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Stability near resonances in classical
mechanics!)

By Giovanni Gallavotti

Dipartimento di Matematica, II Universita di Roma, Via Raimondo, 00173
Roma, Italia

(11. XI. 1985)

1. Results on quasi-integrable systems

We consider perturbations of hamiltonian integrable systems, i.e. hamil-
tonian differential equations with hamiltonian function of the form

H.(A, @) =h(A) + ¢f (A, @) (1.1)
where h, f are analytic functions in

A=(A,...,A)eVr={A|AeR, |A]|<R)

¢=(@4, ..., @) e T =l-dimensional torus =[0, 2x] (1.2)

The A’s will be called ‘action variables’ and the ¢’s, which are their
respective canonically conjugate variables, will be called the ‘angle variables’, [1].
The hamiltonian equations are therefore

A=-elaw
b=0(A)+e-L (A, 9 1.3

with w(A) = 6h/5A(A) being the gradient of A.
When & = 0 the solution to (1.3) is obviously

A =AQ0), o) =9(0)+a(A0)) (1.4)

showing that the natural foliation of the phase space V X T' into tori of the form
{A} X T' is an ‘invariant foliation’, i.e. motions starting on {A} X T’ stay on it
and, furthermore, such motions are quasi periodic with ‘angular velocities’ or
‘spectrum’ w(A).

) Talk presented at the Stueckelberg Memorial Lectures, Lausanne, 27-28 June 1985, Switzer-
land, partially supported by grant N.S.F. DMS 85-03333.
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In the applications systems like (1.1) with & = 0 occur often but usually they
arise naturally in systems of canonical coordinates which are not the above action
angle coordinates. Nevertheless the existence of a foliation of phase space into
invariant tori is a coordinate independent property and it will manifest itself quite
easily, once the motions are known (i.e. once the system is integrated).

For instance, if /=2 and the system is integrable, we can restrict our
attention to a given surface of constant energy A(p, q) = E, if /4 is the function A
in a generic system of canonical coordinates: this is a 3-dimensional surface in a
4-dimensional phase space (in general a (2/ —1)-dimensional surface in a
2[-dimensional phase space). The system being integrable, there is a second
constant of motion which can be used to parametrize the various two-dimensional
tori. ”

If one draws a plane s transversal to the tori they will be cut into circles
parametrized, at fixed E, by the second constant of motion and therefore one will
see the following picture (Fig. 1):

datum
/invariant circle

Figure 1.

if an initial datum is lying on a circle y it will move leaving the circle, and
eventually its trajectory will cross again & on another point of the same circle y
etc.: the successive images of the point on y will generally fill y densely.

Any initial datum will not only be on a given torus but, if we think of a
2-dimensional torus in a three-dimensional manifold as a ‘closed tube’, it will be
‘inside’ many other tori and ‘outside’ many others.

The above example is easily generalized to more than 2 degrees of freedom
(I >2): however the main difference will be that if / > 2 the invariant tori will be
I-dimensional inside the (2! —1)-dimensional surface of constant energy and,
therefore, it will no longer make sense to say that a given datum is inside or
outside an invariant torus.

This fact has far-reaching consequences: imagine that the perturbed system
still admits invariant tori close in shape to the unperturbed ones but a ‘little less
dense’, i.e. not passing through every point of phase space. Then if / =2, a given
initial datum might be outside the set of invariant tori but still it will be enclosed
in the tubular region between two invariant tori containing the point respectively
inside and outside: hence, by uniqueness of motion, the trajectory of the point
will be forever ‘trapped’ in the region between the two tori. This means that if



280 Giovanni Gallavotti H. P. A.

I =2, there is a possibility of obtaining a priori estimates from the existence of
enough invariant tori. '

Such a possibility will be absent if / = 3, because /-dimensional tori in (2/ — 1)
dimensions do not have ‘an inside and an outside’, as soon as the set of the
invariant tori is not closely packed.

We now consider the case £+ 0 and we analyze two extreme cases:

I) the ‘harmonic non-resonant oscillators’, i.e.

hA)=0-A>a(A)=o (1.5)

with o satisfying, for all integer components vectors re Z', r=(r,, ..., r;), and
for suitable C, a >0, a ‘non resonance diophantine’ condition:

1
|m-v|E|w1v1+---+a),v,|2~l——7 (1.6)
C 2_: |Vi|)
IT) the ‘anisochronous rotators’: if >0
1 A?
h(A) =32 0(4) =5 (1.7)

or, more generally, /& such that
&°h
JA SA

(A)=a>0 (1.8)

i.e. a ‘strictly convex integrable hamiltonian’.

The main result on the above systems is the following theorem (which is one
of the many versions of a set of results of the ‘KAM theory’): this theorem holds
both in cases I) and II), if to I) one adds the assumption that the average f of f
over the angles ¢ is such that det (3*f/8A3A)#0. In fact, in case II) the
theorem below would hold under the weaker assumption det(3%h/
SA 3A)(A) # 0. The theorem is presented and proved in the form quoted below
in the review paper [2].

Theorem 1. i) There exist two canonical maps of class C* in (A, ¢) with
domain containing V, X T for & small enough of the form

.{A=A’ tEALY) {A'_ + E(A, ¢)
Tle=q@ +A(A, @) C Tl =9+ AlA, @)
and E,, E., A,, A,—,_,0, €6 = identity on Vg x T".

ii) There exists a C™-function 2.(A') on A’ € Vi for € small enough such that
Qs (A) —e—0 (.l)(A) and if

(1.9)

A'(0)eVg= {A’ | A" € Vg, |R(A) ¥|>——,V¥veZ, v=f=0} (1.10)

CII”
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with C, suitably chosen and diverging as €— 0, then
A'()=A'0), @)= 0)+(A) (1.11)

is a solution to the equations of motion in the (A', @')-coordinates, for all ¢’ € T'.
iii) (Consequence of ii)):

Vol Vg —=> Vol Vg (1.12)

The above theorem says that after perturbation, £+ 0, most of the invariant
tori do still exist except that they are slightly deformed: the functions E,, A, are
in fact a measure of the deformation; all the sets of the form

ATATEWLE) e (1.13)
=0 +A. (A, 9),
are, by the above theorem, tori which are invariant whenever A'e Vi.
Furthermore they are traversed quasi-periodically with angular velocities Q,(A').

From the proof of the theorem it emerges that the distance between two
invariant tori is of order 0(¢%), 6 <3, this together with the fact that E,,
A, —>. 00 as 0(¢) easily implies that if [ =2

|A() — A(0)| <0(e?), WVt (1.14)

i.e. the action variables admit an a priori bound and the points of phase space are
forced to stay forever close to the unperturbed torus on which they originally lie.
The fact that @ <3 is probably an artifact of the proof, and one expects that 6
could be chosen equal to 3.

The ‘trapping’ between surviving invariant tori does not necessarily take place
if I =3: in this case there is no a priori bound following from the rather packed
set (see (1.11)) of invariant tori surviving perturbation, and one can only state the
obvious bound (with R = size of phase space, see (1.1)):

|A() — A(0)| < O(R) (1.15)

no matter how small ¢ is, for all times for which the motion stays in Vi X T
The bound (1.15) is believed to be, generically, saturated for suitably chosen
values of ¢: when this happens one says that ‘Arnold’s diffusion’ takes place: the
name is given because Arnold explained the basic mechanism (‘wisked tori
mechanism’) [3] underlying the above ‘diffusion’ in phase space (through the
invariant tori almost filling it) by providing a simple concrete example which we
recall, for completeness.
Arnold’s example deals with a [/ = 3 system consisting in an unperturbed system
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built with a pendulum, a rotator and a clock (Fig. 2),

Az

4@ %t

pendulum rotator clock
Figure 2.

1.e. a hamiltonian:
h(Aq, Az, Az, @1, @5, 1) =3A7— (14 cos @) + 343+ A; (1.16)

note that =1, whence the name of ‘clock’.
The perturbed hamiltonian is

H, =3A%— (1 + cos ¢,)(1 + &(cos @, +sint)) + 343 + A, (1.17)

note that ¢ = 1.
Then Arnold shows [4], [3], that for fixed &, < &, there is &, such that for all
|€| < &, one can find initial data such that

A0)<a; A(H)>w, (1:18)

for a suitable t.
As one can see from (1.17) this is a very simple example which is special only
because (1.17) has a structure which implies that

A;=0, .=, A=A (1.19)

is a family of solutions to the equations of motions for all A’s. The proof of the
above basic result of Arnold is very close to the proof of the existence of a
homoclinic point in a forced pendulum.

2. Nekhorossev theorem

So Arnold diffusion can really take place and therefore the question arises on
how long does one have to wait ‘to see it’.
The basic result on this problem is the following theorem of Nekhorossev [5]:

Theorem 2. Consider a system like (1.1) with h given by I) or 1) in Section 1
((1.5)-(1.8)), i.e. being either a non-resonant harmonic oscillator or a rotator-like
system.
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Then there exist constants a, b, T, €,>0 such that
|A(1) — A(0)| < R(f) V |t] < Te®" = T.(¢). (2.1)
0
for € < gy; here R is the size of phase space, see (1.1).

The interest of the above theorem lies in the fact that it holds basically
‘under no assumptions’ (i.e. no condition like A’ € Vg, (see (1.10)), typical of the
KAM stability).

The theorem should be interpreted as saying that no Arnold diffusion can
take place before a time scale T..(g) which is ‘perturbatively infinitely long’.

A new proof of Theorem 2 has been given recently by Benettin, Galgani,
Giorgilli [6] who also determine explicitly the constants R, T, a, b, &, following
the scheme of proof of Nekhorossev, which is a recursive scheme along the lines
of the proof of Arnold of Kolmogorov’s theorem on the existence of quasi-
periodic motions in quasi-integrable systems (essentially Theorem 1 of Section 1).

The above-mentioned proofs suggest that perturbation theory can be used
for quantitative predictions on the details of the evolution up to exponentially
long time scales (in terms of 1/¢).

In a recent work by Benettin and Gallavotti [7] we have tried to make
precise the latter statement, and our results are summarized below. At the same
time we have produced a ‘new’ proof of Nekhorossev’s theorem which is
straightforwardly based on classical perturbation theory, i.e. without use of a
recursive scheme.

In our approach the non-resonant harmonic oscillator case is treated first and
with no extra assumptions besides the diophantine non-resonance condition (e.g.
no assumption on 8*f/3A 3A is required), [8], then we use the ideas of the above
proof to treat the anisochronous cases (more interesting and technically less
easy): however we feel that our paper does not contain new basic ideas beyond
those already in Nekhorossev’s work and represents, perhaps, an improvement
from a technical point of view (different approach, better results in the harmonic
case, better numerical bounds although the latter are not easy to compare
because not all constants are worked out explicitly in the original paper).

We begin by discussing the non-resonant harmonic oscillator, case I), Section 1.

Theorem 3. There exist two analytic canonical maps with domain containing

Vr X T' for € small enough, i.e. € < &, = suitable constant, of the form

{A=A’ +E.(A, @) {A’ =A+E(A, @) 2.2)
=9 +A. (A, 9) P =9+A(A, @)

with R™'|E,|, |A.|, R7'|EL, |Al| < B(e/&y)* for some B, a>0; 6.6;" = identity
on V, X T' for £ < g, and

H, (A, @)=h,(A")+e EDTf (A", @', €) (2.3)
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with f.. and h, analytic in (A', @") € Vg X T', continuously®) in € for |e| < &, if c is
a suitable positive constant.

By writing the equations of motion in the (A', ¢')-coordinates one sees that
‘nothing happens’ up to a time scale T.(g) = 0(e* /"),

The above also implies that ‘exponentially close to H,’, i.e. ‘exponentially
close’ to any perturbation of a non-resonant harmonic oscillator, there is an
integrable system [8].

The constant b depends on the number of degrees of freedom: our estimate
is that it can be taken as

1

= 2.4
b 4(1+1) 24
The bounds on E, and (2.3) obviously imply
A1) — A(0)] < R(-Sf) 2.5)
0

All the constants can be determined explicitly and their values (better in [7] than
in [8]) are reported from [7] in Appendix A.

An important application of the above theorem is to the Fermi—Ulam-Parta
chain of N oscillators tied at points 0, L

N N N
[Zl i +3 21) (q: — qi+1)2] Te % (¢ = qi+1)'q0=0, g1 =L (2.6)

The ‘free part’ h, in square brackets, does verify the diophantine condition
(1.6), for most N, because

27T
wk—\/Z(l—cosN+1k), k=1,..., N. (2:7)

as one sees by studying the free part in its natural action angle coordinates.
We now discuss the more interesting case of the anisochronous systems (case

IT), Section 1).

For the purpose of illustration we discuss here only the rotator case

h(A) = 1A? (2.8)
in the sense that we shall occasionally take advantage, to simplify the discussion,
of the identity

o(A)=A (2.9

but all we say can be easily extended to the general convex case (1.8).
The basic notion necessary to formulate and understand the result is the
notion of ‘resonance’.

%) i.e. derivatives of any order in A’, ¢’ are continuous in &.
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Let Z' be the set of the integer component vectors v=(v,, ..., v;) and let #
be a linear r-dimensional subspace in Z', r=0,1,...,[ We determine 4 by
giving a basis vy, ..., v, generating it by linear combinations with rational
coefficients (only the combinations leading to a result in Z' are, of course,
allowed). Since there are many bases for a given . we shall only consider
‘minimal bases’, i.e. bases for which the number

w(M)= sup |v;] (2.10)
is minimal (‘wave number of .4").

A resonance surface associated with ( is the set

Sa={A|AeVg 0(A)-v=0,Vve .} (2.11)

(forr=0, Zgy=Vg; forr=1, M=2', 2, = {A|0(A)=0}).
In our case (2.8) the surfaces X, are planes orthogonal to /# and have
dimension / — r (Fig. 3). A
2

Ly

Figure 3.

The resonance surfaces of order =1 are the sets where perturbation theory is
hard because its performance usually involves the operation of division by
®(A) - v (‘small denominators problem’).

Of course if perturbation theory runs into problems in dealing with data on
some resonant surface, it will also run into problems in dealing with data too
close to such surfaces.

This leads to the idea of defining ‘resonance layers’ around each resonance
and then to classify the points of Vi according to the number of layers which
contain them. _

Since the resonant surfaces are dense in Vj it is necessary to realize that not
all resonances are ‘as bad’: it will turn out from the discussion below, and this has
been well known since Laplace, that the presence of some resonances affects the
system only on a certain time scale, and for most resonances such a time scale is
enormously large.

Hence one will simply disregard resonances whose corresponding time scale
is beyond T.(¢). A heuristic argument suggests that a resonance of order r =1,
=, has an associated time scale exp & |v| for some & >0; & depends on how
regular is the analytic function f(A, @) in the @-variables: usually & measures the
size that the imaginary part of ¢;, j=1,...,/, can reach with @ still in the
holomorphy domain of f.
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The reason for the above estimate is very simple: the function &f can be
written

(A, @)=¢ Eélf,,(A)e""'“p (2.12)
and hence the rth Fourier component of f (whose presence leads to the necessity
of dividing by @(A) - v in perturbation theory) has size O(ge~*"). This means
that one can neglect it for times shorter than O(g e *5M),

Since we are trying to reach a time scale of order exp [(&o/€)°c] it is natural
to neglect all resonances ./ for which

wM)>N=g" (2.13)

where 7 >0 is a parameter to be adjusted optimally, together with many others.
So we consider resonances J( such that w(.() < N.
Given o >0 we define for any /# with w(#M) <N

V5%"(e) = {A | A € Vg, distance of A from the real hyperplane

generated by M < &7} (2.14)
this will be called a ‘resonance layer’ for J; then
B3Me) =¥ ) S ) 215)
MEM
w(M)=N

where * means that dim #' =1, M’ ¢ M and & =3"¢, which will be called the
‘resonance set’ for 4, and

BoNe)y= U BIN(e) (2.16)

Wl =N

so that |_L_q B"7M(g) = V;. A

In our simple case (w(A) = A) the sets ¥;"(¢) are true layers with faces cut
from hyperplanes: in general it is convenient to use a generalization of the above
(2.14) = (2.16) which it would be too long to describe here (and not too
interesting).

By construction, the resonant sets are pairwise disjoint as /# varies so that
w(M)=< N: therefore to A eV we can uniquely associate the corresponding
‘leading resonance’, #((A) such that B%04,(¢) > A.

La

Figure 4.
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As one can see from the picture, given A € @%N (¢) the r-dimensional plane
m(A) intersects ¥'%™(¢) in a set D not entirely contained in 8%"(¢), in general
(it is contained in the case of A’ but not of A in Fig. 4).

However it is easy to see, by some geometric considerations, that if A € D,
A € B%"(¢) then

|A-v|>(Be)° VveZ, véu (2.17)

where f is a suitably chosen constant. Call /%"(g) the set of A € Vi for which
(2.17) holds.

The above geometric definitions tell us that we can classify the points of Vj
according to their leading resonances: and if a point A has leading resonance (
then, Vv ¢ M, w(A) - v is not ‘too small’, see (2.17).

Furthermore it is quite clear that if 7 << o then the leading resonance of most
points in Vi will be 4 = {0}; then most of the remaining points will be in the
resonant sets with » = 1 ‘first order resonances’, etc.

This can easily be seen by observing that the volume of ¥'%"(e) is
O(R'"7e™™) (because ¥'%™(¢) is a ‘tube’ with r dimensions of order £’ and [ — r of
order R); furthermore the number of resonances of order r is estimated by
(™)=O(N") = {bound on the number of r-ples such that |v,|<N}. Hence,

T

recalling that N=¢™ "
1

Vol B~7%(¢) < (N) max Vol B%™(e) < O(N"e"R'™") < Q&' Vol V¢
r

dimM=r
(2.18)

for some R > 0.

Therefore we choose o>Ir: to have interesting phenomena we shall fix
0 << 3 too (choices of o less than It would lead to trivial results even if the
theorem below were true with such choices: in fact it turns out that there are
other technical conditions on o, 7 which force one to take = O(a/[?)).

Our results [7] can be formulated as follows:

Theorem 4. There is £,>0, 0<o0<3, t>0, t<0/l, by, b, Ty, K such that
i) if A(0) € BG™N(e) then A(t) e N4 (e/2) and

b1
IA() — A0)] < cl(f-) (2.19)
0

for all |t| < T.(¢)

T.(g) = T;e"” (2.20)

ii) on each set N3™(&/2) one can define an ‘adapted’ system of canonical
coordinates (S, F; o, @), ‘slow and fast coordinates’, with S=(S;,...,S,), F=
(B, ..., E.), 6=(01,...,0,), 9=(@1, ..., @_,), r=dim M such that H,
takes the form

H, = h,(S,F) + £G.(S, F; 6) + e 9™} (S, F; 0, @, £) (2.21)

with k., G,, f. analytic in (S, F, 6, @) continuously in € for |&| < &.
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iii) The set NG™(e/2) is contained in the set where

3h. (S, F)
_— a1l =1,...
r 55, e’K, j=1,...,r (2.22)

if K is a suitably chosen constant.
Given F let S*(F) be defined by

2;;8 (S*(F),F)=0 (2.23)

(which always admits a solution (8*(F),F) e Z,).
iv) Let (So, Fy, 6o, @o) € (B% () X T')*) and write the motion with this initial
datum as follows
S(t) = $*(Fo) + Ves(Ver), o(r) = v(Ver),
F(t) =F,+ Vef(Ver), @(t) = d(Ver)

Then the new wvariables (s,f,y,d) are canonical coordinates whose motion is
described by a hamiltonian of the form

(2.24)

% e (O + BLe D5 s + Ve, (1))

+ Ve VEXs, ;) + e Cf (£,5, 8, v, ) (2.25)

where hg,, Vg, Vi) are linear scalar functions of h, f and their first two derivatives
and Ly, is a r X r-matrix valued positive definite function of f linearly depending on
3*h/3A 3A. They are analytic in £, s, 8, y continuously in € with domain of
definition (M5 (2¢) x T") together with f..

v) Given h, F, and varying f one can give to Vg (v) any prescribed form V (y)
analytic on T'.

Remarks. 1) At fixed Y >0 (e.g. Y =1) the initial data

{S(O) =s(0) Ve, [s(0)|<Y
F(0) =F, with (S(0), F(0)) € B% ™(e) %)

are in the domain of applicability of the above theorem if € is small enough.

2) All the constants can be determined explicitly.

3) See next section for a deeper discussion of the meaning of the above
theorem.

(2.26)

3. Time scales near a resonance

The following interpretation of the above theorem is suggestive.
The hamiltonian (2.25) shows that in the perturbed motions one should

) By this we mean that the datum in the old coordinates is in B%™(¢) x T".
%) See preceding footnote.
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Figure 5.
_distinguish three time scales:
1) t<0(1/Ve) ‘unperturbed time scale’
2) t=T.(¢) ‘strongly perturbed regime’

3) 1/Ve<t<T.(e) ‘perturbative regime’.

During the perturbative regime there is a sharp distinction between slow and
fast variables (Fig. 5). The fast variables have constant momenta (f = const) and
the corresponding angles rotate at angular speed of O(1).

These pairs of variables evolve uninterestingly: on the other hand the slow
variable evolution (after a rescaling of time of V&) evolve as described by the
hamiltonian with r degrees of freedom:

iLs-s+V(y)+ O(Ve) (3.1)

and V(y) is an essentially arbitrary function on 7" (linearly depending on f): it is
arbitrary as long as we are allowed to vary f.

The main point is that (3.1) is not a small perturbation of an integrable
system. Hence if r =2, i.e. if the resonance is of order higher than the first, (3.1)
1s susceptible to produce ‘irreversible behaviour’, i.e. strong dependence on initial
conditions and chaotic phenomena. And using the arbitrariness of V one can
produce explicit examples of homoclinic points near a given resonance surface Z 4
by suitably choosing V(y). The presence of the O(Ve) corrections will not
perturb their presence since they are structurally stable objects.

In any event, the control of the motion up to a time scale T.(¢) is basically
expressed by (3.1) and hence is ‘computable’ in perturbation theory, at least if
one is able to investigate the desired properties of (3.1).

If the leading resonance of the initial datum is of order r =0, (3.1) ‘does not
exist’ (no S variables), the very long intermediate scale ‘disappears’ and the
unperturbed scale extends up to T.(g): since, as noted, most of phase space
consists of points with trivial leading resonance (/= (0), i.e. A e B%*™(¢)) we
see here the mechanism underlying the connection between the Nekhorossev
theorem and the KAM theorem.

If the leading resonance is of order r=1 (3.1) is a one-dimensional
‘pendulum’: in this case the intermediate time scale exists but the motions are
integrable (because one-dimensional pendula are integrable) and any measure-
ment of quantities linked to chaotic behaviour (like Lyapunov exponents) is
bound to give trivial results unless extended over a time scale exceeding T..(€).

If /=2 most of phase space, except perhaps the little box |A;| < &7 will be
either in B%>" or in B%>": hence in such a case we cannot expect to see any
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chaotic phenomena, before a time scale T..(¢), by randomly sampling the initial
data far away from the origin.

Appendix A. Values of the constants in Theorem 3 (harmonic case, from [7])

The function f is supposed holomorphic in

W=/{|ReA;| <R +p, |ImA;| <p, |Im ¢;| <&} (A.1)
for some p, § > 0. For any g holomorphic on W we set, if g is C?-valued:
lgll = sup lg“(A, @) (A.2)
Then let ae
£=[aal=lal o5l =

(in this case, since h =m - A, E = sup; |w;|): the identity in (A.3) is an hypothesis
which is not restrictive because we have ¢ free in (1.1) and we are interested in
£— 0. Then

By= (2101+g(l o 1)l+1§—21-—1CE)—2

£ 1/e 1
T. = — =
EVe (80) b 41+ 1)

IA0-AOI<R(35) K<L (A9

Appendix B. Values of the constants in Theorem 4 (from [7])

Using the notations (A.1), (A.2), (A.3):

2 8 8
pl 2FE

222I+18 4l+1

80=min (%Ec’ 81): Bl= P
!
b=r=§l—2’ O'=% (Bl)

4E e\ 1 -
A -A)||=—(+1 (—u) <—E®eT
lA@) - AOI| =+ 1) Vi< e

also

E /¢ 1—-40
E ||, |18 < l"(—)
EANEAREE

0

e 1—-40
A ladi<&(5) (B2)
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where I is a constant introduced, for dimensional reasons, to write hA(A)=
3(A%).
Also, Ve <g:

1 % af“’ l o+t
o)+ | La e <ss 8.
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