must have A'/®e D(X")and X " A'd=A'X"d. O

Thus, if @(x) satisfies a generalized H-bound, (%.(R?))! is a von Neumann
algebra and 1s equal to f'.

Proposition 3.10. If @(x) satisfies a generalized H-bound, then s{'=
(P(R?)),,. Furthermore, U(P]) c A.
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Proof. Let B' € (?(R%)),,. Then B’ is translation-invariant, and since the
generators (3.3) of o leave D, invariant, it follows that for any A € &, (B'®,
AY) = (A*®, B'*W) for all ®, ¥e D, Since B’ and A are bounded, one
concludes (Z(R%)),, < «'.

On the other hand, A’ € &' commutes strongly and thus weakly with Z.(R9)
(Prop. 3.9). But any operator in ?(R¢) (on D,) is a strong limit of operators in
?.(R%), using the now-obvious argument, so that &’ < (?(R9)),.

Finally, by Theorem 3 in [1] all vectors in Py% are U(%])-invariant. Since
URA)(PRY))., UA)™=(P(RY), for all Ae P!, and since Q is separating for
' (use Lemma 3.2), Prop. 3.6 entails that U(A)A’U(A)"'= A’ for any A’ € &’
and Ae ?1. O

IV. Fields with intrinsically local operators

Let f, € 9(R?) have a Fourier transform that vanishes nowhere. We shall
assume that ¢@(f;) is an intrinsically local operator in the sense of Def. 2.2. If
Wi = {x e R¢| |x°| <x!}, where x° is the time coordinate, define

A(Wg) ={a(@(f;2) 1 D) | supp (f,1) = Wg, A € 21}

and

A ={a(e(f,) I D,) |1 e P}
using notation established in Section 2. Furthermore, if % ={Wy,|Ae 21} (for
d =2, the transformation x — —x is included in defining %) is the set of wedges
and X is the set of double cones (interiors of intersections of some forward light
cone and some backward light cone), we define
AWg1) = UQ)L(We)UA)™, Ae P,
AO) = N{AW)|OcWeW)}, 0Oecli,
AO)V={AW) | W >sW 0O}, Oe X,
then {A(0)}0 45 defines a Poincaré-covariant net of local von Neumann
algebras that satisfies the special condition of duality. That is to say, &(0)=
A(0")' for any Oe WU K UK’ and if {V(t)},.r is the Abelian subgroup of

U(21) representing the Lorentz velocity transformations in the 0-1 direction,
then the dense sets &f(Wz)Q < D(V (ir)) and o (Wg)Q < D(V(—im)) satisfy

JV(in)AQ=A*Q, VAed(W), (4.1)
JV(-im)BQ=B*Q, VBe (W), (4.2)

with the antiunitary involution J = U(x,, 0) ©,, with ®, the TCP-operator for
the field @(x) and U(w,, 0) the rotation by angle & around the 1-axis.
Furthermore,

(W)’ = s(Wg) = Tt (Wi)J. (4.3)
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See [11] for further details and results. In addition, it is known [28, 29] that
JV(ImXQ = X*Q, VX € Py(Wy), (4.4)
JV(—=in)YQ =Y*Q, VY € Z,(WR), (4.5)

where for 0 c R4, %,(0) is the polynomial algebra of operators {@(f) | f € F(R9),
supp (f) = 0}. In the following, %, (0) will denote the polynomial algebra of

operators {@(f, ;) | A € 21, supp (f.,;) = O}.
The following proposition collects some further results that have been proven

in some of our other papers.

Proposition 4.1. Given the assumptions and definitions stated above, the
following are true:

(1) Q is cyclic for A in ¥,
(i) ' =Z(A)=ANA = Z(AW)=A(W)N A(W)', VW e W;
(i) &'Q = P,%;
(iv) U(P]) c «.
Proof. (i) is shown in [11] and is a straightforward consequence of the
requirement that f,(p) # 0 for any p € R% (ii), (iii) and U(R%) c o follow from

Prop. 3.1 of [5]. U(L]) < o is entailed by the special condition of duality and
Prop. 5.3 of [5]. O

Finally, we must show the following to be true.

Proposition 4.2. Given the assumptions and definitions stated above, ' =
(PR),-

Proof. It will first be shown that ' c(%(R%)),. By definition of
o(f,,) " nd, for all A € P1. Therefore, for any A € P]

(p(f,)2,AT) = (A"™*D, p(f*,)¥), VA'esd', ® WeD,

But since the linear hull of {f, , | @ € R} is dense in $(R?) [11], it follows easily
that for any f € (R%)

(p(f)®, A'W)Y = (A" D, p(f)*W), VA esd', ® WeD, (4.6)

Since D, is invariant under % (R?), iteration of equation (4.6) yields A'e
(Z(R%)),,. Of course, (Z(R%))., =(P(R?)),, completing the proof of the
required containment.

It remains to show that (?(R%)), < &’. Some preparation is necessary. By
definition and [12],

AW) c{e(f) |Ae Pl supp () =W}, VWeW

(note that @(f) [ D, = @(f) I D, Vf € #(R) [11]).
Thus, for any Aed(Wg)=dA(W)', Be(F(Wg)),, and IIL,@(f)e
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Fos(Wr),
<AB<I>, (lj[1 w(ﬁ))‘l’> = <B<I>, qo(ﬁ)“A*(I]2 w(ﬁ))‘l‘>

- (wtt 50, 4(TT o)) = (Bory°o, a({T ott))w),
V&, We D,

(because B € (Py(Wg)),, implies that BX* = X*B on D,, for any X € Py(Wg)).
This process may be continued to yield AB € (%,(Wg)),. Similarly, BA €
(Po(W5)).. Moreover, since Z,(Wx)Q is dense in ¥ and V (£) P, (Wr)V (t) ™ =
Po(Wh), Yt € R, Lemma 13(c) of [28] implies that (?,,(Wg)),,. < D(V (ix)) and
V(ir)BQ=JB*Q for any B e (%,(Wg),, where J and V(imr) are as in
(4.1)-(4.5). Since AV ()B*V(¢) e (P(Wy)),, for all teR, Aesf(Wg) and
B € (?,,(Wg))., one may use Lemma 14 of [28] to conclude that

[A,JBJ]]R =0, VAesdt(Wg), Be(Pu(Wp). (4.7)

Let A =A,A, € (Wy). Then iteration of (4.7) yields [A,, JBJ]A,Q = 0. Since Q
is cyclic for «f(Wy), this implies that J(Z,, (W), J< (W)'. Using (4.3), one
must conclude that (Z,,(Wy)), < #(Wg). In fact, since (Wg) < (Zo(Wr))ws
they are equal. The same argument yields (%?,,(Wg)),, = A(Wg).

But (P(RY), c (P, (W)), for any W e W. Thus, (P(R9)), cA(Wg)N
A(Wg) = A(Wg) N A (Wy)' = ', by Proposition 4.1 (ii). [

Remark. Although Bisognano and Wichmann assume the uniqueness of the
vacuum in [28, 29], all of their results excepting the factorialty of the wedge
algebras still hold when one drops this assumption.
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Appendix

In this appendix we present a useful result on bounded-operator-valued
generalized functions, along with a consequence for quantum fields satisfying a
generalized H-bound that finds application in the main text. The authors learned
of a special case of the former from E. H. Wichmann [30] and wish to thank Prof.
Wichmann for the permission to publish a version of it here.

Theorem A.1 (Wichmann). Let f— A(f) be a linear mapping of a countably
normed, linear topological space % into B(H) such that the mapping
f= (D, A(f)¥) is in F' for all ® e M, V¥ € N, where M and N are dense subsets
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of #. Then the mapping f— A(f) is continuous relative to the norm topology on

B(%). Furthermore, there exists a norm | - | continuous in the topology of ¥ such
that ||A(f)|| < |f|, Vf € .

Proof. Since A(f) is bounded and &' is weakly sequentially complete [31,
Section 7], i.e. if {F,(f)}, < is Cauchy for each f € ¥ and {FE, },.n = %' then there
exists a unique fe %' such that lim,_,_ F,(f) = F(f)Vf € &, one may conclude
that f— (®, A(f)¥) is in %’ for any ®, We #. Hence, (A(f)®, A(g)¥) is
continuous in each variable f, g, separately, and thus jointly [31, Section 7]. This
entails that if {f,},.n = ¥ converges to zero, then A(f,)® converges strongly to
zero, Vo € .

From this it is possible to conclude that for any ® € # there exist a constant
C(®) and a norm | - |, continuous in the topology on % such that ||A(f)®@| =
C(®)|f|oVf € # In fact, assume the contrary. Then there exists a sequence
{fi}nen © F such that ||A(f,)®|| > nl|f,|,, where {|:|,},.cn 1S @ set of seminorms
determining the topology on f indexed in nondecreasing order. Let g, =f,(n|f,|) ™"
Then {g,, },.n converges to zero in &, but ||A(g,)®|| > 1Vn € N. This contradicts
what was shown above. One may, henceforth, take |-|, =" |, for some
n(®) e N. Since the sequence {| - |,},cn is nondecreasing, there exists a k(P) €
such that ||A(f)®@|| = k(®) |f|i) Vf € F.

ForanyneNandfe %, let V,(f) = {® e #| |A(F)®@|| =n |f],}- Since A(f) €
RB(F), the mapping ®— A(f)D is norm-continuous; so V,(f) is norm-closed. Let
V.= N{V.(f)|feF}. V,is also norm-closed. But % =, _ V,; hence by the
Baire Category Theorem at least one V,, say V,, has a nonempty interior.
Therefore, there exist a ®,€ # and a p >0 such that ||A(f)®| =N |f|y for all
fe% and all ® € ¥ such that ||® — ®,|| < p. Thus, for all ¥ e ¥ with ||¥|| <p,
lA(H)W|| =2N|f|yVf € Z. It follows easily that ||A(f)®||=2Np ! |f|~||®||VS €
F. O

Corollary A.2. Let ¢(x) be an operator-valued tempered distribution satisfy-
ing the domain and continuity assumptions of [7] and let F € ¥(R) be such that
lo(f)"F(H)|| < for all f € V', where V is a dense, linear subset of #(R?). Then

there exists a norm |-| continuous in the topology on F(R?) such that

le(H)~FHE)| = |f], Vf € S(R).

Proof. Since F(H)D, <= D,, f—{(®, ¢(f) F(H)¥) = (®, ¢(f)F(H)W¥) is in
F'(R?) for all ®, ¥ e D,. Apply Theorem A.1 with %= ¥, where ¥° is ¥ with
the topology induced by F(R9). Since the same countable set of seminorms
determines the topologies on ¥° and ¥(R¢), there exists a norm | - | continuous
in the topology on ¥(R?) such that ||@(f)"F(H)||=<|f|, V€ V. Let f e $(R?)
and {f,},.yc= 7 converge to f in the topology of ¥(R%). Then the sequence
{@(f,) " F(H)},cn is norm-Cauchy and converges to an A € B(%). However,
{9(f.)"F(H)®}, o = {@(f)F(H)®}, .\ converges strongly to @(f)F(H)®, VO e
D,. Thus, A must coincide with @(f)F(H) on D,. If ®€ ¥ and {®,},.n= D,
converges strongly to ®, then ||@(f)F(H)®,—®,)| =A(®,—®,.)|=|All
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|®, = ®,.|l. This implies that F(H)® e D(¢(f)") and |@(f)"F(H)| =|f], Vf e
F(RY). O

REFERENCES

[1a] H. J. BORCHERS, On the structure of the algebra of field operators, Nuovo Cim., 24; 214-236
(1962).

[1b] K. MAURIN, Mathematical structure of Wightman formulation of quantum field theory, Bull.
Acad. Polon. Sci., Sér. sci. math., astr., et phys., 11, 115-119 (1963).

[1c] K. MAURIN, On some theorems of H. J. Borchers, Bull. Acad. Polon. Sci., Sér. sci. math., astr.,
et phys., 11, 121-123 (1963).

[2] H. J. BORCHERS and J. YNGVASON, On the algebra of field operators: the weak commutant and
integral decompositions of states, Commun. Math. Phys., 42, 231-252 (1975).

[3] H. J. BORCHERS, On the structure of the algebra of field operators, I, Commun. Math. Phys., 1,
49-56 (1965).

[4] H. AraKI, On the algebra of all local observables, Prog. Theor. Phys., 32, 844-854 (1964).

[5] W. DRIESSLER and S. J. SUMMERS, Central decomposition of Poincaré-invariant nets of local field
algebras and absence of spontaneous symmetry breaking of the Lorentz group, to appear in Ann.
Inst. Henri Poincaré.

[6] K. HEpp, R. JosT, D. RUELLE, and O. STEINMANN, Necessary condition on Wightman functions,
Helv. Phys. Acta, 34, 542-544 (1961).

[7] R. F. STREATER and A. S. WIGHTMAN, PCT, Spin and Statistics, and All That, Benjamin Pub.
Co., Reading, Massachusetts, 1964.

[8] H. J. BOrRCHERS and J. YNGVASON, Integral representations for Schwinger functionals and the
moment problem over nuclear spaces, Commun. Math. Phys., 43, 255-271 (1975).

[9] J. FROHLICH, The pure phases, the irreducible quantum fields, and dynamical symmetry breaking
in Symanzik-Nelson positive quantum field theories, Ann. Phys., 97, 1-54 (1976).

[10] J. YNGVASON, On the decomposition of Wightman functionals in the Euclidean framework, Rep.
Math. Phys., 13, 101-115 (1978).

[11] W. DRIESSLER, S. J. SUMMERS, and E. H. WicHMANN, On the affiliation of quantum field
operators to local algebras of observables, submitted to Commun. Math. Phys.

[12] F. J. MURRAY and J. VON NEUMANN, On rings of operators, Ann. Math., 37, 116-229 (1936).

[13] A. JAFFE, High-energy behavior in quantum field theory, Phys. Rev., 158, 1454-1461 (1967).

[14] J. DIXMIER, Les Algebres d’Opérateurs dans I’Espace Hilbertien, 2me édition, Gauthier-Villars,
Paris, 1969.

[15] G. C. HEGERFELDT, Extremal decomposition of Wightman functions and of states on nuclear
*-algebras by Choquet theory, Commun. Math. Phys., 45, 133-135 (1975).

[16] J. GLiMM and A. JAFFE, Quantum Physics, Springer-Verlag, New York and Berlin, 1981.

[17] W. DRIEssLER and J. FROHLICH, The Reconstruction of local observable algebras from the
Euclidean Green’s functions of relativistic quantum field theory, Ann. Inst. Henri Poincaré, A27,
221-236 (1977).

[18] J. HERTEL, Lokale Quantentheorie und Felder am Punkt, DESY, preprint T-81/01, 1981.

[19] R. PoweRs, Self-adjoint algebras of unbounded operators, Commun. Math. Phys., 21, 85-124
(1971).

[20] O. BrATTELI, Conservation of estimates in quantum field theory, Comm. Pure Appl. Math., 25,
759-779 (1972).

[21] J.-P. Jurzak, Decomposable operators: application to K.M.S. weights in a decomposable von
Neumann algebra, Rep. Math. Phys., 8 203-228 (1975).

[22] R. PALLU DE LA BARRIERE, Décomposition des opérateurs non bornés dans les sommes
continues d’espaces de Hilbert, C. R. Acad. Sci. Paris, 2324, 2071-2073 (1951).

[23] A. E. NussBauM, Reduction theory for unbounded closed operators in Hilbert space, Duke
Math. J., 31, 33-44 (1964).

[24] M. J. J. LENNON, On sums and products of unbounded operators in Hilbert spaces, Trans. Am.
Math. Soc., 198, 273-285 (1974).

[25] K. MAURIN, Allgemeine Eigenfunktionsentwicklungen, Bull. Acad. Polon. Sci., Sér. sci. math.,
astr. et phys., 7, 471-479 (1959).

[26] I. M. GELFAND and N. YA. VILENKIN, Generalized Functions, Vol. 4, Academic Press, New
York, 1964.



348 Wulf Driessler and Stephen J. Summers H.P.A.

[27] H. BAUMGARTEL and M. WOLLENBERG, Mathematical Scattering Theory, Birkhiuser Verlag,
Basel, Boston and Stuttgart, 1983.

[28] J. J. BisogNANO and E. H. WICHMANN, On the duality condition for a Hermitian scalar field, J.
Math. Phys., 16, 985-1007 (1975).

[29] J. J. BisogNaNO and E. H. WICHMANN, On the duality condition for quantum fields, J. Math.
Phys., 17, 303-321 (1976).

[30] E. H. WICHMANN, Private communication.

[31] B. SmmoN, Distributions and their Hermite expansions, J. Math. Phys., 12, 140-148 (1971).



	On the decomposition of relativistic quantum field theories into pure phases

