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Euclidean quantum mechanics and stochastic
processes

By Robert Graham
Fachbereich Physik, Universitidt-GHS Essen, D-4300 Essen, W. Germany

(6. IX. 1985)

Abstract. The intimate relation between quantum mechanics in Euclidean time and stochastic
processes is reviewed. This relation is shown to become even stronger in supersymmetric quantum
mechanics, where the corresponding stochastic process is known as a ‘Nicolai-map’. Supersymmetric
quantum mechanics on a manifold is considered as an example.

1. Introduction

Stueckelberg has profoundly influenced and contributed to physics in
quantum field theory, general relativity, and the theory of irreversible processes,
and he was, of course, well aware of the connections between these seemingly
different fields. In tribute to his memory I have therefore chosen a topic, which,
to a certain extent, combines aspects of these different fields.

The idea to replace the physical pseudo-Euclidean or pseudo-Riemannian
space-time by a formal Euclidean or Riemannian space-time and to recover
physics by analytic continuation has occurred many times in physics on seemingly
different and unrelated occasions. The first time this idea came up was after the
discovery by Minkowski of the underlying unity of space-time of special relativity
with its pseudo-Euclidean metric. In Minkowski’s famous article on ‘Raum und
Zeit’ [1] one finds the ‘mystical’ equation ‘3 X 10°km=1V/—1sec”. Yet in
classical relativity the formal rotation of the time-axis by z/2 in the complex
plane, even though aesthetically pleasing, is not really important. It replaces the
non-compact Lorentz group by the compact 4-dimensional rotation group and it
makes the covariant equations look more symmetrical as it eliminates the
difference between space and time coordinates. However, even though this higher
symmetry is nowhere really necessary, it suggests that the fundamental difference
between space and time is just this rotation in the complex plane.

A second and much more important occasion for the introduction of
Euclidean time is quantum theory and quantum field theory. The formulation of
these theories by functional integrals in physical time is often not well-defined as
the integrals are not well-defined. However, as noted by Schwinger [2], Kac [3],
Symanzik [4] and others (cf. [5], [6]) the integrals can be defined by first
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formulating these theories in Euclidean time and passing over to physical time by
analytic continuation. This operation is remarkable in several important ways:

(i) The very peculiar and counterintuitive properties of quantum mechanical
probability in physical time (cf. e.g. [7]) become replaced, in Euclidean time, by
notions of classical probability. Indeed, quantum mechanics is replaced by a
classical, irreversible stochastic process in Euclidean time. The irreversibility of
this process can be made manifest by the definition of an H-functional in the
sense of Boltzmann, i.e. of an entropy which increases as the process evolves in
Euclidean time.

(i1) The irreversibility of the stochastic process in Euclidean time leaves a
trace in the analytical continuation to physical time by introducing a causal
structure 1n physical time. The arrow of time which is visible in the causal relation
between events can, in fact, be considered as a remnant of the analytic
continuation from Euclidean times. In theories which do not use this analytical
continuation causality has to be introduced ‘by hand’, while in theories
constructed via analytic continuation from Euclidean time causality is automati-
cally built-in.

(iii) Recently, the connection between Euclidean quantum mechanics and
stochastic processes has become very interesting, again, because it was discovered
by Parisi and Sourlas [8] and Nicolai [9] that this connection is surprisingly close
for supersymmetric quantum theories. In a number of papers [10-15] this
connection has been investigated in some detail.

It seems altogether remarkable that the formal connection of our world with
a Euclidean world comes up again and again and seems to become closer with the
deepening of our understanding of nature.

The paper is organized as follows. In the next section the stochastic process
associated with quantum theory is constructed (see also [16, 17]). The properties
of the stochastic process and their physical meaning are then considered. Turning
to supersymmetric theories next we first formulate Nicolai’s theorem. Then
supersymmetric quantum theory on a manifold is considered. Finally, the
associated stochastic process is constructed.

The last two sections of this lecture are based on and could not have been
written without the joint work with Dirk Roekaerts [15], whom I would also like
to thank for many discussions on the other subjects of this paper.

2. The stochastic process associated with quantum theory

Let us consider a non-relativistic spin-less particle of mass m and charge e in
a static potential V(X) and a static magnetic field described by the vector
potential A(X). Its Schrédinger equation

iy = {i(ﬁﬁ —~ SA’)Z + V}tp (2.1)

2m\i
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is assumed to possess a unique normalizable ground-state with no nodes

Po(X, 1) = e~ W Bip(X) (2.2)
[ lpiP =1 23)
We define the function ¢(¥) by
. 1 ¢(x ))
= _ 2.4
Changing the gauge of Aand V by
Voy -1 8xg;, t)
1C (2.5)
A=A+ Eﬁx(f, 1)
the phase of the wave function is changed by
(%, t
y—y exp (£20) 2.6)

We make use of this freedom to arbitrarily change the phase of y by choosing the
phase of y,(X, t) real such that _

Yo%, 1) = @o(%) = | @o(¥)| 2.7)

Obviously, the gauge freedom is then completely and uniquely fixed. In this
gauge we have

E,=0 (2.8)
W-A—A-Vop=0 (2.9)
e? . 1 e
+ 2= — (A(Vg)2—h V2 2,1
Vs 24 = G(Ve) —7Ve) (2,10)

Next, we perform a similarity transformation and introduce

Y(E 1) = @o(D)Y(%, 1)

AL . . (2.11)
"IJ (xa t) = W*(x; t)/(pﬁ(x)
for the wave-function while for observables © we define
5 1
Q=R — (2.12)

Do

The Schrédinger equation then takes the form

U T |
—iy =5V -V (K@)y) (2.13)
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with
R() = — - V() + = A(3) 214)
X)=—— — A(X :
2m mc
At this stage we perform the rotation to Euclidean time and introduce

ty =it (2.15)

The presence of an external magnetic field makes it necessary to rotate also the
vector potential by introducing

A,=—iA (2.16)

Equation (2.16) follows e.g. from the equivalence of space and time after
Euclidean rotation and the relations
B.,=VxA.=—-iB
., 104, -
E=-———-V
c Otg L4

where B, E are the electromagnetic field strengths and ¢ is the scalar potential.
In order to define the analytical continuation back to physical time we
introduce a parameter A by writing

A.=AA (2.17)
Physical time is then reached by taking
tg—>it, A——i (2.18)

In order to formulate the Schrodinger equation in Euclidean representation we
define

1 A
W tp) = Y&, tg, 4) (2.19)
1

Then the Schrédinger equation takes the form

oW h

o —V - (K& MDW) + S V2W (2.20)
with

R, 2)= — ﬁ o _’%z (2.21)
and

A-Vop—hV-A=0 (2.22)

Due to the structure of equation (2.20) of a continuity equation the normalization
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integral
f W, 1) d* =1 (2.23)

is preserved under the Euclidean time-evolution. The condition (2.23) serves to
fix the normalization constant in equation (2.19). Equation (2.20) can be
interpreted as Fokker—Planck equation of a Markoffian stochastic process of a
random variable X. In this interpretation W (X, t;) becomes the probability density
of X at the time 7. This interpretation is only possible, however, if W(Z, t;) is
non-negative, which is guaranteed by the form of equation (2.20) provided that
we allow only positive (normalized) initial conditions for W (X, z;) at some initial
time, e.g. tz =0. The most important initial condition of this kind is

W(E, 0) = 6O — %,) (2.24)

which defines the conditional probability density of the stochastic process and the
propagator of the associated Schrédinger equation.

Let us briefly consider two simple examples. The first is a particle in the
Coulomb potential

eZ

V@ = - (2.25)

with the ground state
1 e’m
gol¥) =—m X (——z) 2.26)
0 \/]vo p hz | | (

The Fokker—Planck drift (%) in equation (2.20) is, in this case, simply

| =

R@E) = —% (2.27)

=

As a second example consider a 3-dimensional isotropic harmonic oscillator in a
homogeneous magnetic field B = Bé,. For simplicity we take m=e=#f=c=1.
With
>\ 1322
V(F)=2% (2.28)
- .. B .
A) =702, ~ &)

we obtain

d 1 B?
@Qo(X) = Y ( ~3 1+ Y x*+y? - %22) (2.29)
0
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and the Fokker—Planck drift

BZ AB
- 1+Ix +""2—'y
K(F A)= [T B2 AB (2.30)
— 1_|___ —_—
47" 2"

—Z

We shall return to the second example in the following section.

Before proceeding further let us remark on possible generalizations of the
scheme presented above. The inclusion of spin, in principle, presents no difficulty
and can be handled by the introduction of an additional discrete random variable
which is governed by a random jump process [18]. Otherwise the same steps
leading from equation (2.1) to equation (2.20) can be carried through. The
generalization to several interacting particles is also possible. The Schrodinger
equation in this case takes the general form

i n 1 e - 2
w5 0={$ L (554G, %)
l 1p(xl Xn ) 12—:12771, pz c l(xl xn)
LV@E, ... ,f,,)}w(fl, LD (2.31)
Here A%, ..., X,) is the sum of the vectorpotentials generated by all particles

except particle i and the vectorpotential of an external magnetic field acting on
the particle i.
The gauge transformation
V_>V_18X(x1""’xn’t) |
¢ ot (2.32)
1
e.

!

Ayl b~V Ty « o i t)

leads to a change of the phase of the many-particle wavefunction

Y— P exp (%) | (2.33)

which we use again to make the wavefunction of the ground-state non-negative
and time-independent

1 (_ P, ...

- - —- - > f"l
YolFys «ves By ) =|o(Fs, . - -, £} = Wexp 5 )) (2.34)
0

The Fokker—Planck equation (2.20) then takes the form

oW 5 L ms h
e > {*V,. (KX, ..., X, W) +§ZV’2W} (2.35)
i=1 i
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with the probability density
W=W(E,...,X,t) (2.36)
and the drift vectors

1

K, ..., %, )= — - VipEs, -, )
1 337
el A 7 ) (2.37)
—— A Xy, ..., X,
mge AN | X

One may also consider the generalization to explicitly time-dependent Hamil-
tonians. In this case the ground-state wave function (%, t) in equation (2.2)
must be replaced by another time-dependent and node-less solution (%, ¢) of
the Schrodinger equation. The gauge is fixed by requiring this solution to be
positive which entails the conditions

Vi, 0= T exp (~9(5, )/28) (2.38)

W-A—A’-v*¢>+%qb=o (2.39)

vt q- L G(Vo)? — 1 V2¢) (2.40)
2mc? 4m ** '

The definitions (2.11), (2.21) then again lead to equation (2.20) also in the
explicitly time-dependent case.

Another generalization is necessary, if the Hamiltonian does not admit a
normalizable ground-state of the form (2.2), a case which occurs, e.g., if the
ground-state is part of a continuous spectrum. Then @y(¥) in (2.4) and the
following equations can be replaced by a non-normalizable solution of the form
(2.2) which does not need to qualify as an eigenstate by itself. For the stochastic
process (2.20) this means that it does not possess a normalizable steady state
distribution. The simplest example of this case is a free particle, where @y(X) =1
in equation (2.2).

Finally, still in the framework of ordinary quantum mechanics it is also
possible to consider relativistic generalizations. Some interesting results have
been obtained recently [19], but the problem does not appear to be solved
completely. For field theoretical generalizations see [5, 6].

3. Properties of the stochastic process and their physical meaning

The Green’s function of the Fokker—Planck equation satisfies the initial
condition

W(F, 0) = 8O — %) (3.1)



248 Robert Graham H P.A.

It is the conditional probability density
W(Z, tg) = P(X | %y tg; A) (te =0) 3.2)

for ¥ at time ¢ if X=X, at ¢t =0. Its interpretation in physical time is the
probability amplitude K for the transition from X, to X in the time interval ¢

. _ . PoX0) pray = is i }
K(% | %, 1) 6_)&12)_0 { 20@) P(% | %,, te'®; e7%) (3.3)
The linear relationship between K and P shows the correspondence between the
superposition principle for probabilities (of mutually exclusive events) in Eucli-
dean time and the superposition of probability amplitudes (of mutually exclusive
events) in physical time.

Joint probability densities of the stochastic process in equilibrium correspond
to time-ordered joint probability densities in the ground-state in physical time,

e.g.

. 1
Wi(@)=-exp ( -
0

2E) g0 3.4

is the probability density in equilibrium and

Wo(Eotea, Xitgr) = @o(X)K (X, | X1, T)@o(E,) (3.5)
with

T=(tg — tg)e ™" (g2 >1g1) (3.36)

1s the joint 2-point probability density. Correspondingly, multi-time correlation
functions in equilibrium correspond to time-ordered ground-state expectation
values

(Xin(tzn) - - %, (te1)) = @0 | T(x,,(t,) - - - x,(t)) | @0) (3.7

with ¢, =tz "™, and T the time-ordering operator. Non-equilibrium averages of
the stochastic process correspond to matrix elements with the ground state

(@0 2| ¥(2))
((;00|lll(l‘)>

(O(t,)) = f PROERWE, 1) = (3.8)

With = e-—iﬂ;"ZtE‘

A very important new analytical description appearing as a result of the
stochastic reinterpretation of the Euclidean Schrodinger equation are the
Langevin equations corresponding to the Fokker—Planck equation

; 5 h .
5 CRNL-TR (.9
with the Gaussian white noise sources

(&i(tg)) =0 (3.10)
<§i(tE2)§j(rE1)) = 6:‘;‘ O(tey — tgy) (3.11)
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They are the Euclidean version of the equations of motion in the Heisenberg
picture. It is well known that stochastic differential equations of the form
(3.9)-(3.11) require the specification of the stochastic calculus to which they
refer. The two most important stochastic calculi are those of Ito [20] and
Stratonovich [21], respectively. The distinction between these calculi is important
either if the noise is X-dependent (which it is not in our examples, so far, but see
section 6) or if a non-linear change of variables to non-Cartesian coordinates is
desired. In physical time the different operator ordering conventions correspond
to the different stochastic calculi cf. [22]. Again, operator ordering conventions
have to be specified for quantization in a non-trivial metric or in curvi-linear
coordinates.

The most prominent property of the stochastic process (3.9) or (2.20) is its
irreversible approach of equilibrium. It can be exhibited by defining the entropy
(cf. [23], [24])

W(f’ tE)

S(t =—fd3W*,t | 3.12
as a functional of W(x, ¢z). It satisfies
S(tg) <0 (3.13)

where equality holds if and only if W(X, t;) = W(¥). This follows from the
definition, W (X, tz) >0, and

j W, t,) dx = f W, (%) d’x.

A second property of S(tz) is
S(tz)=0 (3.14)

if all states X are reached from any initial state ¥, in the course of time. The
property (3.14) follows from the above mentioned properties and the Fokker
Planck equation (cf. e.g. [24], Section 3.1b). Equality in (3.14), under the stated
conditions, implies again W(X, tz) = W (X). The irreversible relaxation to equi-
librium in Euclidean time corresponds, in physical time, to the forward
propagation of positive energy states (£ >0) with an amplitude ~exp (—iEt/h),
and hence causality. The arrow of time implicit in the causal relations between
events thus can be viewed as a consequence of the increase of the entropy (3.12)
in Euclidean time.

The time-reversal symmetry of the underlying Schrodinger equation gives
rise to a corresponding detailed balance symmetry of the stochastic process

P(% | Xo, tg; MYWy(To) = Wi(R)P(Fo | %, 15 —2) (3.15)

which, in turn, is equivalent to a set of Onsager—Casimir symmetry relations [25],
[26] of the noise and drift coefficients of the Fokker—Planck equation (cf. [24]). In
order to formulate these symmetry relations we define the operator of time-
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reversal R for the stochastic process by

RF(%, tg, A) = F(%, —tg, —A) (3.16)
Then we may decompose the drift K(%, A) uniquely into
K% A)=d(F A) +F(F 1) (3.17)
with d and 7 defined by
Rd(% A) =d(%, A) (3.18)
RF(%, A) = —F(%, A) (3.19)
Explicitly, we find
3
dF A= —-> Li,.i5 (3.20)
7o
with
1 00
1 (3.21)
Ly=Ly=5-{0 10
0 0 1

Since d transforms oppositely to ¥ under time-reversal, it is the irreversible,
dissipative part of the drift K. Indeed, the ‘potential’ ¢ decreases under the
motion X = d,

(&

The symmetry relation L;=L; is Onsager’s symmetry relation of transport
coefficients for variables even under time-reversal (like X).
On the other hand, we find

F(% A) = — %A’(f) (3.23)

o
);za = - (Fg)=0 (3.22)

for 7 which transforms 1ike*5c" under time-reversal and therefore Eonstitutes the
reversible part of the drift K. From the gauge condition (2.9) for A and equation
(3.23) it follows that

V. (Fexp(—¢/h)=0 (3.24)
and hence [27]
3
re~""=h2, = (Ae~*™ | (3.25)
J J

with an antisymmetric matrix

Ay(F 2) = —A,(E ) (3.26)
and

A E A) = —A,E —1) (3.27)
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due to (3.23). Therefore, 7 admits a representation in the form

CREEPNCPE 2 25‘4”“"”

Using (3.17), (3.20) and (3.28) we obtain the following representation of the drift
vector K

(3.28)

K% A) = — 2 D,(%, A) 2 (x 2 (3.29)
with :
D;(X, 1) = L (X) + A,(%, A) (3.30)
satisfying the Onsager—Casimir symmetry relations
Dy(X, A) = Dy(%, —A) (3.31)

As a final property of the stochastic process we mention its functional integral
representation [24]

P(X | Xy tg; A) = jD [q] exp{ f dtL(E(7), x(r))} (3.32)
with the formal measure of 1ntegrat10n
<2 d*x(1)
e - 3
Dld] EO (2rh dvim)*? (5.33)
and the ‘Onsager Machlup function’ [28, 24]
L5 %) =7 (¢~ KE WP +1V-RE 2) (3.34)

The interpretation of the stochastic integral in equation (3.32) is in the sense of
Stratonovich. The functional integral representation (3.32) of the conditional
probability density corresponds to Feynman’s path integral representation of the
propagator in physical time. L becomes then the Lagrangian related to the
Hamiltonian of the Schrddinger equation by the usual Legendre transformation.
The Hamiltonian version of the quantum mechanical functional integral also
exists in the Euclidean description and serves there as a unifying representation of
correlation functions and response functions [29]. In closing this section let us also
comment on the difficulties of the present approach and their possible resolution.

One difficulty 1s associated with the necessity to rotate not only time but also
the vector potential to the imaginary axis. In order to analytically continue the
final solution back to the real axis it is necessary to solve the stochastic process for
arbitrary A, which is, in general, very difficult. (Nevertheless, the inverse of this
procedure has been found useful for solving some Fokker—Planck equations
analytically in [30].) A possible way around this difficulty is to carry out the
analytical continuation in A directly in the Langevin equation [31]. This does not
seem to cause any serious problems, if the (V + (¢*/2mc?)A?) term, which is not
affected by the analytical continuation, dominates the terms of the Hamiltonian
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which are linear in A. Adopting such a procedure we have to solve

- hoo

X =K —i)+ \/% E(te) (3.35)
for a complex (vector-) valued process % and real . Let us see how this works in

the exactly solvable example of an isotropic harmonic oscillator in a homogeneous
magnetic field. The Langevin equations (3.35) with (2.30) read

] / B2 i
XxX= - 1+Txm53y+EX(tE)

BZ - 5
y=—1/1+z-y+2£Bx+§y(tE) B0

I=—z + Ez(tE)
Solving for x(t;) we find
1
x(tE) = Ef dr{(e_ml(tE_T) e e“wz(fa—f))gx(l—)

— (e~ @ttz=T) — e*‘”(‘E"))éy(r)} : (3.37)
with

| B?’_B

The Euclidean correlation function in the steady state

{ ¢ — —01(tE—E) 4 p—w2(lE—E) 3.39
(x(te)x(tE)) 2w, + ©,) (e e ) ( )
indeed, yields the correct time-ordered expectation value
1 : :
T(x(t)x(t =———" (e"irl—rl 4 gmiwzle—r] 3.40
(90| TN @) =30 (e etk (3.40)

A second and indeed quite serious difficulty of the present approach is the fact
that ¢(X) has no simple counterpart in the quantum process. In order to
determine ¢ the complete ground-state solution ¢, of the Schrédinger equation
must be known. The absolute value of ¢, is required for ¢, (2.4); the phase of ¢,
is required for picking the correct gauge (2.5, (2.6) before going to Euclidean
time. The requirement to determine ¢, severely limits the practical usefulness of
the stochastic process (2.20). Therefore, it is very remarkable that this difficulty
disappears in some supersymmetric theories. There, ¢(X) turns out to be the
‘superpotential’ and can be read off immediately from the super-space formula-
tion of the Hamiltonian. Therefore, we consider supersymmetric theories in the
remaining sections of this paper.
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4. Supersymmetry — Nicoalai’s theorem

There are several good reasons why supersymmetry as a beautiful mathe-
matical structure is interesting for physics (cf. e.g. [32]). There is a widespread
feeling among theoreticians that because of its intrinsic beauty nature should
make use of it. There is the hope that it may help in the unsolved problem of
quantizing gravity, which would make it a relevant symmetry at the Planck scale
of energy. Another hope is that supersymmetry may help to solve the ‘hierarchy
problem’ of particle physics, which would imply its relevance at ordinary particle
energies. Further physical applications of supersymmetry are in the theory of
nuclear spectra [23] and even atomic spectra [34]. But even apart from such direct
physical applications supersymmetry has turned out to be useful as a technical
tool in applications. The basic idea is to uncover ‘hidden supersymmetries’, which
often means to enlarge the original system in such a way that it becomes
supersymmetric and then to use that supersymmetry in order to simplify the
original problem. A simple example is the quantum mechanics of a spin-less
particle in a potential well. It is possible to extend this problem (artificially) to the
supersymmetric quantum theory of a particle with spin-} in a spin-dependent
potential. Supersymmetry guarantees that the energy-levels occur in degenerate
spin-doublets, one member of which describes the states of the original problem.
The advantage of supersymmetry is due to the fact that it may be easier to
determine the energy levels and states from the second member of the doublet,
which is brought in by the supersymmetry. Exact solutions may become possible
in this way, or improvements in approximate analytical calculations with Ritz’s
method [35], WKB-approximations [36] or 1/d-expansions, where d is the
dimensionality of the space considered [37]. Other examples where ‘hidden
supersymmetries’ are beneficial occur in statistical mechanics in the random field
problem of an Ising ferromagnet [8], critical dynamics, or the problem of an
electron with impurity scattering in a strong magnetic field [38].

An important characterization of supersymmetric quantum theories is
given by Nicolai’s theorem [9] which we now formulate. Let

S8 #) =S5 9)+1 [ DM, 9w C8)

be the action of a supersymmetric theory, where g is a set of coupling constants,
¢ denotes a set of superfields (or supervariables) with the bosonic components ¢
and the fermionic components . Then (with #=1)

du(g, ) ~exp (=S(g, $))D[@]D[y]1D[y] (4.2)

is the (formal) Euclidean measure of that theory, in which the ¢ are c-number
variables and the v, ¢ are Grassmann variables. Integrating over the Grassmann
variables a reduced c-number measure is obtained, which is of the form

diu(g, ) ~exp (—S5(8 ¢))D(g, @)D|[¢] (4.3)
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where D(g, @) is a determinant resulting from the integration over the Grass-
mann variables. Nicolai’s theorem now states that for any supersymmetric § of the
form (4.1) there exists a map ¢ — @'

@' =F(g, ) (4.4)
such that the action Sy is reduced to that of a free field
Sz(g, @)= S5(0, ") + const (4.5)

and the functional determinant of (4.4) cancels D(g, ¢)

det (%%) =D(g, @) (4.6)

Hence, in the new variables ¢’ the Euclidean measure (4.3) becomes simply the
Gaussian measure of a free field

dp(g, @) ~exp (—Sz(0, ")) D[¢’] 4.7

The importance of Nicolai’s theorem in our present context is the fact that it
associates a stochastic problem (4.4) with any supersymmetric Euclidean quantum
theory [10]. Equation (4.4) is a stochastic problem (if the functional F(g, ¢) on
the right-hand side is known explicitly), because the random field (or variable) ¢’
on the left-hand side is given with all its stochastic properties by (4.7), and the
task is to solve (4.4) for the unknown @ in terms of the known ¢'.

Let us consider a simple example — supersymmetric quantum theory ind =1
[32], [39], [40]. Let Q, (i=1--- N) be the symmetry generators satisfying

[Qi: H] = 0) {Qi} Q]} = 6£}'H : (4 8)
and consider the simplest case N =2 where we may use the representation
1 d
0= (~ioi 5. +goW () (4.9)
1 3 |
Q2=2( 1(728 801W(x))
13 g oW (x)
H= ———— 4+2-W2 + 4.10
A IS S (4.10)

with the Pauli matrices 0,, 0, 05 and an arbitrary function gW(x). The action
(4.1) then takes the form

S = fd( WZ(x)) fdmp (—~gW (x)) (4.11)

where x has to be identified with ¢.
Since the Hamiltonian commutes with o, the theory splits into the o;= %1
sectors. In each sector a seperate Nicolai map applies [12-14]. The results of
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Section 2 make it obvious that
iHEW(x)=E(r)  (05=1) (4.12)
E—gW(x)=E(1) (05=-1) (4.13)

are the desired maps, if [* §(7) d7 is identified with the free Gaussian variable ¢'.
Indeed, Sp of equation (4.1), which is given by the first term on the right-hand
side of equation (4.11), when written in terms of &, takes the Gaussian form

Sp = % f dt&?(t) + const (4.14)

where the constant depends on the fixed values of x at the initial and final point.
Furthermore, the functional determinant [24]

det (g—f) =5 BXp ( :Fgfdr%‘g—/)
~ [l ptwlexp | - [ary (5 - W)y (4.15)

cancels the determinant due to integration over the Grassmann variables in the
o, = * 1 sectors.

To summarize, the Nicolai map (4.4) is nothing but the Langevin equation of
the stochastic process of Section 2 associated with the various sectors of the
theory (distinguished by eigenvalues of o, or ‘fermion number’). Furthermore,
the drift £gW (x) of the Langevin (or Fokker—Planck) equation appears explicitly
in the Q, and in H. Unfortunately, in the general case, the Nicolai map is no
longer local in time, nor is it even known explicitly. Rather, it must be
constructed perturbatively and may then be only of limited practical value.
However, there are (besides ordinary supersymmetric quantum mechanics) some
quantum field theories (e.g. the Wess—Zumino model with d =2, N=2 [8] or a
certain sector of the supersymmetric Yang—Mills theory with d =4, N=1 [41,
42]) where the Nicolai map is known exactly and is still local in time.

In the remaining 2 sections we will restrict our attention to ordinary quantum
mechanics in d dimensions and ask: what is the most general form of the
Langevin equation corresponding to N =2 supersymmetric quantum mechanics?
The answer for the zero- or d-fermion sector turns out to be a stochastic process
on a manifold with purely irreversible drift (cf. Section 3). This result was
obtained independently in Refs. [13], [15]. For the general n-fermion sector
(0<n=<d) with n# 0 or d it is necessary to consider Nicolai maps in the form of
discontinuous random jump processes and the answer is not yet known.

S. Supersymmetric quantum theory on a manifold

Let us construct the most general N =2 supersymmetric Lagrangian on a
d-dimensional Riemannian manifold. Local coordinates of the manifold are
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denoted by g* (v=1,...,d), its metric tensor is g"*(q), a local orthogonal
‘Vielbein’ basis is e}(g) with
e/(q)el(q)=g"(q)
e?(‘l)ejv(‘I) = 61‘]’
where the summation convention is implied in both equations and in the
following. The anticommuting partners of the g* are y" and its complex
conjugate ¥ ** with
{v" v ={y™, v} =0 (5.2)

It is convenient to introduce also anticommuting partners 1 and n* of «. Then the
supersymmetry transformation for N =2 can be written as

(5.1)

t—>t+e*n+n*e

. , (5.3)

n—n +ie, gr - —gpt
with € £* anticommuting.

The supervariables ¢ " are introduced via

¢Y=q"+ Y + YT +ninF” (3.4)
where F"is an auxiliary commuting variable. An invariant derivative is defined by

3 d
D, =—+in*— 5.3

A Lagrangian can now be constructed from the invariants V(¢), where the
function V(q) is called superpotential, and

3(D,¢")*8un (PN D, ¢") (5.6)

It is important to note that a non-vanishing invariant of the form A,(¢)D,¢" is
not available, since A,(¢) would have to be anti-commuting and cannot be
non-zero without violating the supersymmetry. Hence

S = [drdn dali(D, %), (9)(D, ")~ V(#)
= f dt(Ly+ Ly) (5.7)

with [32],
Lp=—31g"(q)p,p, + P, (§* —g"V,)+ 4"V,
_1/ Dy, Dy; )
LF_Z(wi Dt Dt ¥
_UJV* iva“_%wv*w“*wxkavykl (5'8)

where
Py =8 (F*+ g*+ Tty y*
w:‘ = eivwv (5.9)
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v

w1 R,k are the affine connection and the Riemann curvature tensor associated
with g""(q), respectively, V,, is the covariant derivative of V with respect to ¢,
and

Dy, 9y, dey . .\,
B~ ot eolag ey -0

is the covariant time-derivative of vy,. It is not difficult to check that p, transforms
as a covariant vector in the tangent space and v, y; transform as Euclidean
vectors under local rotations of the ‘Vielbein’. Hence, S, besides being a
supersymmetry invariant, transforms as a scalar under local general coordinate
transformations and local rotations of the ‘Vielbein’. However, it is important to
note that the general rules of calculus are used in proving these facts. This makes
it necessary to use Stratonovich’s calculus in our later consideration of the Nicolai
map. We also remark that the action § is actually not of the form (4.1) but
contains a term which is quartic in the Grassmann variables.

As a last remark we note that each term of L, contains an equal number of
Y* and v, i.e. the total fermion number

p=viy, (5.11)
is conserved. Due to the Pauli principle we have 0 <p <d. The total Fock space
of the problem can be decomposed into the sectors with p =0, 1, 2,..., d.

6. Construction of the associated stochastic process [15]

Let us now restrict our attention to the p =0 sector of the theory. The
problem then is to integrate the total Euclidean measure of the theory

du~exp (- [ diL, +L,))DlaID[pID[HID[Y] (6.1)

over v, ¥ and p. The method used in [15] for accomplishing this is to consider
the path g(z) between given end-points at T =0 and 7= T as fixed and to use
coordinates and a ‘Vielbein’ basis along this path in which

Dy, _ dy;
Dt dr

The integrals over v, vy are then not difficult to evaluate with boundary
conditions corresponding to the zero-fermion sector. The result obtained in these
special coordinates must be a coordinate scalar, and it can be written as a
manifest scalar, namely

[piiowIexs (- | Lypdr)

(6.2)

1 T
= exp |3 [ da(g"V,, ~1R)

=J[q] 6.3)
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Hence, it is also valid in this form in general coordinates and for arbitrary
orientation of the ‘Vielbein’.

Next we carry out the integration of du over the auxiliary variables p, and
obtain

fD[p] exp(— LTLB dr)

T T
= [ (@27 dr)? det g**(q(7))) " exp ( - f Ly dr) (6.4)
with =0 9
Ly=138,.(9)q"¢" + 38" (q)Vi, Vi, (6.5)

where g, is the inverse of g**.
Now we turn to the problem of finding the Nicolai map. Trying an ‘ansatz’ in
the form of a stochastic differential equation in the sense of Stratonovich we put

q"=—-8"(q)V, +e/(q)°5=1"(q) (6.6)
with the Gaussian white noise
<§;> =0
(E(1)§;(0)) =5, 6(7) (6.7)

The term [*(g) is necessary in Stratonovich’s calculus in order to ensure the
invariance of ¢ " under local rotations of the *Vielbein’, and it takes the form

de; '
1'(q) = 4g el { 54— dealoq") (6:3)

As a result of this term the form of the map (6.6) depends explicitly on the
‘Vielbein’ basis. However, the different forms obtained by locally rotating the
‘Vielbein’ are all stochastically equivalent and all correspond, e.g., to the same
Fokker—Planck equation.

In order to verify that (6.6) is, indeed, a Nicolai map we have to evaluate its
Jacobian. Again we can do this by using the fixed path g(t) between g(0) and
q(T) and the special coordinates and the ‘Vielbein’ basis employed in the
derivation of equation (6.3). In these coordinates we have along the path g(7)

=0

It is then easy to show that, indeed

det ((‘;5; ) =J[q] (6.10)

along g(7). Furthermore, in the same coordinates we obtain from (6.5)

fo drly=; j dTE(D)E(T) + V(g(T)) - V((0)) 6.11)
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i.e. the right-hand side is of the form (4.5). Thus for the particular path chosen
and the particular coordinates and ‘Vielbeine’ that come with it via equations
(6.9), the stochastic differential equation (6.6) is a Nicolai map. Strictly speaking,
a different Nicolai map has to be used for each path g(t), but, fortunately, all the
different maps are stochastically equivalent and correspond to the same stochastic
process, described by the Fokker—Planck equation

IW(q, 3
2 L @V (@ 0)

+1 3 g™(q) 9
23q9"Vg(q)oq*"

Vg(q)W(q, 1) (6.12)
with
g(q) = det (g"(q)) (6.13)

and the probability density W (g, ).

The result, therefore, is a stochastic process whose drift vector, in covariant
form [27], is a pure gradient. In the notions introduced in equations (3.17)—(3.23)
the drift is purely dissipative and of the form (3.20), the reversible part of the
drift (3.23) vanishes. The basic reason behind this result is the non-existence of a
supersymmetric invariant of the form A, (¢)D,¢" in the Lagrangian. The
superpotential V(g) can be identified with ¢(g) by

¢(q) =2V(q) (6.14)

and, hence ¢(g) can be read off the Lagrangian or the Hamiltonian expressed in
terms of the supervariables. The ground-state wave-function is, therefore, also
known and reads

wo<q)=\/§v—0exp(—wq)) (6.15)

if we adopt the normalization convention

_dq_ 2
fmlw(q)l 1 (6.16)

on manifolds. On non-compact manifolds equation (6.15) may not be nor-
malizable, in which case equation (6.12) does not admit a time-independent
probability density (we exclude here the possibility discussed in [15] that V but
not V., is a multi-valued function on the manifold) and the zero-fermion sector
does not contain a normalizable zero-energy ground state.

Very similar results are obtained for the p = d fermion sector. The Nicolai
map for this case is obtained by changing the sign of the first term on the
right-hand side of equation (6.6). Hence, the zero-energy state in this sector takes
the form

V(@) = \/ﬁv exp (V(q)) (6.17)
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provided that this expression is normalizable (as it always is on compact
manifolds). Not much is known about the general p-fermion sector (p #0, d). It

contains ( ) fermion Fock states. i.e. the Nicolai maps in these sectors are given
p

by random jump processes with ( ) states coupled to the continuous d-

p
dimensional random process associated with ¢¥(t). A very interesting result has

been found by Witten [43] who showed that the number b, of zero-energy
ground states in the p-fermion sector, which equals the number of normalizable

d
equilibrium distributions of the (p)-state jump process coupled to the d-

dimensional continuous random process, is given by the p-th Betti number of the
manifold. E.g. for a compact 2-surface with » handles b,=b,=1, b, =2n, i.e. in
this case there are 2n additional zero-energy ground-states in the 1-fermion
sector which contains 2 different kinds of states associated with two different
kinds of fermions.

If, actually, no normalizable zero energy state exists in any of the p-fermion
sectors (0 <p =<d) the ground state of the system must have positive energy and
must be degenerate, i.e. supersymmetry is spontaneously broken [32].

A simple example, discussed in [39], is the motion of a particle of unit mass
on the real line with a superpotential V' (q) of the form

V(g)=—aq +1Bq> (a, $>0) (6.18)

For the stochastic process (6.6) in this potential there is a finite escape time after
which the process, initially localized at the minimum of V(gq), will escape to
g = —. In Kramer’s approximation [44] this time is given as

1

Ty=————¢2" (6.19)
A
where
2AV =-§ \/%7 (6.20)

is the height of the potential barrier.
For the quantum mechanical problem 7! is a typical frequency of tunnelling

which leads to a (non-perturbative) increase of the ground-state energy E due to
‘instanton effects’ [39] by

- (6.21)

7. Conclusion

In conclusion two points seem worth stressing. The first point is that the
relation between physical space-time and Euclidean space-time seems to become
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stronger with increasing level of understanding. Originally, in classical physics, it
looked like an aesthetical trick which turns Lorentz invariance into rotational
invariance. After quantization it acquired a completely new aspect by essentially
turning probability amplitudes into probabilities. In supersymmetric theories,
finally, the superpotential and the potential of the stochastic process become the
same quantity.

Nevertheless, it must be said that the relation between the Euclidean and the
physical world remains formal. There remains the tantalizing question whether it
is possible to give a physical meaning to the Euclidean rotation of time and
whether one could reach a deeper understanding of quantum fluctuations in this
way. Also, one should point out that unsolved difficulties even with the definition
of the Euclidean rotation of time still exist in gravitational fields without time-like
Killing vectors [45].

As a second concluding remark let us point out the practical value which a
representation of quantum theory in terms of stochastic differential equations
may have. New analytical approaches become possible, and, with increasing
importance, new ways for numerical solutions are opened up.
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