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Strong field effects in general relativity

By Thibault Damour

Groupe d’Astrophysique Relativiste, CNRS - Observatoire de Paris, 92195
Meudon Principal Cedex (France)

(25. VIL. 1985)

Abstract. We review some aspects of the physics of strong gravitational fields in the context of
General Relativity. The discussion concentrates upon the physics of black holes and especially upon
the irreversible behaviour of the surface of a black hole which is closely analogous to that of a fluid
membrane endowed with finite values of electrical conductivity and shear and bulk viscosities.

§1. Introduction

Non-linear effects, in particular strong-field effects, are of great interest in all
branches of physics. Their study has often led to the discovery of new phenomena
that could not have been foreseen when working only at the linear (weak-field)
level: for instance soliton solutions of non-linear field equations and chaotic
behaviour of dynamical systems. General Relativity is no exception to the rule
and the thorough investigation of non-linear gravity physics in the past twenty five
years has led to a rich harvest of new concepts including geons, black holes, white
holes, wormholes, chaotically oscillating singularities, etc. (for a comprehensive
‘review see [1]). In the following discussion I wish first, to emphasize the
specificity of strong field effects in General Relativity as compared to strong field
effects in other relativistic theories of gravity, and second, to focus on the physics
of black holes where the non-linear gravitational effects lead to a remarkable
irreversible behaviour which is closely analogous to the irreversible thermo-
dynamics of an electrically conducting viscous fluid membrane. Moreover this
analogy seems to go beyond the classical level and to extend to the quantum
level, thereby suggesting the existence of a deep connection between gravitation,
thermodynamics and quantum theory. As the latter three topics were of
particular interest to Professor E. C. G. Stueckelberg, it is a great honour for me
to dedicate the following discussion of strong field effects in General Relativity to
his memory.

§2. Specificity of strong field effects in General Relativity

One might think that it is quite bold, and somewhat premature, to investigate
in great detail the strong field effects in the context of General Relativity because
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this theory has been tested and confirmed mainly through observations done in
the Solar system where the gravitational field is everywhere very weak (and
quasi-static). Indeed the parametrized post-Newtonian formalism has shown (see
e.g. [2]) that many alternative theories of gravity have or can be adjusted to have
the same (quasi-static) weak-field limit as General Relativity, and therefore can
also explain all the gravitational experiments done in the Solar system, even
though they would behave very differently in the (dynamic and/or) strong-field
regime. However the purpose of this section is to stress that it can be convincingly
argued, thanks to the very peculiar nature of strong field effects in General
Relativity, that the recent observations of the binary pulsar PSR 1913 + 16 [3]
provide an indirect confirmation of the full non-linear structure of Einstein’s
equations.

Indeed heuristic arguments ([4], [5], [2]) have indicated that, in the context
of most alternative theories of gravity, the motion of a binary system should
exhibit an irreversible decay of the orbital period, P, of the following form:

2 a-sr(2 (2

where v is some mean orbital velocity, where s, and s, are ‘strength parameters’
measuring how strongly self-gravitating each member of the binary system is
(s,= —FE grav,a/macz, a =1, 2, E,,, = gravitational binding energy), and where «
and B are dimensionless numbers of order unity. Now for a binary system
containing strongly self-gravitating bodies (as is the case of the binary pulsar PSR
1913 + 16) the difference between the strength parameters will be of order unity
or at least a few tenths (barring an improbable finely tuned compensation
between s; and s,). As v/c~ 1072 in the case at hand, this means that the first
term on the RHS of equation (1) (which is a strong field effect) will dominate by
several orders of magnitude the second one, thereby predicting a period decay
dP/dt ~ (v/c)® > (v/c)’, except if a=0.

Now most alternative theories of gravity are heuristically expected to have
a0, a~1 (see [2]), while it has been shown by detailed kinematical
calculations that in General Relativity one has =0 ([6], [7]) and that the second
term of equation (1) is given by ([8], [9]):

[ P (E)S]G-R- _192x (2756)5/3 mim, 1+ 73e*/24 +37¢*/96 )

c 5¢° \ P (m; + my)'? (1—e*)"?

It should be noted that the result & =0, is a direct consequence of a peculiar
property of the strong-field regime in General Relativity, namely the ‘effacing
property’ to the effect that the general relativistic motion of two strongly
self-gravitating objects depends, up to a very high accuracy, only on two
parameters that is the ‘Schwarzschild’” masses of the objects into which all the -
strong field effects have been absorbed (similar to the absorption of some of the
divergencies of Quantum Field Theory into the ‘dressed’ masses). On the
contrary in most alternative theories of gravity the result a # 0 signals a distinct
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influence of strong field effects on the motion of a binary system (as is clear from
equation (1)). Now the observations of the binary pulsar PSR 1913 + 16 have led
to an estimate of the period decay which agrees with the general relativistic
prediction (2) within 4% [3]. This close agreement is therefore a strong indirect
confirmation of the strong field behaviour of General Relativity.

§3. Global mechanics of black holes

In the previous section we considered a particular type of strong gravitational
field: the one generated by a compact object such as a neutron star. Now one of
the main open problems of the physics of strong gravitational fields is to
understand what happens when one tries to generate even stronger gravitational
fields by further condensing a compact object. The current view, based on a
paradigmatic work of Oppenheimer and Snyder [10], is that such a further
condensation will lead to gravitational collapse resulting in the formation of a
black hole: i.e. a region of space-time which may contain singular (‘infinitely
strong’) gravitational fields but which is ‘invisible’ (in the sense that no signals can
escape from the black hole region and reach infinity). This view has been given a
precise formulation by Penrose as the ‘cosmic censorship hypothesis’ (see e.g.
[11]). Some recent work of Christodoulou has shown that the generic collapse of
a spherically symmetric dust ball [12] or scalar wave packet [13] ultimately leads
to the formation of a black hole although it may also form, at some intermediate
stage, a somewhat mild (infinitely redshifted) ‘naked singularity’. On the whole
this can be considered as a confirmation of the spirit, if not of the letter, of the
cosmic censorship hypothesis. In the following we shall assume the cosmic
censorship hypothesis and concentrate upon the physics of black holes after their
formation.

One of the basic results of black hole theory is that the boundary of the black
hole region, also called ‘black hole surface’ or ‘horizon’ is a null (i.e. everywhere
tangent to the local light cone) hypersurface H admitting compact sections and
generated by non terminating null geodesics [14], [15]. It has proven both
mathematically convenient and physically suggestive to adopt a ‘2 + 1’ view of the
horizon, i.e. to split the space-time structure of H (a three-dimensional manifold)
into (two-dimensional) space + ‘time’. More precisely let us consider an (ar-
bitrary) family of two-dimensional spatial sections S of the horizon and an
(arbitrary) parameter, ¢ (playing the role of time) labelling the sections. On each
section S (¢ = const.) we introduce two arbitrary surface coordinates x* (4 =2, 3)
(similar to 8 and @ on a sphere). The full four-dimensional coordinate system x“
(@=0, 1, 2, 3) will be chosen to be regular near H and such that x°=¢, x' =0 on
H and, whena=A=2,3, x*=x" on H.

The space-time metric ds’®=g,,(x)dx*dx” induces on each section S a
time-dependent positive—definite metric

ds® |s = yap(x€, t) dx* dx® (3)
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(where numerically v,z = g45 for A, B =2, 3). One can then define the total area
of the surface of the black hole at ‘time’ ¢ as:

S(t) = }; Vy dx? A dx® (4)

(where y:=det y,5).

One of the most remarkable results of black hole theory is that, assuming the
cosmic censorship hypothesis and a positivity property of the stress-energy tensor,
it follows necessarily from Einstein’s equations that S(#) must be a monotonically
increasing function of time [16], [17], [18]:

as()

~ =0, (5)

The irreversibility inherent in this result is quite remarkable when one
considers that no statistical hypothesis entered into its derivation and that a black
hole is essentially made out of pure curved space-time! (however it must be
recalled that the mere definition of a black hole already selects a preferred sense
of time because it speaks only of emitted signals and not of received signals). The
result (5) is often named the ‘second law of black hole mechanics’ in view of its
obvious analogy with the second law of thermodynamics. The analogy has been
extended by deriving the ‘first law of black hole mechanics’ [19], [20], [21], [22]
giving the total mass—energy variation between two neighbouring equilibrium
states of a black hole:

SM = Q8T + Ve + éin 58, (6)

where we have considered for the sake of simplicity an isolated black hole. In
equation (6) M, 6J, de and 6S are respectively the variations in the total mass,
total angular momentum, total electric charge and total area of the black hole, €2
is the angular velocity of the hole (physically defined as the limiting angular
velocity of any test mass moving very near the hole and being dragged around it
by its strong gravitational field), V the (comoving) electric potential, and g the
‘surface gravity’ of the hole. The surface gravity is defined by:

41b = gl (7)

where the semi-colon denotes the space-time covariant derivative and where [* is
the null vector normal (and tangent) to the horizon. One normalizes [* by:

. dx*(®) ,
= | )

where x“=x“(t) are the . integral space-time-curves of the null vector i
(‘generators’ of H) expressed in terms of the time parameter ¢ (for stationary
black holes one chooses ¢ so that it is linked to the stationary character of the
- black hole geometry: i.e. 3/9¢ = time-translation Killing vector).
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Comparing equations (5) and (6) with their obvious thermodynamical
analogues suggests [23] that there exists a constant a such that, in some sense, aS
measures the ‘entropy’ and g/8ma the ‘temperature’ of a black hole, and that
g06S/8m can be thought of as being the ‘heat’ generated in the black hole during a
transition between two neighbouring equilibrium states.

§4. Surface mechanics of black holes

In the previous section we compared the global behaviour of a black hole
with the global laws of a classical thermodynamical system. Remarkably enough it
is possible to push this analogy further by going from the global to the local point
of view, and also by dealing no longer with the ‘thermostatic’ properties
(transition between equilibrium states) but rather with the ‘irreversible thermo-
dynamical’ properties (phenomena occurring in non-equilibrium states where
entropy is continuously being generated). Indeed it has been shown that the local
evolution of the surface of a black hole (as deduced from Einstein’s equations)
admits a very precise analogy with the local irreversible mechanics of an
electrically conducting fluid membrane endowed with surface electrical conduc-
tivity [24], [25] and surface viscosities [26], [27], [28], [29].

In order to develop this analogy let us first discuss the kinematical properties
of the horizon. In the 2 + 1 view of the horizon the 2-surface S can be considered
as a ‘membrane’ (or ‘bubble’) constituted of (fictitious) ‘particles’ whose
trajectories are the ‘generators’ (i.e. the integral curves x“(¢) of the null normal
vector I, see equation (8)). We can then introduce the concept of the surface
velocity field of the membrane:

dx?(¢)
A.= A=23), 9
=0 (=23 ©)
so that
3 o 2] 0
[:=1"—=—+v*—.
ox? ot v x4 ' (10)

In the case of isolated stationary black holes it can be verified that (3/0¢ being
chosen to be the time Killing vector) the magnitude of v* is everywhere =c. It is
an open conjecture [29] to know whether this inequality holds for general
distorted stationary holes.

Returning to a general dynamic black hole evolution one can measure the rate
of change of the relative distances between the ‘particles’ constituting the black
hole ‘membrane’ by means of the deformation tensor:

D ,___ED')’AB=1(37AB
AB"" dr 2\ &t

where y,p(x, t) is the 2-metric of §, the vertical bar (in v,j) denotes the
covariant derivative with respect of y,z, and D/dt denotes the ‘convective

+Uypt+ UB|A)) (11)
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derivative’ (or ‘material derivative’), i.e. in mathematical terms the ‘Lie deriva-

tive’ with respect to 7 (equation (10)). It is usual to decompose the deformation
tensor into its trace:

0:= '}’ABDAB, (12)

called the expansion, which measures the local rate of change of area, and its
trace-free part, the shear tensor:

Oup:=Dsp— %BYAB' | (13)

Moreover if some electromagnetic field lines (described by the electromag-
netic tensor F**) and/or some electric currents (described by the four-current
J® = F%/4sm) are running through the black hole it is natural to attribute to the
black-hole ‘membrane’ both a (fictitious) surface charge density [30]

1
= — F% 14
a (fictitious) surface current density [24], [25]
1
KA . FAa l , 15
47 ¢ (15)

and a (fictitious) surface conduction current density
CA = KA = GHUA. (16)

These definitions are natural in the sense that the total electric charge of the hole
(defined by a Gauss integral around it) is given by

= i oy ds, (17)

and that the current K ‘flowing on the surface of the black hole’ allows one to
close any (real) external currents penetrating the hole in the sense that the
following law of conservation of electricity holds:

10 K4
\/- Py (W oy) + vy (\g 5 ) =injected current = —J°[,. (18)

In order to display more clearly the ‘irreversible thermodynamical’ properties
of the black-hole membrane let us now restrict ourselves, for a moment, to the
quasi-stationary states of a black hole, i.e. to black hole geometries of the type
=89+ gD+ 1%¢@+---, and electromagnetic fields of the type F, =
AFY + AZF @+ ... (where /1 is an expansion parameter measuring the strength of
small external perturbatlons) such that the first order field configuration g9 +
Agly, AFS), is stationary, the time dependence being rejected at the second
order. We normalize the evolution parameter of the black hole, ¢, in such a way
that /0t is the time-translation Killing vector of the first order geometry. Then
one finds that the area of the black hole is slowly increasing and that the total
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‘rate of generation of heat’ (or ‘dissipation’) in the black hole membrane,

0)
_&" as
8 dt’ 1)
is given by
D = 12§ dS (2,080 + pu CPCO) (20)

where the indices are moved with the surface metric y,p. Equation (20) has
precisely the form expected for the dissipation in a viscous, electrically conducting
membrane endowed with a surface shear viscosity 1y, and a surface electrical
resistivity py. Because of their surface nature the quantities 7y and pj are
dimensionless (contrarily to their familiar volume analogues). Their values are:
Ny =1/16x [26], [27], [28] and py=4m =377 ohms (the impedance of the
vacuum) [24], [25].

What is even more remarkable is that the analogy with a physical membrane
can be extended even to the level of the local dynamical laws constraining the
field variables appearing in the dissipation D. Indeed on the one hand there exists
an Ohm’s law connecting the conduction current to the surface electromagnetic
field of the hole:

Ej+ 4B, v" = pyC, (21)

where €45 is the antisymmetric Levi Civita tensor on S, and where the tangential
electric field E, and the normal magnetic induction B, are defined by restricting
the electromagnetic two-form to the horizon ((3F,, dx* A dx®)y = (E, dx®) A
dt + B, dS). This surface electromagnetic field satisfies the Faraday law:

curl E = _75 (\/‘ B)). (22)

On the other hand the shear tensor o,p satisfies an equation which is
analogous to the Navier—Stokes equation [28], [29]. This equation is simplest in
the case of a slowly rotating (v?/c*<« 1), quasi-stationary, uncharged black hole
when it reads:

ZUHUE[B —Pa= O(Uz/cz)- (23)

The ‘surface pressure’ p of the black hole ‘membrane’ appearing in the
Navier—Stokes equation (23) is proportional to the surface gravity.

g

= (24)

p=+—
It can also be checked that the very general connection (‘minimum entropy
production principle’) found by Prigogine [31] between the dissipative phenom-
ena and the dynamical equations of a classical stationary thermodynamical system
is still valid in the case of a slowly rotating black hole weakly perturbed by
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stationary external ‘thermodynamical forces’. This means that the dissipation D
considered as a functional of the unconstrained degrees of freedom of the velocity
field and electric field is minimum when the dynamical equations (Ohm,
Navier-Stokes) are satisfied [28], [29].

It should be noted that the full set of ‘membrane analogies’ can be
generalized to an arbitrary dynamic evolution (even very violent) of a black hole
[28], [29]. The only new features that arise are:

1) the appearance of a (negative) bulk viscosity for the membrane: {, = —1/
16m;

2) a full Navier—Stokes equation:

D=

WA = —pia+ 204058+ Eubla + fa, (25)
linking the surface stresses with the external tangential ‘force’ density (flux of
impulsion: f, = —I°T,,) and with the convective derivative of the surface density
of momentum 7z, defined by:

= —(87)m4l" + D53 px"; (26)

3) the appearance of a negative response time —7 = —1/g in the equation
connecting the local area increase to the viscous and Joule dissipations:

2
- (dS) 7 = (dS) =— [ZWHUABUAB + Lb® + ppCaC] dS. (27)

The preceding ‘membrane’ approach to black hole physics has recently been
extended, and connected to the physics happening in the external space-time by
means of the introduction of the concept of a ‘stretched horizon’ [32], [33], [34].

§5. Quantum theory and black hole physics

Stueckelberg [35], [36] has introduced a new way of looking at the
phenomenon of pair creation by strong electromagnetic fields, namely the idea
that particles (and antiparticles) are ‘moving’ in the arena of space-time according
to the flow of some ‘proper time’ parameter A running from —o to +, and that
the only difference between particles and antiparticles is that particles are going
forward in time (dx®/dA future directed) while antiparticles are going backwards
(dx“/dA past directed) (see the Fig. 1 of [35]). Then, at the level of first
quantization, he wrote a Schroedinger-type equation for the ‘motion’ in space-
time of wave-packets P(x, A):

i, ) =30 (5= A ) (- e Je . @8)

In this approach the phenomenon of pair creation means that some wave-packet
incident from the future on some strong field region of space-time will be partially
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reflected towards the future (see the Fig. 2 of [35]). Then the reflection coefficient,
say R (square of the relative reflected amplitude) gives directly the relative
probability for creating one pair (in the state considered). The absolute
probability for creating n pairs is

Pr=PpoR" (29)
where p, is obtained by requiring that the total probability is one. This yields
po=(1FR)*™ (30)

(upper sign for bosons and lower sign for fermions). The mean number of pairs
created in the state considered ({(n) = ¥ np,,) is then easily found to be:

R

(n) =2 (31)
These results can be obtained equivalently by using as a basic mental picture the
Dirac sea of negative states. The role of the ‘reflection’ coefficient R is then
played by the ‘transmission’ (or better ‘transmutation’) coefficient 7= R/(1 ¥ R)
between an ingoing negative-energy state and an outgoing positive-energy state
(‘Klein paradox’, for a review of this approach and its link with Stueckelberg’s see
e.g. [37]).

The preceding approaches can be applied to the phenomenon of particle
creation by the strong gravitational field of a black hole. This was done [38], [37]
in an attempt to better grasp the physical and mathematical assumptions
underlying Hawking’s prediction [39] of black hole quantum evaporation. The
outcome of such calculations is that if one assumes that the space-time geometry,
and the wave function, are analytic near the horizon then the ‘reflection’
coefficient R can be easily computed (see the a-la-Stueckelberg Fig. 1 of [38]) and
is found to be:

2n £
R exp{ . (w mQ2 hV)}, (32)
where w is the frequency at infinity of the wave function, m its azimuthal
quantum number, and € the electric charge of the particle. The exponential
nature of R(w) together with the algebraic form (31) for (n) makes is evident
that (disregarding the ‘greying’ transmission factor of the combined potential and
centrifugal barrier outside the hole) the corresponding spectrum of created
particles is Planckian, with a temperature:

T=-5 (33)

This is Hawking’s result [39] which is beautifully consistent with the previously
discussed classical investigations of the thermodynamic-like properties of black
holes. This result suggests that one should take seriously the view that a:§ (with o
now determined to be k/4#) is really a measure of the physical entropy of a black



Vol. 59, 1986  Strong field effects in general relativity 301

hole. This would mean that the physics of black holes is realizing a profound
synthesis between gravity physics, thermodynamics and quantum theory. Such a
conclusion is certainly very appealing, however it must be stressed that it is
somewhat premature for the following reasons:

1) All existing derivations of the Hawking quantum evaporation (for a
review and references see e.g. [40]) deal, at some intermediate stage, with
physically infinitesimally small distances near the horizon (e.g. the analyticity
property of the space-time geometry in the derivation quoted above); Any cut-off
at small distances (or high frequencies) (even for distances much smaller than the
Planck length lp = (#G/c*)**=1.616 X 10> cm) would probably destroy or at
least considerably alter the phenomenon; On the other hand many different
arguments show that one should not trust the existence of a continuum below the
length scale /. This casts a doubt on the mere existence of Hawking’s thermal
evaporation process.

2) Even if some ‘thermal’ radiation is coming out of the hole this does not
prove that kS/4h measures the ‘entropy’ of the black hole. One must still a) prove
the validity of the ‘Generalized Second Law of Thermodynamics’ [41] for the
total system: black hole + external universe, and b) interpret statistically kS/4#
(for recent proposals see [42], [43], [44] and references therein).

However, whatever becomes of the ‘thermal evaporation’ of black holes and
of its associated synthesis between gravitation and quantum theory, it is clear
that, among all non-linear phenomena, strong field effects in General Relativity
deserve a special place by their ability to give rise to a qualitatively new physics
(irreversible behaviour of a membrane) when using as basic ingredient only the
curved geometry of space-time.
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