
Zeitschrift: Helvetica Physica Acta

Band: 59 (1986)

Heft: 1

Artikel: Knowledge engineering with expert systems

Autor: Humpert, B.

DOI: https://doi.org/10.5169/seals-115689

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 24.05.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-115689
https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en

Helvetica Physica Acta 0018-0238/86/010021-67$l.50+0.20/0
Vol. 59, 1986 21-87 © 1986 Birkhäuser Verlag, Basel

KNOWLEDGE ENGINEERING WITH EXPERT SYSTEMS *)

B. Humpert**)

Artificial Intelligence Group
HASLER Research Laboratories
CH-3000 BERN 14, Switzerland

and

Institut de Physique Nucléaire
Université de Lausanne

CH-1000 LAUSANNE, Switzerland

ABSTRACT

This paper examines a few typical methods
for knowledge representation and demonstrates

their application in a set of expert
systems. We explain in particular the function
mode of the systems/shells: MYCIN/EMYCIN,
HEARSAY-II/III, PROSPECTOR/KAS, and finally
we elaborate on their possible fields of
application.

Invited Talk at the Meeting of the Swiss Physical
Society, Bienne, 3-4 Octobre 1985.

**) also at CERN.

22 B. Humpert H.P.A.

INTRODUCTION

A part of artificial intelligence research [1] involves
the construction of systems which involve knowledge. A
representation of knowlege is a combination of data structures and
interpretive procedures that, if used in the right way in a
program, will lead to "knowledgeable" behaviour. Work on
knowledge representation in AI has involved the design of
several classes of data structures for storing information in
computer programs, as well as the development of procedures
that allow "intelligent" manipulation of these data structures

to make inferences. What type of knowledge is needed to
be represented in AI systems? We can think of several kinds,
such as:
- objects: knowledge in terms of facts about objects, their

classes, categories or descriptions;
- events: knowledge about actions and events with a formalism

indicating the time course of a sequence of events and
their cause-and-effect relations;

- performance: knowledge about how to do things, the performance

of skills;
- meta-knowledge: knowledge about what we know including

knowledge about our own perfomance, as cognitive processors:
our strengths, weaknesses, confusability, and so on.

Knowledge-representation schemes are not chosen at will, but
they are subject to constraints allowing, for instance, for
an easy way of reasonig. There is a set of different kinds of
reasoning one might imagine such as for instance:
- formal reasoning, involving the syntactic manipulation of

data structures to deduce new ones following prespecified
rules of inference ;

- procedural reasoning, using simulation to answer questions
and solve problems;

- reasoning by analogy, which is a natural mode of human
thought ;

- reasoning by generalization and abstraction;
- and finally, meta-level reasoning.

Any construction of expert systems [2] is faced with this
kind of questions, in particular so if the system is intended
as a multi-purpose facility which allows for complex and
involved tasks. One here might also be concerned with questions
of efficiency which we however will not address. Expert
Systems are distinct for three reasons: First, they perform
difficult tasks at expert levels of performance. Second, they
emphasize domain-specific problem-solving strategies. Third,
they employ self-knowledge to reason about their own inference

processes, and provide explanations or justifications for
the reached conclusions. And, at last, they solve problems
that generally fall into one of the following categories:
interpretation, prediction, diagnosis, debugging, design,
planning, monitoring, repair, instruction, and control. As a
result of these distinctions, expert systems represent an

Vol. 59, 1986 Knowledge engineering with expert systems 23

area of AI research that involves paradigms, tools, and
system development strategies.

There exists already a wide variety of expert systems Cl,
2, 3]. Instead of explaining all their details we rather
develop on their general characteristics by pointing to the
different domains of applications.

This paper is divided in 3 parts. In the first part
(sections 2-4) we give the essentials of the knowledge
representations schemes: logic, production systems, semantic
networks. In the second part (sections 5-7) we explain the
expert systems/shells: MYCIN/EMYCIN, HEARSAY-Il/lII and
PROSPECTOR/KAS which are in the field of medicine, speech
understanding and mineral exploration. We deliberately have
chosen these widely differing fields in order to demonstrate
the versatility of application, the difference in construction

as well as the different realizations of the in section
2-4 introduced knowledge representation schemes. In section 8
we somewhat widen our outlook and aim at an overview about
the possible applications of expert systems. In section 9 we
present our conclusions.

24 B. Humpert H.P.A.

LOGIC

In this section we present Logic which was one of the
first representation schemes used in AI. Philosophers as Boole,

Frege, Rüssel and others [4,5] made essential
contributions to the development of this field. It has two important

and interlocking branches. The first one focuses on 'w-
hat can be said' (relations, implications,.., axioms) and the
second one on 'what can be derived'(rules of inference).
Logic is a formal endeavor: it is concerned with the form, or
syntax, of statements and with the determination of truth by
syntactic manipulation of formulas.

The most fundamental notion in logic is that of truth. A
properly formed statement, or "proposition", has one of two
different possible truth values: TRUE or FALSE. Many of the
things we say and think about can be represented in propositions

that use sentential connectives to combine simple
propositions :

AND(A,&), OR(V), NOT(-i,«n>),
IMPLIES (-»¦ ,3 EQUIVALENTI**,

The use of the sentential connectives in the syntax of
propositions brings us to the simplest logic, the "propositional
calculus" in which we can construct compound propositions
using the following truth table:

X Y XAY XVY X—Vf -IX XSÏ

T T T T T F T
T F F T F F F
F T F T T T F
F F F F T T T

We thus can build sentences of propositional logic just like
expressions of mathematics. Among those we mention the tautology

and the contradiction which are always TRUE resp. always
FALSE.

In the propositional calculus we encounter the first rules
of inference which allow for the deduction of a new sentence
from previously given sentences. The power of logic lies in
the fact that the sentence is assured to be true if the
original sentences were true. The best known inference rule is
"Modus Ponens". It states: if two sentences of the form X and
X- Y are true, then we can infer that the sentence Y is true.
Note that if we think of this as two entries in the database
the modus ponens rule allows us to replace them with the
simple statement Y.

We turn to the predicate calculus which allows for
relationships between objects. It is an extension of the notions
of the propositional calculus in that it allows for state-

Vol. 59, 1986 Knowledge engineering with expert systems 25

ments about specific objects or individuals; these are called
"predicates". A predicate is applied to a specific number of
arguments -one, two,... several- and has a value of either
TRUE or FALSE when "individuals", one might say constants,
are used as the arguments.

We introduce two new notions, those of "variable" and
"quantifier". A variable is a place holder, one that is to be
filled in by some constant. There are two quantifiers,"^4,
meaning "for all ...", and 3 meaning "there exist ...".
We can again have inference rules for quantifiers. The
"elimination (or universal specialization) rule" states that,
for any wellformed expression 0 with a variable X:

if we have Vx.f(X) we can conclude that j£(A).

There are two additional notions. "Functions", likes predicates,
have a fixed number of arguments; but functions are

different from predicates in that they do not just have the
values TRUE or FALSE, but they "return" objects related to
their arguments. The second important addition is the predicate:

"EQUALS)". Two individuals X and Y are equal if and
only if they are indistinguishable under all predicate
functions. What we aim at with these additions is no longer
pure predicate calculus; it is a variety of first-order
logic.

The important feature of logic and related formal systems
is that deductions are guaranteed correct to an extent that
other representation schemes have not yet reached. The semantic

entailment of a set of logic statements is completely
specified by the rules of inference. Theoretically, the database

can be kept logically consistent and all conclusions can
be guaranteed correct. Other representation schemes are still
striving for such a definition and guarantee of logical
consistency.

One reason that logic-based representations have been so
popular in AI research is that the derivation of new facts
from old can be mechanized. Using automated versions of theorem

proving techniques, programs have been written to determine

automatically the validity of a new statement in a logic
database by attempting to prove it from the existing
statement.

The idea of using formal logic as a representation scheme
and deductive inference as a reasoning method was apparently
first suggested as an approach to commonsense reasoning and
problem-solving by McCarthy in 1958 [6]. After several other
initial attempts, Robinson arrived in 1965 at an automatic
deduction technique for proving theorems which is relatively
simple and logically complete [7]. Robinson's procedure and
those derived from it are usually referred to as "resolution
procedures" because the basic rule of inference they use is
the "resolution principle":

From AvB and (-lAvC infer BVC

26 B. Humpert H.P.A.

Robinson's work had a major influence on mathematical theorem
proving, commonsense reasoning and problem solving.

First-order logic demands a clean syntax (form or grammer
of the language), clear semantics (meaning of the formulas),
and above all, the notions of truth and inference. Clarity
about what is being expressed and about the consequences of,
or possible inferences from a set of facts is perhaps the
most important quality of this formalism. Logic is precise,
flexible and modular. Its major disadvantage stems from the
separation of representation and processing.

We point to a few logic-bases systems. The QA3-program by
Green [8] was one of the earliest general-purpose
questioning-answering systems that solved simple problems.
The STRIPS-program (Stanford Research Institute Problem Solver)

[9] was designed to solve planing problems faced by a
robot in rearranging objects and navigationg in a cluttered
environment. The representation scheme chosen for STRIPS was
the first-order prodicate calculus. The FOL-system [10] is,
among other things, a flexible proof checker for proving
statements in first-order logic. Deduction is done with the
natural deduction system of Prawitz [11].

Mechanical theorem proving goes back to the I960's where
Gilmore and Prawitz [12], shortly followed by Davis and
Putnam [13], made the first attempts to implement Herbrand's
procedure on digital computers. This AI branch has meanwhile
considerably progressed and several useful computer systems,
to a large extent based on Robinson's principle exist. We
mention TPU by Chang and Lee [14], LMA/lTP by Wos, Overbeek,
Lusk [15] and the BM-theorem prover by Boyer and Moore [16].

Vol. 59, 1986 Knowledge engineering with expert systems 27

3. PRODUCTION SYSTEMS

In this section we consider the knowledge-representation
by "production systems". This method was developed in 1972
by Newell and Simon [17] for models of human cognition.

The term "production system" is used to describe several
different knowledge schemes, based on condition-action pairs,
called "production-rules" (or P-rules). A production system
consists of three parts: (a) a "rulebase" composed of a set
of production rules, (b) a special, buffer-like "database"
and (c) an "interpreter" which controls the system's activity.

A production rule is a statement in the form: "IF this
<condition> holds, THEN this <action> is appropriate".
A typical rule might be:

IF the patient has fewer, AND
the patient has a running nose,

THEN conclude that the patient has a cold.

During the execution of the production system, a P-rule,
whose condition-part is satisfied, can fire; that is, it can
have its action-part executed by the interpreter. Typical AI
Systems nowadays contain hundreds of P-rules in their
rulebase. The database is the focus of attention of the
P-rules. The left-hand side of each P-rule in the rulebase
represents a condition that must be present in the database
before the P-rule can fire. The actions of the P-rules can
change the database, so that other rules will have their
condition part satisfied. The database may be a simple list, a
very large array, or more typically, a medium-sized buffer
with some internal structure of its own. The interpreter is a
Programm which has the special task of deciding which production

to fire next.
Consider a production system that might be used to identify

some items. The database (Db) consists of a list of
symbols, and the rulebase and evaluation hints by the interpreter

are as follows:
ulebase: •

Pl IF <a> THEN
P2 IF <c> THEN <d>
P3 IF <e OR b> THEN <g>
P4
P5

P6

IF <h AND i AND NOT(g)> THEN <j>
IF <g AND h> THEN <k>

IF <h AND b> THEN <1>

The condition-part of each of the P-rules corresponds to
a question: Is the item <a> TRUE, meaning is it in the
database, and similarly is the item <c> satisfied?, and so on.
The action-parts of the P-rules represent additions to our
knowledge about the unknow item.

28 B. Humpert H.P.A.

Interpreter:
Step 1 : Find all P-rules whose condition parts are TRUE and

make them applicable.
Step 2 : If more than one P-rule is applicable, then deacti¬

vate any P-rule whose action adds a duplicate symbol

to the database.
Step 3 : Execute the action of the lowest numbered (or only)

applicable P-rule. If no P-rules are applicable,
then quit.

Step 4 : Reset the applicability of all P-rules and return
to Step 1.

Production systems operate in cycles. In each cycle, the
P-rules are examined in a manner specified by the interpreter

to see which are appropriate and could fire. Then, if
more than one is found appropriate, a single P-rule is selected

from among them. Finally, the P-rule is fired. These
three phases of each cycle are called "matching", "conflict
resolution" and "action".

Suppose the database originally consists of the list:
Db { a, h\.

The first cycle starts with Step 1 of the interpreter
algorithm: Since only Pl is applicable, Step 2 is not necessary,
and Step 3 causes the action part of Pl to be executed. This
adds the symbol to the Db-list, representing a new fact
about the unknown item:

Db fb, a, hi.
Step 4 ends the first cycle and brings us back to Step 1 -
finding all the applicable P-rules.

In the second cycle the (PI, P3, P6)-rules are
applicable. So, in Step 2 we must check if any of these
three adds a duplicate symbol to the database. Pl adds ,
which is a dublicate, so it is eliminated. Then in Step 3 we
select P3 to be executed (because it has a lower number than
P6), resulting in:

Db \ g, b, a, h J

In the third cycle we find that the (Pl, P3, P5,
P6)-rules are applicable. Checking, in Step 2, for redundant
entries, we eliminate the (Pl, P3)-rules from consideration.
In Step 3, we decide to execute P5, once again because it
comes before P6. This results in the database:

Db I k, g, b, a, h J

In the next two cycles of execution, our sample production
system will finish. In cycle 4, the symbol <1> is added

to the database, and in the last cycle, finding no non-
redundant P-rules to fire, the interpreter finally quits,
leaving the database-list:

Db 11, k, g, b, a, h |

Vol. 59, 1986 Knowledge engineering with expert systems 29

The indicated items and in particular the last one can in
this way be deduced from the initial Db-list and the
P-rules (see Fig. 3.1).

The research on deductive inference has recognized two
fundamentally different ways that people reason. Sometimes
we work in a data driven, event driven or bottom-up direction,

starting from the available information as it comes in
and trying to draw conclusions that are appropriate to our
goals. This is how our sample production system worked, for
example. In production-system research this is called
forward chaining method of inference (Fig. 3.1). We sometimes
work the otherway, however, starting from a goal or expectation

of what is to happen and working backwards, looking for
evidence that supports or contradicts our hunch. This is called

goaldriven, expectation-driven or top-down thinking, and
in production systems it is referred as backward chaining
méthode of inference (Fig. 3.1). It requires looking at the
action parts of rules to find ones that would conclude the
current goal, then looking at the left-hand sides of those rules
to find out what conditions would make them fire, then
finding other-rules whose action parts conclude these conditions
and so on.

One obvious quality of production systems is modularity
which means that the individual P-rules in the rulebase
can be added, deleted or changed independently. They
behave much like independent pieces of knowledge, and communicate

only by means of the data in the database. A uniform
structure is imposed on the knowledge in the rulebase and all
information is encoded with the rigid structure of production

rules. The structure of the left and right-hand side of
the P-rules has been progressively extended. The left-hand
side can now evaluate an arbitrarily complex condition, and
the form of the right-hand side also includes variables.

Production systems have been used to represent real world
tasks, like speech understanding, medical diagnosis, or mineral

exploration and in psychology, they were used for modelling
human behaviors. The following utility criteria were

proposed:
1. Domains in which the knowledge is diffuse, consisting of

many facts (medicine), as opposed to domains in which
there is a concise, unified theory (physics).

2. Domains in which processes can be represented as a set of
independent actions, as opposed to domains with dependent
subprocesses.

3. Domains in which knowledge can be easily separated from
the manner in which it is to be used, as opposed to
cases in which representation and control are merged.

The above-presented knowledge-representation scheme has
been used, most typically, in the MYCIN-System [18] which
acts as a medical consultant for the diagnoses and therapy
of bacteremia and meningitis infections. It also includes a
knowledge acquisition subsystem, THEIRESIAS [19], which helps

30 B. Humpert H.P.A.

expert physicians expand or modify the rulebase. MYCIN'S
rulebase contains several hundred production rules representing
human-expert level about the domain. The system is
distinguished by its use of a backward chaining control structure
and inexact reasoning involving confidence factors that are
attached to the conclusion part of each rule to help determine

the relative strength of alternative diagnoses. There
exist a number of similar expert-systems such as PUFF [22],
EXPERT [20], AM [21] and many others which might differ
in their construction details but which use the same underlying

knowledge-representation scheme.

Vol. 59, 1986 Knowledge engineering with expert systems 31

4. Semantic Networks

In this section we consider the knowledge representation
by "Semantic Networks". This method was developed in 1968 by
Quilian [23] for psychological modelling and by Raphael [24]
for the question-answering system SIR.

The term "semantic networks" stands for a class of
representation formalisms that share a common notation consisting
of nodes and arcs; it is a scheme for representing abstract
relations among objects (in a knowledge base), such as
membership in a class: Robin ISA Bird, Sparrow ISA Bird, Bird
ISA Animal. Such relationships may be represented graphically
by a network of nodes and arcs where the nodes represent
objects (e.g. Sparrow, Bird, Animal) and the links represent
the relations (e.g. ISA) among the objects. Semantic networks
were originally designed as a way to represent the meanings
of words. Suppose we wish to represent a simple fact like:
"All Robins are Birds", in a semantic network.

ISA ISA
Clyde -» Robin > Bird »¦ Wings

HAS-PART

We might do this by creating two nodes to designate:
"Robins" and "Birds" with an arc connecting them. If "Clyde"
were a particular individual who we wished to assert is a
robin, we could add a node for "Clyde". Please ignore the
WINGS-part for the moment. In this example we have represented

not only the two initial facts, but we also deduced a
third fact, namely, that "Clyde" is a "Bird", simply by
following the ISA-links. The ease with which it is possible to
make deductions about inheritance hierarchies, is one reason
for the popularity of the semantic networks as a knowledge
representation.

One often needs to represent knowledge about properties
of objects. For example one might wish to express the fact
"Birds have wings", which is expressed by the WINGS-part on
the right-hand side in the above chart. Our representation
makes it easy to deduce that "Robin" and "Clyde" also have
wings. All that is necessary is to trace up the ISA-
hierarchy, assuming any facts asserted about higher nodes
on the hierarchy can be similarly considered valid for the
lower ones. Note that each property stores a one-way arc. To
store bidirectional links, it is necessary to store each half
separately, possibly with a different label. Semantic nets
are usually represented using some kind of attribute-value
memory structure. So, for example, in LISP, each node would
be an atom, the arcs would be properties, and the nodes at
the other ends of the links would be the values:

ATOM PROPERTY LIST
CLYDE ((ISA ROBIN))
ROBIN ((ISA BIRD))
BIRD ((HAS-PART WINGS))

32 B. Humpert H.P.A.

From the discussion sofar, it is clear that semantic nets
can be used to represent relationships that would appear as
two-place predicates in predicate logic. Many one-place
predicates can be thought of as two-place predicates using some
very general purpose predicates such as ISA. Three or more
place predicates can also be converted to a binary form by
creating one new object representing the entire predicate
statement and then introducing binary predicates to describe
the relationship to this new object of each of the original
arguments. The sentence: "John gave the book to Mary" is in
predicate logic expressed by: gave (John, Mary, book).
The analogous semantic net is shown in the following graph:

give
ISA

actionj

Person
ISA

John

ISA

ISA
AGENT

give 1
OBJECT

book 1

lOft | I i ¦
TIME I--— |2 o'clock|I Mary |

ACTION* l

TIME ' BENEFICIARY [ISA

| book

In the above example give_ll is the newly introduced
object. It is considered as a particular member, or instance
of the class |give | since it is correlated to John, Mary,..
Similarly |book_i"l~is an instance of the general class | book I.
Obviously, the above example now admits additional information

such as for instance on time |2 o'clock^and other
particularities.

The reasoning mechanism used by many semantic network
systems is based on the "matching network structures". A
network fragment is constructed, representing a sought-for
object or a query, and then matched against the network database

to see if such an object exists. Variable-nodes in the
fragment are bound in the matching process to the variables
they must have to make the match perfect. For example, suppose

we use the above sketched semantic network for the
sentence: "John gives Mary the book" and we wish to answer the
question: "What did John?". We might construct the fragment:

John
AGENT

_ ISA
give *» 1 action!

ISA
give

which represents an instance of an action in which John is
the agent. This fragment is then matched against the network
database looking for all nodes where I John I is the AGENT. In
our case the only node is |give_l~| and the answer would be:

Vol. 59, 1986 Knowledge engineering with expert systems 33

"John gives". Had no match been found, the answer would have
been: "John didn't do anything".

Semantic networks are a very popular knowledge representation
scheme. The node-and-arc structure captures something

essential about symbols and pointers in symbolic computation
and about association in the psychology of memory. Most
current work involves elaboration of the semantic net idea, in
particular, work on aggregate network structures called
"frames".

One of the major problems is how to handle quantification.
One way of solving the problem is to partition the semantic
network into a hierarchy of spaces, each of which corresponds
to the scope of one or more variables.

Besides computational problems that arise when network
databases become large enough to represent non-trivial amounts
of knowledge, there are many, more subtle problems involving
the semantics of the network structures.

The node-and-link formalism of semantic netwoks has found
use in a number of AI systems in different application
domains. We point to the early spreading activation model by
Quilian [23] and to Raphael's [24] questioning-aswering
system SIR.

A good example of a network deduction system, constructed
around the matching paradigm, is SNIFFER [25]. It has the
general power of a theorem prover for making deductions from
the network database and is capable of taking advantage of
heuristic knowledge embedded in procedures providing advice
about which network elements should be matched first and
about how to match the selected elements.

Semantic networks were also used in expert-systems.
PROSPECTOR [26], for example, is a computer-based consultation

system to assist geologists working in mineral exploration.
It's mainfunction to match data from a particular

situation against models that are descriptions of the most
important types of arc-deposits. The data are primärly surface
geological observations - uncertain and incomplete - so that
the conclusion is expressed as a probability or a degree of
match.

34 B. Humpert H.P.A.

MYCIN

The MYCIN [27] system (see Fig. 5.1) addresses the
problem of diagnosing and treating infectous blood diseases
such as bacteremia and meningitis. Its knowledge comprises of
approximately 450 rules relating possible "premises" to
associated "actions". In its problem-solving, MYCIN tests a
rule's conditions against available data or requests data from
the physician. If appropiate, it tries to infer the truth or
falsity of a condition from other rules.

5.1 MYCIN System
The knowledge in MYCIN is encoded in "production-rules"

with an example given in Fig. 5.2. The rules are stored
internally in LISP-form from which the English version is
generated. Each rule is a single "chunk" of domain-specific
information indicating an "action" that is justified if the
conditions, specified in its "premises", are fulfilled. Since
the rule employs a vocabulary of concepts common to the
domain, its form itself involves a comprehensible part of
domain knowledge. Each rule is highly stylized, with an
IF...THEN format and a specific set of admissible
"primitives". In fact, the internal form is executable LISP
code. This highly structured form makes it possible for a
program to be designed to examine the rules as well as to
execute them. For example, the rules can be translated into
readable English format, as shown above. The translation
capability has been used in MYCIN to explain the program's
inferences to the expert.

The "premise" of each rule is a Boolean combination of one
or more "clauses", each of which is constucted from a
"predicate function" with an "associated triplet": <object,
attribute, value) as its arguments. Thus, each
"premise-clause" typically has the following four components:
<predicate function) <object> <attribute> <value>. For example,

the second clause in the above Rule-050: <(the site of
the culture is one of the sterile sites)>, reads

(MEMBF CNTXT SITE STERILESITES)
1 I I I

<Predicate> <Object> <Attribute> <Value>

MEMBF is a predicate, and the triple says that the site of
the current <object> (an organism, implicitly referred to by
CNTXT) is a member of the class of sterile sites. In general,
the content of an "associate triplet" can be translated into
English as follows:

THE <attribute> OF <object> IS <value>

A standardized set of

<predicate functions): MEMBF, SAME, KNOWN, BELONGING-TO,
IS, (NON-)SUSPECTED, DEFINITE,..

Vol. 59, 1986 Knowledge engineering with expert systems 35

<objects> : ORGANISM, CULTURE, MEDICAMENT,
PATIENT, INFECTION,...

«attributes) : SITE, PORTAL, LOCUS, GRAM, IDEN¬
TITY, SENSITIVS, CONTAMINENTS,...

«associated values) : E.COLI, KLEBSIELLA, PENICILLIN,
BLOOD,...

form the vocabulary of the "conceptual primitives" for
constructing rules.

The «objects) (called "contexts" in MYCIN) in the associated
triplets are variables corresponding to domain entities.

These entities are instantiated and organized by the program
into a simple hierarchy called the "context-tree". For example,

in the MYCIN domain the «objects) might be PATIENT-1,
CULTURE-1, ORGANISM-1, and ORGANISM-2, and the "context-tree"
would indicate that ORGANISMS belong to CULTURES and CULTURES
belong to PATIENTS. The "context-tree" provides some of the
inheritance mechanisms of a frame representation. For example,

since cultures also have sites, the system can discover
the site of ORGANISM-2 by knowning the ORGANISM-2 came from
CULTURE-1 and looking üp the site of CULTURE-1. The
«attribute) (called "clinical parameter" in MYCIN) represents
the characteristic of an «object) in the "context-tree": the
name of a patient, the site of a culture,... The
«attributes) known to MYCIN are therefore categorized in
accordance with the particular «object) to which they apply.
Each of the 65 «attributes) currently known to MYCIN has an
associated set of properties that is used during its consideration

for a given «object). The «value) of every «attribute)
in the associated triplet is stored by MYCIN along with an
associated certainty-factor that reflects the system's
"belief" that the value is correct.

A "rule-premise" is always a conjunction of "clauses", but
it may contain arbitrarily complex conjunctions or disjunctions

nested within each clause. Instead of writing rules
whose "premise" would be a disjunction of clauses, a separate
rule is written for each clause. The action-part indicates
one or more conclusions that can be drawn if the premises are
satisfied, making the rules purely inferential.

To summarize, there are two major forms of knowledge
representation: (i) the «objects, attributes, values) which form
a vocabulary of domain specific conceptual primitives, and
(ii) the inference rules expressed in terms of these
primitives.

Note that the rules are judgmental, that is, they make
inexact inferences. To accomodate uncertainty, MYCIN associates

a "certainty-factor (CF)" with every «object, attribute,
value) triple. This number, a normalized probability, ranges
from -1 (when the triple represents a false assertion)
through 0 (no opinion) to +1 (unquestionably true). Medical
facts about the patient are thus represented as 4-tuples
made-up of the "associative triple" and its current CF. Positive

CF's indicate that the evidence confirms the hypothesis;

36 B. Humpert H.P.A.

negative CFs indicate disconfirming evidence. The following
are examples of such 4-tuples:

«object) «attribute) «value) CF

(ORGANISM-2 IDENT KLEBSIELLA +0.2)
(ORGANISM-2 IDENT E. COLI +0.7)
(ORGANISM-1 SENSITIVS PENICILLIN -1.0)
(PATIENT-1 IMMUNOSUPRESSED YES +1.0)

The «predicates), according to their particular nature and
definition, evaluate, for some certainty interval such as 0.2
to 1.0, to the CF of their argument-triple, or they can take
the values TRUE or NIL in specific situations; they even can
be fuzzy-set functions that indicate a degree of truth. The
logical connective AND returns the minimum, and analogously
the connective OR returns the maximum value of the CFs of its
arguments. As a condition of applying a rule, a "premise" is
considered to be TRUE if its certainty is greater than some
threshold, typically +0.2, and FALSE if its certainty is less
than another threshold, typically -0.2.

The second use of CF's is in the statement of the
"production-rules" themselves. For example in the above
Rule-050, the asserted conclusion is weighted with a mild
degree of confidence: 0.7. This CF is thus a measure of the
association between the "premise-clauses" and the
"action-clauses" of each rule. The term "TALLY" in the LISP-
form of the "rule-action" indicates MYCIN'S believe in the
"rule-premise".

A "fired" rule updates the CFs of the specified
"action(s)", or, as an alternative, it evaluates a set of
attached procedures. In doing this, the system combines: (i)
the CF of the "rule-premise", (ii) the present CF of the
"rule-action", and (iii) the CF associated with the rule. The
CF of a new fact, derived from a rule, is given by:

CF CR x min[... CFi ...]
The CR is the certainty-factor attached to the rule and the
CFi is the certainty-factor of the i-th "premise-clause".
Thus if the premise was only weakly believed (low, positive
CF), any conclusions that the rule might make would be modified

(reduced) to reflect this weak believe. If two different
rules lead to the same conclusion with the certainty-factors
CRI and CR2, they enforce each other:

CF(conclusion) CRI + CR2 *(1- CRI)

These simple rules are in fact based on a slightly more
complicated model of inexact reasoning [28] which, to a substantial

part, can be traced back to probability theory with the

Vol. 59, 1986 Knowledge engineering with expert systems 37

assumption of statistical independence [29]. The alternative
action of evaluating the attached procedures, is an escape
mechanism that allows the execution of arbitrary LISP-code.

MYCIN'S model of inexact reasoning permits the coexistence
of several plausible values for a single «attribute) if this
is suggested by the evidence. For example, after attempting
to deduce (IDENT) of an organism, MYCIN may have concluded
correctly that there is evidence of both E. COLI and
KLEBSIELLA.

The mechanism to draw conclusions from the rules in the
knowledgebase and the current data, is called "inference
engine". In MYCIN, rules are invoked in a goal-directed
backward-chaining fashion that results in an exhaustive
"depth-first search" of an AND/OR goal tree with the sougth
topic at its top. Backward-chaining can go several levels
deep; for a "rule-action" to be true, the "premise-clauses"
must be true. However, each of them might itself be the
"action-part" of another rule, and so on.

For example, assume that the program is attempting to
determine the identity of a particular infection organism. It
thus retrieves all the rules that make a conclusion about
that topic and invokes each one in turn. The above Rule-050
for instance mentions in its "action-part": IDENT (organism)

bacteria. In order to certify the validity of the rule,
each of its "premise-clauses" must be evaluated to see
whether the rule's conditions can be satisfied. This process
begins with the first "premise-clause", where: INFECT primary
bacteremia. Since the type of the infection is not given by
the data and it therefore is not known, the system sets up a
new subgoal and the process recurs. The system now looks for
rules that conclude about this new topic: the type of the
infection?, leading possibly to several answers with differnt
degrees of certainty. Among these answers one might find the
first "premise-clause" being certified.

We give another example in Fig. 5.3. Note, the subgoal
that is set up is a generalized form of the original goal. It
is always of the form: Determine the value of the «attribute),

rather than: Determine whether the «attribute)
«value).
Thus, for the first "premise-clause" in Rule 050, the subgoal
is: Determine the type of infection. By setting up the
generalized goal of collecting all evidence about an «attribute),
the perfomance program effectively exhausts each subject as
it is encountered and thus tends to group together all
questions about a given topic. This feature results in a system
that displays a much more focused, methodical approach to the
task, which is a distinct advantage when human-engineering
considerations are important. Obviously, this leads to the
deduction and collection of information that is not strictly
necessary. However, since such unnecessary efforts occur
rarely - only when the «attribute) can be deduced with certainty

to be the «value) named in the original goal - is has not
proven to be a problem in practice.

38 B. Humpert H.P.A.

The search is thus "depth-first" because each
"premise-clause" is thoroughly explored in turn. The resulting

search is an AND/OR goal tree because the
"premise-clauses" also may have OR connections. The search is
exhaustive because all applicable rules are "fired" and their
conclusions are rank-ordered by the certainty-factor. Since
the rules are inexact they lead to conclusions of less than
total certainty. Thus even if one rule succeeds, the system
continues to collect further evidence about the subgoal from
other applicable rules; MYCIN considers all possibilities.

We give a toy example. Suppose MYCIN'S goal is to find the
value of A, and some of its rules are

Rl : IF <F=f > THEN <C=cl, 0.5)
R2 : IF <G=g AND H=h > THEN <C=cl, 0.6)
R3 : IF <H=h AND I=i > THEN <C=c2, 0.7)
R4 : IF <B=b AND C=cl> THEN <A=a, 0.8)

and other rules making conclusions about A

Suppose MYCIN also knows that the values of B, F, G, H, I, E

are laboratory data, determined by asking the user for their
values. The AND/OR tree corresponding to these rules is shown
in Fig. 5.4. MYCIN searches this graph depth-first from left
to right, determining the values of B, F, G, H, I, C and A in
turn. Note that when a rule such as R4 is involved, the sub-
goals MYCIN creates are not to prove that B=b and C=c, but
rather to find the values of B and C. The system can then
focus on a particular topic when interacting with the user,
rather than jumping from topic to topic. In addition B and C

need not be reevaluated if another rule is ever encounted
that requests information about them.

If, after trying all relevant rules to resolve a subgoal,
the total weight of the evidence about a hypothesis falls
between -0.2 and +0.2 (an empirically determined threshold
value), the answer is regarded as still unknown. This result
would occur: if no rules were applicable because their premises

did not match the available data, if the applicable rules
were too weak, if the effects of several rules offset each
other, or if there were no rules for this subgoal at all. In
any of these cases, when the system is unable to deduce the
answer, it asks the user for the value of the subgoal.

This strategy, of always attempting to deduce the
«value(s)) of a subgoal and asking the user only when deduction

fails, ensures a minimum of questions. This, however,
can lead to an extended search for a subgoal with a less than
definite answer, although the answer is known with certainty.
Some of the «attributes) have therefore been labeled
"laboratory data" to indicate that they represent definite
information from quantitative tests. In these cases the
system attempts to deduce the answer only if the user cannot
supply it.

Two other additions increase the inference engine's

Vol. 59, 1986 Knowledge engineering with expert systems 39

efficiency. First, before the entire list of rules of a sub-
goal is retrieved, the program looks for a sequence of rules
that would establish its "action-part" with certainty, based
on what is currently known. Since this is a search for a
sequence of (mainly definitional) rules with CF=1, the result
is termed a "unity path". In addition to efficiency, this
process offers the advantage of allowing the program to make
commonsense deductions with a minimum of effort. Second, the
inference engine performs a partial evaluation of the
"rule-premises". The value of one or several "premise-clause"
may already have been established while the rest is still
unknown. If this clause alone would make the premise false,
there is clearly no reason to do all the search necessary to
establish the others. Each "premise" is thus previewed by
evaluating it on the basis of the currently available
information which gives immediate insight whether the rule is
guaranteed to fail.

The "meta-rules" are implementations which allow the
system to guide its search process. They are strategic rules
that prevent an exhaustive enumeration by indicating the
best approach to determine a subgoal.

One of the meta-rule concerns, for instance, the general
aim to provide a therapy for a patient; it reads:

IF «a therapy is wanted)
THEN «consider, in the given order, the rules for:

1) acquiring clinical information about the patient,
2) finding which organisms are the infection-cause,
3) identifying the most probable organisms,
4) finding all the potentially useful medicaments,
5) choosing a small number of most adepted rules

The meta-rule 001 of the MYCIN system, as another example,
has the form:

IF «the culture was not obtained from a sterile source) AND
«there are rules which mention in their premise a
previous organism which may be the same as the
current organism)

THEN «it is definite (1.0) that each of them is not
going to be useful)

with its content encoded in LISP-form:

(AND (NOTSAME CNTXT SITE STERILESOURCE)
(THEREARE OBJRULES)
(MENTION CNTXT PREMISE SAMEBURG) SETI))

(CONCLIST SETI UTILITY NO TALLY +1.0)

It is important to note the character of the information
conveyed by the meta-rules. First, note that in all cases we have

a rule that is making a conclusion about other rules. That
is, where "production-rules" conclude about the medical do-

40 B. Humpert H.P.A.

main, meta-rules conclude about the "production-rules". They
can make deductions about the likely utility of "production-
rules", or they can indicate a partial ordering between two
subsets of "production-rules". Note also that meta-rules make
conclusions about the utility of "production-rules", not
about their validity. This is important because it has an
impact on the question of distribution of knowledge.

Adding meta-rules to the system requires only a minor
addition to MYCIN'S control structure. As before, the system
retrieves the entire list of rules to the current goal. But
before attempting to invoke them, it first determines if there

are any meta-rules relevant to the goal. If so, these are
invoked first. As a result of their actions, we may obtain a
number of conclusions about the likely utility and relative
ordering of the rules-list. The conclusions are used to
reorder or shorten the rules-list, and the revised list of
rules is then used. Viewed in tree-search terms, the current
implementations of meta-rules can either prune the search
space or reorder the branches of the tree.

MYCIN'S explanation program allows a user to examine both
the reasons for the conclusions reached in a particular
session and the information in the static data. This can be
done either through the use of simple "WHY" and "HOW"
commands when the system requests the «value) of an «attribute)
or through the keyword parser that can interprete simple
requests given in English.

The representation of knowledge as "production-rules" and
the ability to explain specific rules allow MYCIN to interact
with an expert clinic in a manner that permits the system to
acquire new knowledge. The THEIRESIAS system [30] is a high-
level knowledge base editor that works in conjunction with
MYCIN and assists in entering and updating the (large) MYCIN
knowledge base, finding errors in the database, modifying
faulty rules, or adding new rules. It checks the rules for
syntactic validity, sees that they do not contradict or
subsume existing rules and inspects faulty reasoning
chains. The THEIRESIAS' rule acquisition process is based on
a record of MYCIN'S search. Rule acquisition is guided by a
set of rule models that dictate the form and indicate the
likely content of 'new rules. Rule models are not given in
advance, but are inferred from the knowledge base of existing
rules.

5.2 EMYCIN

The EMYCIN system [31] is basically a domain-independent
or an appropriate skeletal version of MYCIN that can provide
consultative advice. The basic control strategy employed by
EMYCIN is backward-chaining, its initial goal being to determine

the value of a top-level attribute. At any subsequent
time, EMYCIN is working on the goal of establishing the value
of the attribute of some object. To do this, it retrieves a
precomputed list of rules whose consequents are known to bear
on that goal, and it systematically attempts to apply the ru-

Vol. 59, 1986 Knowledge engineering with expert systems 41

les until it either establishes the value with complete
certainty or exhausts the rule list. If no value can be deduced
- whether because there are no rules or because the rules were

unsuccessful - it resorts asking the user for the value.
The resulting consultation system takes as input a body of

measurements or other information pertinent to a case and
produces as output some form of recommendation or analysis
of the case. This framework seems well suited for many
diagnostic or analytic problems, notably some classes of fault
diagnosis, where several input measurements (symptoms,
laboratory tests) are available and the solution space of possible

diagnoses can be enumerated. It is less suited for
"formation" problems, where the task is to piece together
existing structures according to specified constraints to
generate a solution.

EMYCIN is not designed to be a general-purpose representation
language. It is thus wholly unsuited for some problems.

The limitations derived largely from the fact that EMYCIN has
chosen one basic, readily understood representation for the
knowledge in a domain: production rules that are applied by a
backward-chaining control structure and that operate on data
in the form of associative triples. The representation as
implemented in EMYCIN, is unsuitable for problems of
constraint satisfaction, or those requiring iterative
techniques. Among other classes of problems that EMYCIN does
not attempt to handle are simulation tasks and tasks involving

planning with stepwise refinement. One useful heuristic
in thinking about the suitability of EMYCIN for a problem is
that the consultation system should work with a "snapshot" of
information about a case. Good advice should not depend on
analyzing a continued stream of data over a time interval.

5.3 MYCIN Family
MYCIN is the result of a concentrated effort within the

Stanford Heuristic Programming Project to use
"production-rules" as a knowledge representation. During its
development and particularly after its successful completion
several related projects were persued which are shown in
Fig. 5.5.

DENDRAL [32] was the forerunner of MYCIN in the sense that
many of the lessons learned in its construction were used in
the design and implementation of MYCIN. GUIDON [33] is a
program for teaching MYCIN'S infectious-disease rules to
students. Its teaching knowledge is stated in the form of 200
tutorial rules which include methods for guiding the dialogue
economically, presenting diagnostic rules, constructing a
student model, and responding to the student's initiative.
Rather than teaching a student rule clause by rote, it is
advantageous to convey an approach strategy for bringing those
steps to mind. To make this implicit design knowledge explicit

the NEOMYCIN system [34] is being developed.
EMYCIN [31] has been used as the starting point for a set

of application oriented expert systems of similar structure.

42 B. Humpert H.P.A.

We mention: SACON [35] is a system for advising structural
engineers in the use of a large, finite element analysis
program for modelling various mechanical structures. ONCOCIN
[36] assists physicians with the managment of patients enrolled

in experimental plans for treating cancer with chemotherapy.
PUFF [37] /CENTAUR [38] /WHEEZE [39] diagnose patients

with pulmonary (lung) function disease. CENTAUR is based on
hypothesis-directed reasoning, and WHEEZE provides for a
uniform declarative representation of the domain knowledge. VM

[40] monitors the post-surgical progress of patients (after
cardiac surgery) requiring a device called "mechanical ventilator"

which provides breathing assistance, with the type and
setting of the ventilator being adjusted to match the
patients need. GRAVIDA [41] reasons about complications of
pregnancy, CLOT [42] about blood clotting disorder, and HEADMED
[43] gives diagnoses and treatment for psychiatric patients.
Other recent MYCIN-based systems are: DART [44], LITHO [45],
BLUEBOX [46],

Vol. 59, 1986 Knowledge engineering with expert systems 43

6. HEARSAY

The HEARSAY-II speech understanding system [47] has been
one of the most influential AI-programs, not so much because
of its speech unterstanding ability, but in the way it is
constructed; there are several "knowledge sources (KS)"
cooperatively solving a problem by posting hypotheses on a global

"blackboard". This modular architecture - the KSs don't
address each other directly - proved to allow for great
flexibility in combining different knowledge sources and
investigating various control strategies in a system. In problem
domains characterized by a large search space, by the need to
combine different kinds of knowledge, and by ambiguous or
noisy data, HEARSAY's modular architecture has proved
especially well suited.

6.1 HEARSAY-II System
The system architecture of HEARSAY-II is shown in Fig.6.1.

We notice on the right-hand side the KSs (or "Knowledge
Sources") and on the left-hand side the "blackboad"; we
further point to the "blackboard monitor" and the "scheduler".
The encircled units are "programm modules" and those in frames

indicate "databases". The solid lines (or arcs) indicate
the data-flow and the dashed lines the control-flow.

The "blackboard" is the systems global database. It is
divided into a number of levels corresponding to a hierarchical
breakdown of the speech analysis. The different levels are
indicated on the left-hand side of Fig.6.2. The "blackboard"
is thus subdivided into a set of information levels
corresponding to the intermediate representation levels of the
decoding process (wave form of utterance, sound segments,
syllable classes, words, word sequences, phrases); they can be
thought of as the various levels in a "problem-reduction
tree" at which sub-problems are located. The sequence of
levels on the "blackboard" forms a loose hierarchical structure:

hypotheses at each level aggregate or abstract elements
at the adjacent lower level. The possible hypotheses at a
level form a search space for KSs operating at that level. A
partial interpretation at one level can constraint the
search at another level. The hypotheses on the "blackboard"
are arranged along two dimensions: level and time. The time
dimension takes account of the time periods of the utterance
being analyzed. The goal of the system is to create a single
hypothesis that represents a solution to the problem: an
acceptable interpretation of an entire utterance.

The "knowledge sources (KSs)" are pattern-invoked
programs, meaning they encode domain-dependent knowledge in
the form of operators, such as for instance
"production-rules". They have the role of generating, combining

and evaluating hypothetical interpretations and are
therefore diverse and independent. The necessity for diverse KSs
derives from the diversity of tranformations needed to arrive

at an interpretation of an acoustic signal. Each KS can be

44 B. Humpert H.P.A.

schematized as a conditions-action pair. The "condition
component (or program)" prescribes the situations in which the
KS may contribute to the problem-solving activity, and the
"action-component" specifies what that contribution is and
how to integrate it into the current situation. Each KS looks
at the hypotheses posted on one level, called its "structure
frame", and in turn posts its hypotheses on another (possibly
the same), or on several levels, called the "response frame".
The KSs have been developed to perform a variety of
functions. These include extracting acoustic parameters,
classifying acoustic segments into phonetic classes, recognizing

words, parsing phrases, and so on. For example, the KS
(PREDICT) works completely within the phrase level on the
"blackboard", predicting the word that might extend a phrase.
In contrast the KS (VERIFY) looks for acoustic evidence in
the signal for hypotheses at the word level. The KSs indicated

by the transition arcs between the levels in Fig. 6.2 are
those of the 1976 C2-configuration of the HEARSAY-II system
[47]. The processing at the lower-part of the "blackboard"
was accomplished by the KS for acoustic segmentation (SEG)
and word-spotting (POW, MOW, WORD-CTL). The KS (SEG)
abstracts a string of allophones from the acoustic signal. These

are assigned to syllable classes by the KS (POM), and the
syllable classes are used by the KS (MOW) to hypothesize
word. Note that HEARSAY's lexicon is organized by syllable
classes; each section of the lexicon contains pronounciations
of all the words that make one syllable-class. The creation
or modification of a hypothesis at any level immediately
invokes the KS (RPOL) which rates the credibility of the
hypotheses. The number of hypotheses that the KS (MOW) can make
is controlled by the KS (WORD-CTL). The WIZARD procedure [48]
scores the hypothesized words by comparing their acoustic
characteristics to the stored representations of word-
pronounciations. The processing at the upper-part of the
"blackboard" involves predicting, testing and concatenating
multiple-word sequences, one or more of which will eventually
account for all of the words spoken. The KSs (WORD-SEQ) and
(Word-SEQ-CTL) extend those words recognized by the lower-
part of the "blackboard" into a small number of islands of
one or more words, using a data structure that contains all
legal pairings of words. By hypothesizing extensions of the
newly hypothesized words, the islands can be extended
recursively. However, the syntax of the islands was generated from
legal pairs of words and therefore the longer islands may not
be syntactically correct. The KS (PARSE) checks the syntax.
When a number of multiple-word islands are developed, the KS
(VERIFY) tries to check each word against the segmented acoustic

signal in the context of its island. The KSs (PREDICT)
and (CONCAT) are also used to extend hypothesized word
sequences. The KS (PREDICT) generates all the words that can
immediately precede or follow a word wequence, while the KS
(CONCAT) tries to join word sequences together to form longer

ones. Finally, the KS (STOP) is used to terminate procès-

Vol. 59, 1986 Knowledge engineering with expert systems 45

sing of the speech signal, either because the best interpretation
of the sentence has been found or because too much

processing time has been used. The KS (SEMANT) generates
machine instructions to carry out the spoken command. The
system contains approximately 40 KSs, which are from 5 to 100
pages of source code a piece. Thirty pages is a typical KS
size. Each KS has up to 50 Kbytes of its own local data
storage.

The "processing" in HEARSAY-II combines both top-down and
bottom-up. The first type, associated with means-ends analysis

and problem reduction strategies [49] attempts to reach a
goal by dividing it into a set of simpler subgoals and re-
duceing these recursively until only primitive or immediately
solvable subgoals remain. Examples of top-down processing
include the reduction of a general sentential concept into
alternative sentence forms, each sentence form into specific
alternative word sequences, specific words into alternative
phone sequences and so on, until a last interpretation is
identified. The second, or bottom-up, method attempts to
synthesize interpretations directly from characteristics of the
data provided. One type of bottom-up method would employ
procedures to classify acoustic segments within phonetic
categories by comparing their observed parameters with the
ideal parameter values of each phonetic category. Other
bottom-up procedures might generate syllable or word hypotheses

directly from sequences of phone hypotheses, or might
combine temporally adjacent word hypotheses into syntactic or
conceptual units. As a result, processing at the lower-part
of the "blackboard" is strictly bottom-up. The KSs (SEG, POM,
MOW) are activated in that order, and the processing done by
one is completed before another is activated.

The "scheduler", a special KS endowed with knowledge about
how to conduct best the search in a particular domain, determines

the KSs to be activated next. It adapts automatically
to changing conditions of uncertainty by changing the breadth
of search, using as a basic mechanism the interaction between
KS-assigned credibility ratings on hypotheses, and scheduler-
assigned priorities of pending KS activations. Messages
posted on the "blackboard" are noted by the "blackboard
monitor", which creates entries on the scheduling queues for
any KS whose applicability condition might be satisfied. When
a KS is activated, it examines the current contents of the
"blackboard" and applies its knowledge either to create a new
hypothesis and write it on the "blackboard", or to modify an
existing one. Although the execution of the entire HEARSAY-II
system consists of the asynchronous execution of a collection
of KSs, the execution of an individual KS is a sequential
process. Once a KS is activated, it executes without being
interrupted until it is finished.

We comment on the design ideas of the HEARSAY-II system,
with its architecture being summarized by: (i) separate,
anonymous knowledge sources, (ii) self-activating, asynchronous,
parallel procesing, (iii) globally accessed, structured data-

46 B. Humpert H.P.A.

base, (iv) goal-directed problem reduction, and data-directed
knowledge invocation. The main features that distinguish the
HEARSAY-II architecture from that of systems such as MYCIN
are the use of arbitrary pattern-invoked programs as units of
knowledge rather than "production-rules" and the flexibility
of the "scheduler" as opposed to the strict goal-driven
invocation used in MYCIN. For a large, complex problem such as
speech understanding, these features offer several
advantages. Since the KSs can be arbitrarily complex - and
arbitrarily different in their internal operation - the most
appropiate problem solving approach can be implemented at
each level of processing. Each KS may itself be a small
knowledge-based problem-solver, and its internal processes
have only local effects, rather than causing potential
interactions with the rest of the system. The multiple levels of
the database provide the necessary abstractions for searching
a large solution-space, and the levels are heterogeneous to
match the diversity of the interpretation knowledge. The
opportunistic scheduling combines the least-commitment idea
with the ability to manage computational resources by varying
the breadth of search and by combining top-down to bottom-up
processing. These qualities alleviate the "combinatorial
explosion" that often occurs when search techniques are used on
very large problems. In fact, when portions of HEARSAY-II
were experimentally rewritten as a "production system", the
system ran approximately 100 times slower.

6.2 HEARSAY-III
The techniques developed in HEARSAY-II have since been

generalized into the HEARSY-III system [50] a domain independent
framework for building large knowledge based expert-

systems. Its overall design concept was based on a set of
requirements abstracted from HEARSAY-II. Deemed particularly
important were facilities to do the following:

support codification of diverse, general sources of
knowledge
support their application and flexible coordination,
represent and manipulate competing solutions that are
constructed incrementally
reason about partial solutions
describe and apply domain-dependent consistency
constraints to the competing partial solutions
support long-term, large-system development and
experimentation.

HEARSAY-III is built on the AP3-language [51], implemented
in INTERLISP [52], which offers a data base structure similar
to the PLANNER-like languages [53]. Atomic facts are held in
a "declarative" data base which also may hold some deductive
rules. The inference engine does pattern matching for retrieval

and rule application and controls the process of deduction
and transformation of the data base. Facts in the data

base are ordinarily used representationally in much the same
way as the formulas of logic. The knowledge source triggers,

Vol. 59, 1986 Knowledge engineering with expert systems 47

the inference rules and constraints, and the context mechanism,

allowing for reasoning along independent patterns, are
thus expressed in AP3.

In HEARSAY-III, the time dimension of the "blackboard" has
been removed, since it is not appropiate to all domains, but
the level structure of the global database has been retained.
The "blackboard" is used as a repository for a domain model,
for the representation of partial solutions, and for the
representation of pending activities. One important way in which
HEARSAY-III has been expanded beyond HEARSAY-II is that it
provides for the use of two "blackboards". The "domain blackboard"

contains the hypotheses and is intended for reasoning
within the task domain, while the "scheduling blackboard" is
used exclusively for schduling. Further subdivisons are
possible. The "blackboard" supports the construction of labeled

graphs consisting of structured nodes called "units" and
labeled arcs called "roles". Since the "blackboard" in
HEARSAY-III is implemented on top of a relational database
system, any relationship to the specific problem being solved
can be constructed. The "scheduling blackboard" allows the
scheduling process to be broken down, just as the rest of the
system is, into a set of independent KSs, each containing its
own knowledge about factors that are important to consider in
deciding how the system should best expand its resources.

Much of the domain-specific knowledge for an application
built in HEARSAY-III is embodied in "knowledge sources (KS)".
Each KS can be thought of as a large-grained
"production-rule": it reacts to "blackborad" changes produced
by other KS executions and in turn produces new changes. To
define a KS, three program-units must be provided: the
"trigger-pattern", a predicate composed of AND and OR operators,

the "immediate code" of the KS which may associate
information with the activation record, the "body" of the KS
which is run in the triggering context and with the pattern
variables instantiated. Each KS execution is indivisible: it
runs to completion and is not interrupted for the execution
of any other KS activation. This insulates the KS execution
and simplifies the coding of the "body"; there need be no
concern that during a KS execution anything on the
"blackboard" will be modified except as effected by the KS
itself.

6.3 HEARSAY Family
In contrast with MYCIN, HEARSAY-II addresses an intrinsically

hard problem with characteristics that require particular
architectural prescriptions. These characteristics include

unreliable data or knowledge, a large search space of
possible solutions, inadequate methods for evaluating partial
solutions accurately, lack of a fixed sequence of actions
that address separate subproblems of the task, the need to
guess likely sub-solutions to further the analysis, absence
of a strong problem-solving model that could determine
effectively which line of reasoning to pursue, the need for inte-

48 B. Humpert H.P.A.

grating diverse bodies of knowledge in the same problem-
solving system, and the need for specialized knowledge
representations to improve the efficiency of the knowledge
application. Because the HEARSAY-II speech-understanding system
addresses all of these problems to some extent, its organization

as a collection of cooperating, independent specialists,
provides a framework for a wide variety of related problem-
solving tasks. In fact this kind of design has been adopted
for a variety of applications including: signal interpretation

[54], cristallography [55], experiment planning [56],
task planning and scheduling [57], psychological modelling
[58], automatic programming [59], text comprehension [60],
and image understanding [61].

SU/X [54]: This is a system that was tested in an application
whose details are classified. Its task is the formation

and conceptual updating, over long periods of time, of
hypotheses about the identity, location and velocity of objects
in a physical space. The desired output is a display of the
"current best hypotheses" with full explanations. There are
two types of input data: the primary signal (to be understood)

and auxiliary symbolic data (to supply context for the
understanding). The primary signals are spectra, represented
as descriptions of the spectral lines. The various spectra
cover the physical space with some spatial overlap. The rules
given by the expert about objects, their behaviour, and the
interpretation of signal data from them are all represented
in the IF...THEN form. The situation-hypothesis is represented

as a node-link graph, tree like in that it has distinct
"levels", each representing a degree of abstraction. A node
represents a hypothesis, a link to that node represents
support for that hypothesis as in HEARSAY-II, 'support from above'

or 'support from below'. Lower levels are concerned with
the specifics of the signal data, higher levels represent
symbolic objects.

CRYSALIS [55]: This system hypothesizes the structure of a
protein from a map of electron density that is derived from
X-ray crystallographic data. The map is 3-dimensional, and
the contour information is crude and highly ambiguous. The
interpretation is guided and supported by auxiliary information,

of which the amino acid sequence of the protein's backbone

is the most important. Density map interpetation is a
protein chemist's art. The automation of this task would
require a computational system that could generate its own
structural hypotheses, as well as display and verify them.
This capability requires: a) a representation of the electron
density function suitable for machine interpretations, b) a
substantial chemical and stereochemical knowledge base, c) a
wide assortment of model building algorithms and heuristics,
d) a collection of rules and associated procedures for using
this knowledge to make inferences from the experimental data,
and 4) a problem-solving strategy for applying these knowledge

sources effectively, so that the appropriate procedures
are executed at the times that they are most productive. A

Vol. 59, 1986 Knowledge engineering with expert systems 49

problem-solving paradigm that meets the above specifications,
to a large degree, is the "blackboard" architecture of
HEARSAY-II, specifically with respect to the issues of knowledge

integration and focus of attention. A number of
different knowledge sources (facts, algorithms, heuristics)
cooperate when working on various descriptions of the
hypothesis. To use the knowledge sources effectively, a global

database - the "blackboard" - is constructed that
contains the currently active hypothesis elements at all levels
of description.

PLANNING: Although the HEARSAY-II framework was developed
around an understanding framework, many of its principal
features were extended to develop a model of planning [57]. While

understanding tasks require "interpretive" or "analytic"
processes, planning belongs to a complementary set of
"generative" or "synthetic" activities. The principal features

of the HEARSAY-II system which make it attractive as a
problem-solving model for speech understanding also suggestit as a model of planning. The planning application shares
all the principal features of the HEARSAY-II system, but it
also differs in several important ways. In particular, the
designers found it convenient to distinguish five separate
blackboard "planes", reflecting five qualitatively different
sorts of decisions. The "Plan plane" corresponds most closely
to HEARSAY-II's single blackboard, holding the desicions that
combine to form a solution to the planning problem, i.e.,
what low-level operations can be aggregated to achieve the
high-level outcomes of the plan. These kinds of decisions in
generative tasks can be thought of as the dual of the successively

higher level, more aggregrated hypotheses constituting
the blackboard for interpretation tasks. In the speech task,
corresponding hypotheses express how low-level segments and
phones can be aggregated to form the high-level phrases and
sentences intended by the speaker. The other four planes of
the planning blackboard hold intermediate decisions that enter

into the planning process in various ways. For example,
based on the HEARSAY-II experience with selective attention
strategies, resource allocation strategies were formalized
and associated explicitly with an "Executive plane".

OTHER APPLICATIONS: Several interesting applications that
transfer the approach to other interpetation problems have
been made. The HEARSAY-II framework was proposed as a model
for human reading behaviour [58]. In this application only
one blackboard plane is used, the levels closely approximate
those used in the speech-understanding system task, and many
additional KSs are introduced to represent how varying
amounts of linguistic and semantic knowledge affect the
reading skills. HEARSAY-II was further used in a learning
system [62] that develops multilevel models of observed game
behaviours, and systems were developed that mirror the
HEARSAY-II speech understanding components in the image-
understanding task [61,63]. Its incremental problem-solving
multilevel structure was proposed as a basis for neuroscience

50 B. Humpert H.P.A.

models, and it is considered by distinguished researchers as
a source for theoretical psychology fulfilling their intuitions

about the form of a general cognitive processing
structure. Finally, the HEARSAY-II structure was adapted to
the task of interpeting human-machine communication dialogue
[64]. Several researcher have focused their efforts on
generalizing, refining, or systematizing aspects of the HEARSAY-

II architecture for wider applications. A system was developed
that assists a programmer in developing a new special-

purpose variant [60], and a more formalized, domain independent
version has been applied to an automatic-programming

task [59], and the planning of genetic experiments [56].

Vol. 59, 1986 Knowledge engineering with expert systems 51

7. PROSPECTOR

The PROSPECTOR mineral-exploration consultation system
[65] (see Fig. 7.1), designed for problems in regional
resource evaluation, ore deposite identification, and drilling
site selection, attempts to represent, like other systems
such as MYCIN [27a] or INTERNIST [66], a significant portion
of the knowledge and the reasoning processes of experts
working in a specialized domain The main function of PROSPECTOR
is to match data from a particular situation against models
that describe a moderately large number of disjoint classes
of situations. To develop a model requires both scientific
understanding of the physical and chemical processes of ore
deposition and geological judgment based on informed
experience. In PROSPECTOR'S domain, the models are formal
descriptions of the most important types of "ore deposits" which
were developed in collaboration with several experienced
geologists, and the data are primarily surface geological
observations. The available data are assumed to be uncertain
and incomplete, so that the conclusion is expressed as a
probability or a degree of match. The program also alerts the
user to different possible interpretations of the data and
identifies additional observations that would be most valuable

for reaching a more definite conclusion. PROSPECTOR
recently made a prediction about the location of molybdenum ore
at an exploration site in the state of Washington. The
prediction was substantially confirmed by drilling with a
finding worth 100 million dollars.

7.1 PROSPECTOR System
The knowledge base is divided into two main categories of

knowledge that can be developed independently - a general-
purpose knowledge base and a special-purpose knowledge base.
The general knowledge-base encodes as much as possible of the
background knowledge that is useful for several applications
and situations of the domain. It is organized around models
of different "ore deposits" including "Mississippi Valey lead
and zinc", "Komatiitic nichel sulfide", "Yenington prophyry",
and others (see Fig. 7.2). The special purpose knowledge-base
encodes statements that are relevant to some specific subset
of the domain and contain primarily the inference networks
(rules and other inference structures) in which these statements

participate. All elementary domain-specific notions
are in PROSPECTOR integrated in "taxonomical tree
structures"; the nodes, representing the simple concepts of
the domain, are connected by arcs which indicate the element
(e) and subset(s) relationship between these concepts. Because

the knowledge of whether or not an item belongs to a given
set is essential in question answering and fact retrieval,
the taxonomy itself often provides a natural and concise
expression of portions of the information about a task domain.
In Fig. 7.3 we show examples of taxonomies in PROSPECTOR'S
knowledge base including rock

52 B. Humpert H.P.A.

types, minerals, physical forms, and geological ages. Each
node X in the hierarchical structure is said to be a restriction

of its parent nodes or of any node occuring on a chain
of outgoing "e" and "s" arcs from X. Many sibling subsets
described in taxonomies are disjoint. For a more precise
network encoding of taxonomies, the standard set-theory notions
of set membership and set inclusion, (expressed by "e" and
"s" arcs), are supplemented by the more restrictive concepts
of "disjoint subsets (ds)" and "distinct elements (de)". A
ds-arc from a node X to a node Z indicates that X is a subset
of Z and that X is disjoint from any other set Y with an
outgoing ds-arc to Z. Similarly, de-arcs indicate that each of
two or more nodes denotes a different element of a set.

This basic concept of a network as a collection of nodes
and arcs can be extended by partitioning groups of nodes and
arcs and allowing them to be bundled into units. These units
can then correspond to nodes in a "higher level" network
(such as the inference network described below). "Partitioned
semantic networks" [67] are used to encode statements in the
knowledge base. Each statement is represented by a
"structured object" (called "unit") where the semantic
representation of the statement is strored in terms of primitive
relations and entries in the various taxonomies of the
domain. Let us illustrate this with the example: "a rhyolite
plug is present", which is presented in Fig. 7.4 as a small
network that makes the following three assertions:

(al) there exists a physical entity El,
(a2) the composition of El is "rhyolite"
(a3) the form of El is "plug"

In general, an assertion corresponds to a node inside the
space (delimited by the rectangle in Fig. 7.4) that constitutes

the semantic representation of the statement. Because
"rhyolite" and "plug" can be referred to from other statements

of the knowledge base, they are not included in that
space, but appear instead as entries in the taxonomy of
"rocks" and the taxonomy of "forms", respectively. These
"external references" are most frequently entries in the
taxonomy, but may .also be disjunctions or conjunctions of such
entries as well as other concepts that are included in the
semantic representation of any other statement in the knowledge

base. In addition to physical entities, a variety of
other concepts such as places (locations) and geological
processes are described in the knowledge base. The attributes
associated with a concept appear in the semantic representation

as relations of two or more arguments. COMP-OF(,) and
FORM-OF(,) are two common attributes of physical entities;
others are: AGE-OF, GRAIN-SIZE-OF, LOC-OF, etc. The first
argument of the relation refers always to the concept being
described; the other arguments are values of attributes
associated with that concept Most frequently, these attributes
are external references but can also be other concepts included

in the statement being described.
The data structures for representing the geological know-

Vol. 59, 1986 Knowledge engineering with expert systems 53

ledge embodied in PROSPECTOR is called "inference network"
and guides the plausible reasoning performed by the system.
The nodes in this network correspond to various assertions
such as: "there is pervasively biotized hornblende (gE)", or
"there is alteration favorable for the potassio zone of a
porphyry copper deposite (=H)". Most of the arcs in the
inference network define "inference rules" that specify how the
probability of one assertion affects the probability of
another assertion. For example, from <E> follows <H>, or the
absence of <E> is very discouraging for <H>. In a particular
run, any assertion may be known to be true, known to be false,

or suspected to be true with some probability. An
inference network is equivalent to a collection of "inference
rules". In general, any inference rule has the form

IF <E> THEN* <H>

*(to degree LS, LH)

The rule is interpreted to mean: "The observed Evidence <E>

suggests (to some degree) the Hypothesis <H>". A probability
of truth is associated with every observation and hypothesis,
and the inference rules specify how the probability that
the hypothesis (right-hand side) is true is changed by the
observation of evidence (left-hand side). The two parameters
LS, LH establish the strength of the rule and specify how the
probability of «H> is to be updated given that of <E>. In
general, we need to be able to say both how encouraging it is
to find the Evidence <E> present, and how discouraging it is
to find it absent. The two parameters thus specify the
sufficiency (LS) and the neccessity (LH) measures, respectively,
and must be supplied by the domain expert for each rule in
the inference network. Different pieces of evidence can also
be combined logically to form a single, compound piece of
evidence. The simpler elements are combined by means of the
primitive operations of conjunction (AND), disjunction (OR),
and complementation (NOT). Rules can interconnect in various
ways: through "chains" where the hypothesis for one rule is
the evidence for another, through several pieces of evidence
bearing on the same hypothesis, and through the same piece of
evidence bearing on different hypotheses. Fig. 7.5 shows a
portion of the inference network encoding of a PROSPECTOR model

for "porphyry copper deposits". PROSPECTOR'S knowledge
base contains 15 models with over 1000 rules and 1500
"units". The taxonomies shared by all models contain over
1000 entries.

Although the assertions (meaning Evidences and Hypotheses)
are statements that should either be true or false in a given
situation, there is usually uncertainty as to whether they
are true or false. Initially, the state of each assertion is
simply unknown. As evidence is gathered, some assertions may
be definitely established, whereas others may become only more

or less likely. In general, we associate a probability-
value with every assertion. The "connections" in the inferen-

54 B. Humpert H.P.A.

ce network determine how a change in the probability of one
assertion will affect those of other assertions. The principle

or top-level assertion in an inference network for a model
is the assertion that the available evidence matches that
particular model. To establish this assertion, it is usually
necessary to establish several major factors. For example, to
establish the top-level assertion in one of the models
(called Model-II), we must establish the following
hypotheses:

1. The petrotectonic setting is favorable for Model-II,
2. The regional environment is favorable for Model-II
3. There is an intrusive system that is favorable for

Model-II.
If any of these assertions were a field-observable evidence,
it could be established merely by asking the user of the
program whether they were true. However, since all of these
factors are hypotheses, each must be further related to other
factors. For example, the favorability of the "petrotectonic
setting" can be established through the following three
factors, each of which happens to be determinable (at least in
principle) from observational evidence:

1. The prospect lies in a continental margin mobile belt;
2. The age of the belt is post-Paleozoic;
3. The prospect is subject to tectonic and magmatic

activity related to subduction.
In general, the ore deposit models in PROSPECTOR have this
type of hierarchical structure. The top-level assertion is
determined by several major second-level assertions, each of
which may be determined by third-level assertions, with this
refinement continuing until assertions are reached that can
be established directly from field evidence. This is shown in
Fig. 7.5 where the regional environment of Model-II is decri-
bed. In addition to this "top-to-bottom" development in terms
of successive levels of assertions, the models also often
exhibit a "left-to-right" organisation in terms of spatial scale,

from the petrotectonic setting on the left to the local
details of mineralization and texture on the right. Exactly
how these considerations interact is determined by the
relations that exist, among the assertions.

Three basically different kinds of relations are used in
PROSPECTOR to specify how a change in the probability of one
assertion affects the probability of other assertions. We

distinguish these as "Logical Relations", "Plausible Relations"
and "Contextual Relations". With "Logical Relations", the
truth (or falsity) of a hypothesis is completely determined
by the truth (or falsity) of the assertions that define it.
Such relations are composed out of the primitive operations
of conjunction (AND), disjunction (OR), and negation (NOT).
In general we do not know whether the assertions are true,
but can, of course, estimate a probability or degree of
belief that they are true. With "Logical Relations", to compute
the probability of a hypothesis from the probability of its
component assertions, the fuzzy-set formulas of Zadeh [68]

Vol. 59, 1986 Knowledge engineering with expert systems 55

are used. Using these formulas, the probability of a hypothesis
that is defined as the logical conjunction (AND) of several
pieces of evidence equals the minimum of the probability

values corresponding to the evidence. Similarly, a hypothesis,
defined as the logical disjunction (OR) of its evidence

"units", is assigned a probability value equal to the maximum
of those values assigned to the evidence "units". With "Plausible

Relations", each assertion contributes "votes" for or
against the truth hypothesis. This would be expressed by
relating the assertions to the hypothesis through a set of
plausible inference rules. Each rule has an associated rule
strength that measures the degree to which a change in the
probability of the evidence-assertion changes the probability
of the hypothesis. This change can be positive or negative,
since an assertion can be favorable or unfavorable for a
hypothesis. As with all parts of the model, these rule
strengths are obtained by interviewing an authority on the
corresponding class of ore deposits. This information is
translated into numerical terms (as shown in Fig. 7.5), the
changes in probability being computed in accordance with the
rules of Bayesian probability theory. The Bayesian method
assumes that, before any information has been obtained from the
user, every statement S has some prior probability P(S). As
evidence is acquired during the consultation, a posterior
probability corresponds to the updated probability of S. If
E'denotes all the evidence accumulated to some point in the
consultation, then the posterior-probability P(S E') denotes
the current probability of S given the evidence E'. The
prior-probabilities are generally supplied by the domain
expert at the time the model is constructed, but can also, in
some cases, be computed from the prior-probabilities assigned
to the related "units". The "Conceptual Relations" take into
account that assertions cannot be considered in an arbitrary
order, but must be considered in a particular sequence. For
example, the existence of a "continental margine belt" would
be specified as a context for asking about the age of the
"belt". Thus, before inquiring about the age, the system
would employ all its resources to establish the existence of
the belt, and would not ask about its age unless the probability

of the belt were greater than its initial value. Contextual
relations are also used when one assertion is geologically
significant only, if another assertion has already been

established. In such instances it would not be useless to ask
the former question without first establishing the latter,
but it is the case that the former evidence is geologically
irrelevant without the latter to establish a match to the
model. Two such instances are depicted by the dashed arrows
in Fig.7.5.

PROSPECTOR is a mixed-initiative system that begins by
allowing the user to volunteer information about the geological
prospect. This volunteered information is currently limited
to simple statements in constrained English about the names,
ages, and forms of the rocks and the types of minerals

56 B. Humpert H.P.A.

present. These statements are parsed by LIFFER [69], a natural
interface facility, and represented as "partitioned semantic
networks". A network matching program compares each of

these volunteered "units" against the "units" in the models,
noting any subset, superset, or equality relations that
occur. If a volunteered "unit" is exactly equal to a "unit"
in a model, the probability of the model-"unit" is updated
and that change is propagated by forward-chaining through the
inference network. If a volunteered "unit" is a subset of a
"unit" in a model and if it has a higher probability than the
model-"unit", once again the probability of the model-"unit"
is updated and that change is propagated through the inference

network. Unfortunately, if the volunteered "unit" matches
a superset of a model-"unit" no probability change can be made

unless the user expresses doubts about the situation. For
example, if the user mentions "biotite", the probability of
the "unit" that asserts that there is "pervasively biotized
hornblende" is unchanged, unless the user has said that he
doubts that there is any "biotite". However, it is obvious
that the system may want to follow up this observation, and
the existence of the connection to the model is recorded.
When the user has finished the initial volunteering, PROSPECTOR

scores the various models on the basis of the number and
types of connections that have occured and selects the best
matching model for further investigation. From here on the
basic control strategy is MYCIN-like "backward-chaining". At
any given time there is a "current-goal unit" whose existence
is to be determined. The initial goal "unit" is the one that
corresponds to the best matching model. The various "units"
in the models represent either evidence that can be sought
form the user (are "askable") or internal hypotheses that are
to be deduced from evidence (are "unaskable"). Naturally, the
initial goal "unit" is always unaskable. If the current goal
"unit" has any unestablished "context-units", they are pushed
on the goal stack and one of them becomes the current goal.
If the current goal is askable and has not been asked before,
the user is asked about it, the effects of the answer are
propagated througth the inference network, and the process is
repeated. If it is unaskable, it must be either the
consequence of one or more inference rules or a logical combination

of one or more other "units". In the former case, the
rules are scored to determine their potential effectiveness
in influencing the Hypothesis <H>, and the Evidence «E> (or
antecedent) of the best-scoring rule becomes the next goal.
In the latter case, a predetermined supporting "unit" becomes
the next goal. In either case, the.same procedure is repeated
until a) the top-level goal becomes so unlikely that another
top-level goal is selected, b) all of the askable "units" have

been asked, or c) the user interrupts with new volunteered
information.

7.2 KAS (Knowledge Acquisition System)
The KAS-system [70] is the PROSPECTOR consultation-program

Vol. 59, 1986 Knowledge engineering with expert systems 57

without its domain-specific knowledge. Related to PROSPECTOR
in basically the same way, as EMYCIN is to MYCIN, KAS allows
the PROSPECTOR inference and control mechanisms to be used on
new problems when the domain-specific knowledge can be
represented in the KAS rule language. The KAS/PROSPECTOR inference
engine is distinguished from EMYCIN mainly by performing
"forward- and backward-chaining". This allows significant
changes in the choice of the "high-level goals" to occur in
response to information acquired. KAS tries to avoid low-
payoff questions by using a heuristic evaluation function to
choose the most promising rules. KAS'use of variables is
severely restricted. EMYCIN allows repeated use of the rules by
creating different instantiations of the objects in its
«attribute, object, value) triplet, whereas KAS allows only
one for which the situation description by the triple is
thought to be most certain. This characteristic allows KAS to
interconnect its rules into a static network before run-time,
thereby eliminationg the need for searching through the rules
to propagate inferences.

The approach in KAS is to view an expert system as a
superposition of "layers of knowledge" where each layer further
specifies the knowledge contained in previous ones or
introduces new knowledge along some dimension. The first layer
was selected to contain general knowledge about networks. The
subsequent layers contain further specification of the
various kinds of network, and knowledge about every component
that constitutes the resulting expert system, including the
inference procedures, the consultation systems, and finally
knowledge about the domain of application. The knowledge
acquisition tools, such as the resident network editor and the
book keeping system are driven by the information contained
in this layered structure, and their operation can be modified

by simple declarations for modifying the information
contained in the appropiate layer. The advantage of this layered

structure is that knowledge acquisiton tools can be designed

efficiently and with a high level of generality to
assist in different phases of the knowledge acquistion process,
where in each phase only some aspect of the knowledge base is
of interest or available to the knowledge engineer. It
follows also that the same tools can be useful in building a
broader class of expert systems, because the "nuts and bolts"
that constitute each layer can be replaced, new layers added
and old ones discarded, affecting each component of the
expert system.

In KAS there is no formal top-level goal, but certain
"consequents" are distinguished as "top-level hypotheses". A
consultation narrows down continually this list by establishing

the truth or falsity of the most promising ones. If no
clear conclusions can be reached, the system identifies the
missing information for resolving the situation. Thus KAS
either tries to identify the best top-level hypothesis which is
worth to be pursued (goal-selection mode) or it questions the

58 B. Humpert H.P.A.

user in order to establish that hypothesis (question-asking
mode).

The "goal-selection mode" is guided by the user
information. Initially any relevant information is volunteered

in the form of simple English statements. It is parsed
and integrated in the semantic networks, whereby each assertion

is matched against the descriptive statements in the
knowledge base. If partial or exact matches are detected, the
system updates a heuristic score for that top-level hypothesis

which is supported by that statement. This scoring function

takes into account the certainty of the evidence, the
nature of the match, and by tracing through the rules,
whether the evidence is favorable or unfavorable for the
hypothesis. The best-scoring hypothesis is usually persued
further by the system. It however also supports mixed-
initiative control by allowing the user to overrule the
system in selecting the current goal hypothesis «H>.

If the goal-hypothesis <H> has been determined, the
program switches into the "question-asking mode". The statements

lying one level below <H> are inspected in order to
find the one that has the strongest influence on the probability

of the statement <H>. Let <S> denote this statement. If
<S> is marked as "askable" and if the user has not been asked
about <S> previously, the system asks whether <S> is true,
forward-chains to propagate the consequences of the answer,
and returns a new goal, and the same procedure is reapplied,
resulting in "best-first backward-chaining". How is the
statement with the greatest effect on <H> determined? First, the
required "contexts" of <H> are immediately established by a
new goal. The next step then depends upon whether <H> is a
"logical statement" or a "descriptive statement". For
"logical statements", a special procedure chooses the least
likely unexhausted argument for disjunctions. This procedure
fails if all the arguments are exhausted or if the certainty
of the logical expression is appropriately bounded. For
"descriptive statements", another special procedure uses
heuristic criteria to score the rules having <H> as a
"consequent". The scoring function takes into account the
current certainty of both the "antecedent" and the
"consequent", as well as the strengths of the rules.

KAS provides a well-engineered environment for developing
and debugging rules, semantic networks, and taxonomic
structures. Its knowledge-base editor has three particularly
valuable features: 1) it operates directly on network structures,

2) it uses knowledge about representational formalism
to assist the knowledge-base designer, and 3) it facilitates
the development by allowing the designer to get immediate
feedback on the consequences 'of changes to the knowledge base.

For details we refer to Ref. [70].

Vol. 59, 1986 Knowledge engineering with expert systems 59

8. APPLICATION DOMAINS

In this section we give some insight into the diversity of
the application domains for expert systems. In the first part
we focus on the different tasks [2], and in the second part
we give an overview about some of the present day expert
system activities [71].

There are several generic tasks that experts can perform,
and examining these tasks will provide us with a guide for
the requirements and preferred architectural structure for an
expert system of a particular task. We distinguish in particular:

interpretation, diagnosis, monitoring, prediction,
planning, and design, as well as debugging, repair, instruction

and general control.
INTERPRETATION: the analysis of data with a specific

interpretation goal in mind. The interpretation of the mass-
spectrometer data, as is done for instance in the DENDRAL-
system [32], is a typical example. The data are measurements
of the masses of molecular fragments, and the interpretation
means the determination of one or several chemical
structures. The main task is to find the correct and consistent

interpretations of the data, whereby one expects a
rigorous and complete analysis of all possible interpretations
with potential candidates being ruled out only when there is
enough evidence to do so. The data are often noisy and error-
ful which means that there might be missing or erronous or
even extraneous values. The interpretation system must therefore

cope: 1) with partial information, 2) with data that
seem contradictory, requiring a hypothesis on which of them
are correct, 3) with unreliable interpretations of the
system, and 4) with the requirement to get information about
the sometimes rather long reasoning steps.

DIAGNOSIS: the process of fault-finding in a system mostly
based on uncertain and noisy data. The MYCIN-system for

infectuous blood-diseases [27] is a typical example. It is
necessary that the system's organization is understood,
including the relations and interactions between its
sub-systems. Some of the key problems arise from the fact
that: 1) the faults are sometimes masked by the symptoms of
other faults, 2) the faults can be intermittent, 3) the
diagnostic equipment itself fails, 4) some data are inaccessible,

or 5) the function of the system itself is not fully
understood.

MONITORING : this means the continous interpretation of
signals to set off the alarm when an intervention is required.
There exist a few computer-aided monitoring systems, still in
the research stage, for nuclear plants [72], for air traffic
control as well as for disease [37-39], regulatory [40-43]
and fiscal management goals. As a representative example we
mention the VM-system [40] which is a physiological monitoring

system designed to: i) detect possible measurement
errors, ii) recognize untoward events in the patient/machine
system and suggest corrective action, iii) summarize the pa-

60 B. Humpert H.P.A.

tient's physiological status, iv) suggest adjustments to the
therapy based on the patients status over time and long-time
therapeutic goals, and v) maintain a set of case-specific
expectations and goals for future evaluation by the program. A
monitoring system recognizes the alarm conditions in
real-time. The key difficulty arises from the recognition of
an alarm condition which is often context-dependent. To
account for this key problem, monitoring systems have to vary
signal expectations with time and situation.

PREDICTION: the future course of a system is predicted,
based on a model of the past and present. Examples of this
category are: wheather forecasts, demographic and traffic
predictions, military forecast, voting forecasts and so on. A

prediction system typically employs a parametric dynamical
model with its parameter values fitted to a given well-
understood situation. The consequences, inferable from a
model, then form the basis of the predictions. By ignoring
probability estimates, the prediction systems can generate
large numbers of possible scenarios. Prediction requires
reasoning about time, meaning that the predictors must be able
to refer to things that change over time and to events that
are ordered in time. There are several key problems that can
arise: 1) the prediction requires the synthesis of incomplete
information, 2) it must acount for a spectrum of possible si-
tations in the future, whereby variations in the input data
is likely to occur, 3) the data must be diverse since the
indicators for the future may appear at quite different places,
4) the predictive theory may need to be contingent since the
likelyhood of distant futures may depend on the nearer but
unpredictable events.

PLANNING: it consists of the preparation of program-
actions to be carried out to achieve a goal. Typical systems
involve automatic programming as well as robot, project, route,

communication, experiment, and military planning
problems. Planning systems emply models of the agent
behaviour to infer the effects of the planned agent activities.
As a typical example we mention the MOLGEN-system [56], a
knowledge-based program that helps molecular geneticists in
planning experiments. A planing system constructs a plan that
achieves goals without consuming excessive resources or
violating constraints; it establishes priorities if some goals
conflict and it must be flexible and opportunistic since the
planning requirements can change with time or decision data
which are possibly incomplete. Planning always involves a
certain amount of prediction. Some of the arising problems
are: 1) the consequences of a planned action can often not be
forseen, and consequently tentative action is most appropriate,

2) if there are many details, focus on the most important
problems is required, 3) in large, complex systems there can
be interactions between the plans for different sub-goals
which must be localized and taken into account, 4) since the
context in a planning goal is not fully known there is quite
some uncertainty involved, and 5) if there are multiple ac-

M

1

id

tO

A-*

>l
1

-0

r-l
4J

rH

1

>.

c
ta

•

oi
io

c
<u

^E«

in

rH

Id

1

1

o

ta.

0)

1

d)

id

O

I

id

r-l

MH

<1)E

03

CH

«J

>
ro

d)

Di

1

rH

H
MH

4)

4-1

Di
10

X

fi
fl
U

Oi

4)

Di

-H

i

n)

o

0)

d)

<D

0)

fi
1

-H

-H

O
-H

H
M

d)

»
d)

Id

41

d)

Ih

id

liCC

0)

d)4->-HtO

C

fl
rl
tfl
Tl

U

H

3

-H

fi
4)

•H

-C

fl
4J

a
ÎHH

+J

E

+>

«fl
id

TJ

to

fl
O

rl

H

O-H

O

»ta.

4J

4J

SO

4J

4|

4)

41

OldOltO

»HJ-H

+J

4-1

4-1

(0

d)

-H

it)

n)

-H

01

It)

to

O

-H

C
4->

O

d)

H

eu

MH

C
-H

•o

to

C

Dl
tU

>iMH

-H

¦P

to

E

U

r.
C

3
tO

tO

-H

id

0)>iU(noM-0(D4-i

<u

u

di

o

rH

rH

XI

H

rl

C
4J

C

Ë

•H

3
fl
d)

-H

-P

fi
C

0
4)

O

d)

-H

Ë
-rl
Dl

3

to

>..
id

(0

3
4)

Üi

0

-HC

U

ftUfl-HB

Id

4-1-H

to

id

id

•
id

o)

fl
-P

fl
-P

O

M

-H

C

Ih

it>CtOII)hCO<

¦p

to

A
i

to

ti

o
c
-p

di

Ml

-P

10

O

Dl-H

-P

>i

d)

rH

o
E

rH

tu

tu

o
jj
c
n)

4)

Di

d)

0
d)

4J

4)

-H

4->

3
0)

fi(d

4)

U
fl)

rH

+J

3
fl^-»

-H

C
-P

d)

tn

rH

•H

Di-H

4)

D.A

rl
"O

D

d)

>
>i
id

(0

toiotooto+icio

«J

OH

tniUHC

0+)

P

O

3
<fr

4J

O

dl
-H

Id

O

4)

TJ

MH

rH

0
O

•d

>i
s-o

r-i

0
H
-H

•
E

id

id

>,
u
0
-h

fl
>i
Di

>i-H

g
id
-M

O
«4-1

O
-O

10

01

3
dl

O
4->

Oi

C

tU

10

d)

C
-H

fl
rH

ri
C

T)

fl
rH

-h
n)

OTQ

t)
to

to

4)

to

4)

Ol

to

id

to

coBCD-p

-P

R)

Ë
Vh

tO

-H

C

O
-H

d)

«
O
"O

C

C

10

-H

r.

O

Ë

0
U

0
d)

Di

O

4)

C

-P

-H

41

41

to
4-1

tO

rl
to

u
id

-

rHldOd)4J4Jd)-H

M-l

U

S
O
T)

fl

dl

tu

to

id

rH

41

d)

IH

>

-H

Oi

id

id

C
"O

Ih

>i4J

»4J

fl)

to

0

c
id

4)

r-i

to

i
x
oro

id

C

Ë

to
u-i

o
C
-M

dl

id

C

3
>
+J

Ü

U

>i
Di

Di
d)
"O

-P

>i

4)

C

0
H
Id

4)

Id

u
>1

rl
4)

fi
Difl

U
CN

Ol

4J4Jd)fl)

A
fl)

3
fi
Id

-H

rH

«Ch

OlrH

41

3
10

tO

r-l

10

TI

4)

3

4->

d)

C

3
Id

-P

01

fl)

rl
r-l

u
to

o
>
o
-H

o

r«

>1

O-H

4->>l4->4Jt0OÄ,aaE-HO'O-HM-l

Ih

O

4)

Ë

tu

dl

dl

"0

to

Ü

HOD'

3
>
a
3
3
3

(d

-H

-H

to

d)

t-1

U]

fl)

3
H
id

G

O

fl
-H

X

C

rl
10

C

Qifl

U

4)

u

fl
rl
4)

4)

d)

O

4)

4J

0
-H

d)

d)

-P

•H

d)

4->

Ë
10

4J

+1

+J

0)

H
fl

ll
IB

«1

3
fl
«
IH

H

-PrA

¦nüDUitaCftSUCnHI

Ë
"O

Dl

O

dl
-H

id

M

rH

id

•H

4-1

tO

Di

fi
X

id

C
+J

to

Di

4-1

Ih

3
Ih

fl
ri
O

SO

tfl

U

Di
O

O

dl

-H

U
-D

¦P

3
fl

rl
>l
Id

0
>i
Di

d)

fl
Di

0
fl
-0

id

Q,

MH

0
4)

41

4)

4->

H

0

O

OJ

O
-H

-H

tD

-H

M-l

fi
-H

d)

U

U

d)

dl

C

Di
O

O

fl

0
fl)

fl)

c
4-1

id

4J

id

3
3
4)

Id

4J

MH

rl
Dt

ë
c
o
-a
-n

•
m

ft

UQ.-H

-P

0
O

D

M

to

fl
MH

O

d)

rl
d)

fl
3
C

to

U

0

to

fl
Ih

Di

¦h
-a

-H

Ih

to

H
C
•a

M

4)

3
X04)tOCOitfl4->

X

M-l

>,fl

C

O

tD

M-l

d)

d)

¦P

fl

fl
-P

O-H

II)

Ci

-H

4)

4J

O

id

liti
c

mh

-a
4-1

s
t)
id

fl
«
to

tu

o
+j

id

s-k:

c

tu

O

•
-P

4->

D>

fi
C0

rH

T3

Oi-P

d)

O

D14J

OCM

fl

Ih

-H

id

id

0

tD

-
O

H

4-1

tO

C

4)

4-1

0)

0

£i

•

E

H
3

«liti

>lt0

Ë

id

+J

C

Ë

O

O

MH

S

Oi

—

0
T>

XI

ri

>,C4)CD.ËE

E

ai

tu

di

•.
oi
oi

id

o

p

c
fi
d)

0)

C

CO

MH

-H

>
0)

4-1

3
o
mh

o
-ri

tu

n)

id

to

Di
O

Ë
-P

4-1

O

Dl

to

4)

0
Ol*

4)

ai

to

d)

XI

C

4)

U
C

id
4-1

•rl

0
O

H
14

-H

t)

4->

C
-H

fl

Ë

•Hjaid

t)
fl)

v.

u+Jfi

h

U

C

N
N

U

id

C

m

to

tu

id

MH

fi

E

fl
0
Tl

>-,.p

+J

-p

rH

0
-P

0
O

Id

-H

to

S

•H

>,

Mh

-H

Di
O

d)

-H

fl)

d)

E
4J

to

MH

-H

4)

4-1

41

tO

4)

IO

IO

U

fl
4-1

id

h
fi
to

Oi

Ë

tp

+1

+i
O

co

i

>
d)

o
o

<dto

C

H
>,-H

H
O
-P

ri
-P

Q.

¦H

4)

to

d)

Di

0
>,
C

4->

>,.-.

4J

fl
N
>l-r.

O

MH

Di

C
-H

C

4)

IÖ

id

ri

d)

H
-H

Cl,

d)

•
M

d)

Id

fl
Id

4J

O

rl
C

3
>i

rl
to

¦P

>1-H

C

-0

c

tO

4)

fl
$
C
4-1

to

to
n-}

u
c
O'tO

tO

fl)

(d

-H

4-1

¦H

C

ri
QiU

D1034J

O

Ë-r->4->

d)-H

O

(d

E

01

E
Da

•h

-~
&
4-1

O

id

tO

tO

4-1

-H

to

d)

id

>i
O

O

dl

tu

O
0

tU

fl
H
Dl

fi
tfl

fitotoEHOiCC>.

u

•H

3

4JCJUhHlflC>4>

rl

3
41

KO

Ë

Di

>l
1

-H

4J

Ë

Ë

H

10

C

C

C
"O

>i
rH

X
lH

¦H

Ol

-0

DlCd)ld>0)Oir4Od)d)-H

tD

d)

10

-n
Ë
Id

c

o
to

OJ

fl
tO

,*
rH

0
d)

d)

D

1

-H

-H

X
3
H
0
d)

OiT)

4-1

0
0
fi

-h
id

to

CDc

M

¦H

Cn

U

-n

XI

E
W

r-l
•P

MH

C

tU

.O-H

+J

o
1

tO

-H

d)

•P

rl

M

tO

Ol

4-1

r-l

U
r-l

d)

3
-H

Ol

0

•

»
C
rH

O
MH

-H

»

IIA

«Ol

C

A
c
d)

o
id

o
mh

M

N

fl

id

3
rl
Id

fl
rl
to

4)

4)

to

IO

Id

4J

d)

fl
4->

C
4-1

Ol

»
-P

U

-Prt-HldCOQldl

&

O

ClODiACOHtiC-H

•
-H

¦H

rl
-H

+J

O

Id

rH

d)

4->

O

to

d)

4-1

id

M

>i
id

Di

C

Ë
C

id

tu

Id

3
4-1

4J

0
tO

Ë

C

0
O

d)

C

O
4->

fl
Q.4J

id

Di

to

Id

0.-P

Di

4->

C
-H

4J

Di

0
IO

C

3
0

C

4)

-H

0
O

0
D
X
O

Ol

3
Id

-H

Id

T)

-H

CD

U
T)

-H

-H

Cid

-PC»)

u

o
di

c
to

O

fl
+J

rl
4)

3
id

id

u
1

U
-H

Di

C

>i
4)

fl
tn

O

U
-H

-H

d)

¦H

rH

"0
4-1

d)

C
4->

OJtri

u

¦PAOldrlfifl-P-HO

4J

to

id

d)

id
+J

(U

id

3

dl

>
a,

o

U

4)

Di

E
id

d)

-O

4-1

+J

0

MH

o
o

id

M

n)

i

0
o»

d)

v
S
+>

-HCr>4JidCDito-Hrir<i<uv4-Qtoi-io

XI

O

E
MH

U
(U

-P

Di

o
-p

xi
3

<a

0
to
P
+J

C

C
4-1

id

id
-h

to

•H

C

10

>,+J

rH

T)

M-l

fl
fl
Ol

d)

tO

-H

-H

0

C

4)

E

(d

C

d)

fl

¦P

fl
0
0
C

0
-P

W

3

U

3
4J

4J

ta

id

to

a)

d)

c
id

CD

4->4JrO

»'Ot.dltOÏrHtOC

O

E
-P

Tl

Û+J

OO

D

O

id

0

0
MH

3
-H

fl

•H

tO

-H

(0

d)

Mh

4->

C
¦H

0)

4)

-H

U

>
Di

fl)

0

-0

D

n
Jl
-H

t)
fl)

ididDiOtUCHid

10

-H

-H

Dl-H

D
C

d)

d)

to

•

o.
o
-h

id

id

to

Di

0
Oi-H

-H

Ih

Ol

IB<Hfl(<l-HË

CO

»
O

d)

-H

r-l-rl

O

013

+1

M

ni

it
TS

rC

C
-P'

-8

ë-h

-a

fl
to

M

dl

to

-
x

to

to

¦H

H
U

fi
rl
4-1

tO

dl

•HO

t~-

rH

-H

3

U

Dl
(4

M

Cfl

O

to

C

E

id

C

d)

4)

d)

0
-H

O

C

0
Ë

4->

id

3
fl
to

to

fl)

Ih

fl)

U

o
id

id

tu

id

d)

-a

c

»L-j

ne

d)

3

di

Di

O

d)

X!

id

-H

O

O

3

MH

to

3
C
-H

O

O
T3

d)

0
4-1

41

4)

3
-P

fl
0

0
rH

"O

4-1

+J

13

4)

M

10

C

Ûi-H

U

fl
O
M-l

10

-O

•H

M

rH

to

C
Ë
-H

O

B*

to

10

O
TI
-H

id
4->

••Dl-H

fi
-H

4)

0
C
-P

¦p

4)

Di

fi
C

C

r-l

to

•H-pDiEidËtu+J-HOid

tOûjfl

OlDlldMH

-H

id

3

¦rl
d)

4J

d)

n)

13fi>MH41'Ofl-H4)

•H

>

Id

-rl
41

«
rH

•rl

fl
C
-H

d)

XI

>

d)

4)

-H

Ë

C
-H

rl
-H

10

C

to

O

••
4J

rl
Id

fl
0
M

O
-H

Id

0
4-1

41

•P

>
M

MH

C

0
Ih

10

4J

0
id

4J-Ht0-|J>iO4JM4ldta0l0X.'OCt0<ta)Ot0

Di-O

"O

fl
U

41

too

o
D.rd4J4-i

o
to

H
fl
fl

tu

E

(d

rl
0
0
fl
-H

4)

D»

C

-HO

IO

4)

ldd)t0r-l4->OO,e4J4J4J

O"

10

-P

-H

dl

O

O

C

O

•H

rl
•H

S5

fi

C

D
4)

Eh

0
4)

C

H
4)

••
fl
3

Ë
Id

41

3
fi
-H

4)

4->

CD

U

••
M

T)

>1

H

d)CC

«ih

O

m

»o

ri
Ë

>d

4)

Di

id

"O

H30«

¦•
to

U
'•H

UidflO

OilHjfUO

to

fl
tO

-H

fl
O)

»

Ol

<DS+>I

«
S^^

)fi
«
«Ir>

XI

tO

O.

>,-H

d)

Ol

Ë
4J

0

O
MH

fi
g
B.

C

0
-p

D
d)

-HE

O
fl

4)

13

4)4->tO>ir44JOd)

^-*

AQIOBil

«.HC«

Ë

E
H
4-1

d)

to

O

u

+J

4)

4-1

d)

dl

U
1

id

E

h
id

o
¦H

«
-P

10

4J

0
dl

ai

fl)

to

Cfl

"rl

rl
Id

CE

K

+>

HCCO-O-HId-HDltUd)

¦ON

4)

H
C
Tl

dl

rl
10

D
H

Ol-HCH

(H

4IÛOH

Eh

H
fl
3
id

4-10

Id

d)

tD

Ol
-H

cn

CO

O
-H

«
to

3

>
G

M

M

••
--*

fl
C
Tl
-P

rH

(d

>
fl
dl

0
en

id

c
o
a,

p,-H

••H

WlOfi-HCflZrH-Pld

+J

c
>
Di

id

id

4J

u-i

*
H
U
O
-0

«I

fl
D)

-H3-Hd)

(N

4)

4)

Dl

tO

Id

>
to

-H

UflflWEOitaUW

fl
2
Id

d)

lH

-H

-H

O

«

o

ta.

fi

Oi

1

Oi

d)

-H

1

to

Q

iHHO

4->l04Jt03lO

Dl

M

-H

C
H
rl
41

C
-P

rl
Eh

•p

Q

-H

rl
OE.

fl)

>l
R)

H

TI

0

tO

o
^
to

C

M

Oi-H

di

id

Ih
"O

rH

rH0

14

d)-H05Od)t0-H4Jld

CP-H

»
lH

d)

10

Dl-H

4)

rH

O

O

id

4)

IO

4-1

4)

D
i

"0

3
to

d)

to

4)

-P

<D

id

fi
to

E

d)

id

0

CSDSrOCfllUKr

>l
fd

fl
4)

-H

fl
>
d)

-H

d)

cu

0

fl
4)

MH

3
A
id

4)

4-1

4)

fl
O

>
4)

fl
rH

-H

fl)-H

>ifl

C

d)

>

•P

4JflWt0ldOEHt0Ërlldr-|r-lS'Ol0S

O

U
+J

MH

10

-p

•P

-a

o

O
-P

o

O

mo

4J

ft

OHU

Dl

004JH

S
-H

M

62 B. Humpert H.P.A.

often needed in monitoring systems with interpretation,
diagnostic and monitoring tasks.

We sofar have limited ourselves to a rather qualitative
and quite general classification of the expert systems by
considering the, in principle possible, classes of tasks. We

now go to the practical side by considering the expert-
systems that exist as well as some of the projects currently
being carried out at the main research centers. For this
purpose we have assembled in Fig. 8.1 [74] an extended list of
expert-systems and tools indicating their principle goals;
this list is however by no means complete and it keeps rapidly

growing. It would go beyond the purpose of this paper to
give an introduction or overview about all these systems. We

therefore chose to discuss a few important topics giving the
reader a flair of the main lines of research being currently
pursued and of the related fields of application.

In Fig. 8.2 [71] we show how some of the leading present-
day (planned) applications are distributed according to their
particular purpose and the industrial need. On the top-
horizontal axis the industries and related professions are
shown, such as: Engineering, Electronics, Telecommunications,
etc., and on the left-vertical axis there are the possible
applications. In the following we dwell on a few of these
topics:

INTELLIGENT CAD: In this field of design we distinguish
several important directions of applications such as for
instance configuration systems and VLSI-design.

One of the first areas where expert systems have proved
commercially valuable is the computerisation of the design
process, with applications ranging from the planning of large
buildings to the layout of integrated circuit. By comparison
with "conventional" computer-aided design (CAD) techniques,
symbolic computing with the expert system tools has several
advantages:

1) The symbolic languages allow a more direct representa¬
tion of the design concepts. These include the objects
being manipulated, the rules governing their arrangement,
the dependencies which link them, and the contraints
which limit them.

2) The expert-systems methodology makes it much easier to
cope with uncertainty. By definition, any design process
works from a starting point where the ultimate result
cannot yet be defined. It is usually necessary to strike
a balance between the objectives the design is intended
to achieve and the resources available. An exploratory
approach is needed to find an optimal result.

3) A knowledge-base provides a suitable means of represen¬
ting design expertise, much of which is heuristic and
informal. The development of a common knowledge base can
provide an important resource in itself for the user
community.

Vol. 59, 1986 Knowledge engineering with expert systems 63

This is an area where the computer industry itself is in the
lead. DEC's XCON/Rl-system for configuring VAX computer-
system orders is an often cited example. XCON/Rl does all the
work of deciding whether the order is valid and complete asit stands and how all the components can be fitted together
as a working system. The system uses a forward-chaining
strategy. A complete configuration design is divided into six
tasks, from the initial check whether there are any major
errors in the order to finally working out the cabling
requirement. Tasks are further subdivided into a total of
nearly 300 sub-tasks, typically 5 to 15 rules each. The
program can search this relatively small description space
without facing a combinatorial explosion. XCON/Rl starts each
task from a partially complete configuration and then extends
it step-by-step until it is complete, according to rules
provided in the knowledge base. Once the task is complete it
proceeds to the next, following the same sequence each time
with no provision for backtracking. DEC's XCON-system is cu-
rently being complemented by several other, similar expert
systems called: XSEL, XSITE, ISA, IMACS and ILOG. Digital's
"Expert Sales Assistant System (XSEL)" is intended to provide
the field sales force with help in configuring customer
systems, planning the site requirements and floor layout, and
estimating delivery dates. The "Expert Site Planning System
(XSITE)" is intended to complement XCON and XSEL at the other
end of the sales cycle by helping the customer service
department to prepare for the installation and maintenanc of
computer systems. The "Intelligent Scheduling Assistant (ISA)"
schedules customer orders against current and planned
materials allocations, customer credit lines, and planned delivery

dates. The "Intelligent Management Assistant for Computer
Systems (IMACS)" provides management assistance in planning
the assembly and test of computer systems, paperwork, capacity

planning, floor loading, throughput, testing plans and
inven-tory control. The task of the "Intelligent Logistics
Assistant (ILOG)" is to generate plans for the distribution
of computer systems to customers. Together these five systems
represent only a part of DEC's current work in applying
expert systems technology to its own business. The company is
currently working on a total of nine cooperating systems
which could ultimately provide integrated assistance in managing

the company as a whole. IBM and NCR are two other computer
manufacturers known to be developping configuration

systems, and ICL already has a sizing system called DRAGON in a
well developed state.

VLSI-DESIGN: The integrated circuit industry is also making
early use of "intelligent CAD". Helped by the close proximity

of several Stanford academic institutions and the related
AI centers to the semiconductor component industry in

Silicon Valley, firms such as Xerox, Fairchild Camera, Hewlett
Packard and Daisy Systems are known to be applying expert
systems techniques to raise the quality and productivity of the
VLSI design. No doubt most of the other leading semiconductor
firms are doing the same. The work on applying expert system
technology to VLSI design can be seen as a two step process.

64 B. Humpert H.P.A.

A number of companies have taken the first step and are using
AI programming environments as the most productive means of
developing the highly complex software required for a VLSI
design workstation. We mention the NEWDRAW logic design
system (by LISP Machine Inc.) as an example. NEWDRAW itself
makes use of AI concepts to improve designer productivity. For
example, it can allow considerably more flexible use of the
conventional design hierarchy, descending from highlevel
block diagrams where each individual block may itself contain
a block diagram, down to the level where individual components

are represented. In a conventional system, the designer
can define a component and use it repeatedly throughout the
hierarchy without needing to redefine it, but if it needs
small changes in different contexts it is necessary to define
each version as an entirely new object. An "intelligent CAD"
system, such as NEWDRAW, can allow the user to define a generic

type of object, and then to modify it in the context where

it is used. This can allow considerable savings in design
time in tailoring a circuit to fit a requirement precisely,
or changing the characteristics of a generic type throughout
a design. Stanford University is one of the leaders in taking
the natural next step by developing expert systems for logic
and VLSI-design, in the EURISKO and PALLADIO projects [74].
EURISKO is a very generalized system which is able to make
discoveries and formulate hypotheses in an assign domain. It
has been used to explore the possiblities of 3-dimensional
microelectronic circuits - todays semiconductor chips have an
essentially planar, 2-dimensional structure - and it was able
to propose some novel and potentially useful devices. Among
other things, the experiment showed the importance of selective

search strategies guided by heuristic rules. Running
EURISKO with an exhaustive search strategy, it was able to
synthesize a possible 3-dimensional device every 0.9 seconds,
but the proportion of good devices was estimated at below one
in a billion. Using a search strategy guided by about 100
heuristic rules it took 30 seconds to synthesize a device
design, but the proportion of some interest rose to one in ten.
EURISKO is still a long way short of designing complete
circuits, but clearly it could help a designer to explore a
wider range of new ideas and possiblities than before. PALLADIO
is more specialized, providing an exploratory environment for
integrated circuit design. It allows the designer to define
models, called "perspectives", at different levels of circuit
design, ranging from the specification of the masks used to
fabricate the circuit on silicon to the high-level design of
novel logic architectures. Expert system aids assist in
translating an abstract design into more concrete specifications;

for example by specifying the interconnection
requirements for a circuit described in terms of switches and
gates.

REAL-TIME MONITORING: A great deal of AI work has been
concerned with "signal understanding" systems, typically
aiming to operate in real time. The biggest area of all is na-

Vol. 59, 1986 Knowledge engineering with expert systems 65

turai and spoken language understanding. Language developments
such as the HEARSAY-II system (at Carnegie Mellon

University) have been an important source of the programming
tools and architectural ideas which are being used as the
basis of real-time expert systems in other areas.

A "blackboard" architecture is the common basis of most if
not all real-time expert systems. The blackboard provides an
effective interface between a continuous flow of data from
many sources - local databases, online information retrieval,
physical sensors and monitors - and the knowledge base which
must monitor events. Typically, incoming data is posted to a
hierarchy of levels on the blackboard and monitored by a number

of expert system modules called "knowledge sources". The
function of the KSs is to draw conclusions from the data
inputs at their level of the blackboard and forward the conclusions

up to higher levels so that the system as a whole can
achieve a wider undertanding of events in the domain it is
observing, and report on it, or suggest actions to its users.

Three major aplication areas where real-time expert-
systems using blackboard architectures are seen as having
special value in the short term are: i) military command and
control, ii) proecess control of industrial plants, iii)
foreign exchange and commodity trading. Beyond these applications,

there is a very wide long-term potential for the
blackboard architecture approach. Civilian air traffic
control, driving vehicles, perhaps the control of robots with
something of the agility of humans, are possiblilities which
are seriously considered.

Among the "US military expert-systems" currently being
developed there are three major application areas: autonomous
vehicle, operational associates, battle management.

The "autonomous vehicle application" envisages systems
able to control land, submarine, air and space vehicles quite
freely without human intervention. For example it might be
used to control tracked land vehicles travelling through
hazardous battle zones for reconnaissance, the re-supply of
forward positions, or ammunition handling.

The "operational associate" would have the different role
of assisting human combatants to control their machines - the
examples suggested are pilots and tank crew. It would be
trained, by a pilot for example, to act as a personal assistant

in making split-second flying decisions with performance
requirements about 100 times faster than current technology.

The "battle management application" would assist the
commander in different types of battle to assimilate the mass of
incoming data, identify threats, and decide how to counter
them. Versions are foreseen for land battles at battalion
level, naval fleet battle, ballistic missile defence and the
control of adaptive hardware for electronic counter-measures
to radio jamming effects. First systems of this type exist

66 B. Humpert H.P.A.

such as for instance AIRPLAN which assists air operations
officers with the task of landing an aircraft on a naval
carrier, or the "Signal Understanding System(SUS)" which has
been conceived to monitor the wide variety of different types
of information available to the commander of a naval vessel
at his control centre. SUS is able to combine these varied
inputs to provide a real-time display of the ships, submarines

and aircraft in a 200-mile zone around the vessel,
tagging them as hostile or friendly, and providing immediate
warning of an imminent threat. SUS is a classic blackboard
architecture system, with 35 knowledge sources monitoring and
analysing signals and passing messages up to the level where
threats can be identified.

The expert-systems for "Industrial Process Control" can be
adapted from those for military objective. The task for SUS

is required, is directly parallel in the monitoring and
control of an industrial plant. Instead of continuous radar
input, the plant operator has continuous instrument readings,
instead of military intelligence he has personal observations
and reports from other staff, instead of military plans there
are operating schedules, and so on. Clearly, expert-systems
could be very significant for the control of nuclear power
stations and other plant requiring very high safety
standards. Although it has yet to be demonstrated in practice,

expert-systems could lead to a significant improvement in
the safety and responsiveness of process control.

Another field is "Foreign Exchange and Commodity Trading".
Speed in the sense of immediate response to immediate infor-
mation is vitally important to banks and brokers in the
foreign exchange and commodity markets. Again, the blackboard
architecture is an appropriate way to combine a numer of
different sources of data - the incoming news service, the
traders client database, knowledge bases about the character of
each market and about the business of trading. One problem
about integrating these streams of data at the computer level
is that the most advanced news service (by Reuters) is provided

only in analogue video form; it however is unlikely that
this will remain a barrier for long.

MANAGEMENT SUPPORT: Some of the biggest and most ambitious
expert systems yet undertaken for commercial applications are
aimed at providing management assistance of some kind. Carnegie

Mellon University (jointly with some computer companies)
has specialized in this area, aiming to develop systems which
tackle directly the major tasks of managing a large organisation,

and which can be linked together to provide an
"Integrated Management Systems (IMS)". This is envisaged to
be able to: i) sense the state of the plant under management
by automatically acquiring data, ii) representing the status
of all the objects, machines, people and concepts involved,
iii) model the organisation at many levels of abstraction,
iv) analyze and manipulate the model to answer management
inquiries, and v) anlyze how the performance of the organization

could be improved by changes. Some of the earlier men-

Vol. 59, 1986 Knowledge engineering with expert systems 67

tioned expert-systems by DEC are being developed as part of
the IMS project.

Another major project has been the ISIS-system. The goal
has been to produce an operational prototype system for the
management and control of production in an engineering job-
shop (such as for instance Westinghouse turbine-component
plant), and so to investigate the application of AI techniques

to this type of management task. In a jobbing shop,
components are produced in batches which are largely unpredictable

in size, timing or detailed specification. Their production
is subject to many different constraints, and a major

reason for the limited success of conventional computer
scheduling packages in this area has been their inability to take
account of all the constraints which apply. Thus the plan
they produce can be no more than suggestions, subject to
change on the factory floor when unscheduled constraints
intervene.

FINANCE SERVICE: Several new venture companies in the
field of expert-systems are targeting on financial services
as a major or exclusive application area. The expert-systems
applications identified by most financial service companies
are: i) credit extension, ii) financial planning for clients,iii) asset and liability management for the company itself,
iv) foreign exchange operations, and v) insurance
underwriting. Of these is the "portfolio management"
functions which fit most naturally into the management support
category. As financial institutions on both sides of the
Atlantic become more diversified, the advantages of being able
to provide a genuine portfolio management service to middle-
market clients are becoming increasingly obvious. One way in
which expert-systems technology can help to solve the problem
is illustrated by a system called FOLIO. This is a small
expert system which uses a 50-rule forward-chaining knowledge
base as the means of automatically assessing the client's
investment goals. This is combined with a simple interview
system to gather data from the client, and a linear programming
algorithm to optimise the distribution of assets between nine

different fund types once the goals have been determined.
Fund types are broad categories such as "high-income, low-
risk stocks" or "government bonds"; it remains the job of the
investment advisor to select particular securities within
these categories. The management of a bank' ownd portfolio
raises similar problems on a much bigger scale. The bank must
continually seek to match its assets and liabilities to maintain

its liquidity while earning a profit. A strategy for
doing this has to take into account the bank's views on the
future trends of interest rates and the funds it has available.

Not only are these subject to change, but they are
always uncertain, and the bank must ensure that it is covered
even if the outcome is considerably less favourable than
expected. The task of funds managment in this environment is
one of developing alternative strategies and evaluating their
future results against a range of possible scenarios.

68 B. Humpert H.P.A.

SUMMARY

In this paper we have given an introduction into the
"world" of expert-systems and knowledge engineering by
discussing a few typical examples: starting from the basics of
"knowledge-representation", subsequently considering, in
somewhat more detail, a few concrete expert-system programs and
their specific characteristics, and finaly widening our
horizons with a glimps on the present-day and the planned
activities in a few selected domains.

Knowledge engineering offers a spectrum of exciting
activities ranging from : the development of new expert-system
tools with better knowledge-representation formalisms, search
strategies, user facilities and so on; to the actual
construction of a concrete system with domain-specific knowledge;

and to the search and selection of new useful
applications. This latter issue is in particular always in
the back of the author's mind, and the aim of this paper is
therefore a deeper understanding of these knowledge manipulation

systems.
Obviously, this presentation is incomplete: the frame,

script and procedural representations and their corresponding
computer systems could not even be touched upon; the third
part of this paper, concerning the advanced present-day
activities, is fragmentic and sketchy. We nevertheless would like
to encourage the interested reader to go beyond this last
(summary) section in order to form a realistic opinion, free
of over-enthusiasm or even euphorism, on the usefulness of
the expert-systems.

Acknowledgements

The author thanks Dr. P. Vogel and Prof. C. Joseph for
their kind interest and encouragements. The author also
thanks the CERN Theoretical Physics Division, where part of
this work was done, for its kind hospitality.

Vol. 59, 1986 Knowledge engineering with expert systems 69

REFERENCES

A. Barr and E. A. Feigenbaum, The Handbook of Artificial
Intelligence I, II, III, Heuristech Press, Stanford,
California (1981); and references therein.
F. Hayes-Roth, D. A. Waterman and D. B. Lenat, Building
Expert Systems, Addison-Wesley, Publishing Company, Inc.,
Reading, Massachusetts (1983).
M. Schindler, Electronic Design 122 (1984) 106
For a good overview see for example: J. A. Robinson,
Logic: Form and Function, Edinburg University Press (1979).
B. Humpert, Theorem Proving with First-Order Predicate
Logic I, Proceedings of the 8th Warsaw Symposium on
Elementary Particle Physics, Warsaw University Press(1985).
J. McCarthy, Programs with Common Sense, Proceedings of
the Symposium on the Mechanization of Thought Processes,
Natl. Physical Laboratory 1^ (1958) pp. 77-84; (Reprinted
in M. L. Minsky, Ed.) Semantic Information Processing,
Cambridge, Mass. MIT Press (1968) pp. 403-409.
J. A. Robinson, Journal of the ACM j^ (1965) pp. 23-41.
C. C. Green, Proceedings of the Joint Intl. Conf. on
Artificial Intelligence 1 (1969) pp. 219-237.
R. E. Fikes, P. Hart and N. J. Nilsson, Artificial
Intelligence 2 (1972) pp. 251-288.
R. E. FiIman and R. W. Weyhrauch, An FOL Primer, Memo
288, AI Laboratory, Stanford University (1976).
D. Prawitz, Natural Deduction: Proof-Theoretical Study,
Stockholm, Almqvist and Wiksell (1965).
P. C. Gilmore, IBM J. Res. Develop. (1960) pp. 28-35, and
ref (8).
M. Davis and H. Putnam, J. Assoc. Comp. Mach. 1_ (1960)
pp. 201-215.
C. Chang and R. C. Lee, Symbolic Logic and Mechanical
Theorem Proving, Academic Press, New York (1973).
L. Wos, R. Overbeek, E. Lusk and J. Boyle, Automated
Reasoning: Introduction and Applications, Prentice-Hall,
Inc. (1984).
R. S. Boyer and J. S. Moore, A Computational Logic,
Academic Press, N.Y. (1979)
A. Newell and H. A. Simon, Human Problem Solving,
Prentice-Hall, N. J. (1972).
E. Shortliffe, Computer-based medical consultations:
MYCIN, American Elsevier, NY (1976).
R. Davis, in: Knowledge-based systems in Artificial
Intelligence, McGraw-Hill (1980) New York.
S. M. Weiss and C. A. Kulikowski, Proc. of the Intl.
Joint Conf. on Artificial Intelligence 6 (1979)
pp. 942-947.

70 B. Humpert H.P.A.

21) D. Lenat, in: Knowledge-based systems in Artificial
Intelligence, McGraw-Hill (1980) New York.

22) J. Kunz et al., A physiological rule-based system for
interpreting pulmonary function test results, Heuristic
Programming Project Rep. No. HPP-78-19, Computer Science
Dep., Stanford University (1978).

23) M. R. Quilian, Semantic Memory, in: Semantic Information
Processing (Ed. M. Minsky) Cambridge, Mass. MIT Press
(1968) pp. 216-270.

24) B. Raphael, SIR: A computer program for semantic informa¬
tion retrieval, in: Semantic Information Processing (Ed.
M. Minsky) Cambridge, Mass. MIT Press (1968) pp. 35-145.

25) R. E. Fikes and G. Hendrix, Proc of the Joint Intl. Conf.
on Artificial Intelligence 5_ (1977) pp. 235-246.

26) R. 0. Duda et al., Development of the PROSPECTOR consul¬
tation system for mineral exploration, SRI Projects 5821
and 6415, SRI International Inc., Menlo Park, California
(1978).

27a)see Ref. (18).
27b)B. G. Buchanan and E. H. Shortliffe, Rule-based Expert

Systems: The MYCIN Experiment of the Stanford Heuristic
Programming Project, Addison-Wesley Pubi. Co, Reading
(1984).

28) E. H. Shortliffe and B. G. Buchanan, Mathematical Bio-
sciences 23 (1975) pp. 351-379.

29) see Ref. (27b) pp. 264.
30) see Ref. (19).
31) W. van Melle, Proc. of the Intl. Joint Conf. on Artifi¬

cial Intelligence 6 (1979) pp. 923-925;
W. van Melle, E. H. Shortliffe and B. G. Buchanan,
Machine Intelligence, Infotech State of the Art 9,
No. 3 (1981).

32) B. G. Buchanan and E. A. Feigenbaum, Artificial Intelli¬
gence 11 (1978) pp. 5-24;
R. K. Lindsay, B. G. Buchanan and E. A. Feigenbaum, The
DENTRAL Project, McGraw-Hill (1980) New York.

3 3) W. J. Clancey, Transfer of rule-based expertise through a
tutorial dialogue, Ph. D. Thesis, Computer Science Dept.,
Stanford University (1979).
W. J. Clancey, in: Methods and Tactics in Cognitive
Science, (Eds. W. Kintsch, J. R. Miller and P. G. Poison)
Erlbaum, Hillsdale, NJ (1984).

34) W. J. Clancey and R. Letsinger, Proc. of the 7th Intl.
Joint Conf. on Artificial Intelligence, Vancouver (1981)
pp. 829-836.

35) J. S. Benett, L. Creary, R. Engelmore and R. Melosh, A
knowledge-based consultant for structual analysis. Rep.

Vol. 59, 1986 Knowledge engineering with expert systems 71

No. HPP-78-23 (1978), Computer Science Dept., Stanford
University.

36) E. H. Shortliffe, A. C. Scott, M. B. Campbell, A. B. van
Melle and C. D. Jacobs, ONCOCIN: An Expert System for
oncology protocol managment, Proc. of the Intl. Joint
Conference on Artificial Intelligence 7 (1981).
C. P. Langlotz and E. H. Shortliffe, Intl. Journal of
Man-Machine Studies 19 (1983) 479-496.

37) J. C. Kunz, R. J. Fallat, D. H. McClung, J. J. Osborn, B.
A. Votteri, H. P. Nii, J. S. Aitkins, L. M. Fagan and E.
A. Feigenbaum, Proc. of Computers in Critical Care and
Pulmonary Medicine (1979) pp. 375-379.

38) J. S. Aikins, J. C. Kunz, E. H. Shortliffe, R. J. Fallat,
Computers and Biomedical Research 16 (1983) pp. 199-208.

39) D. E. Smith and J. E. Clayton, in: Rule-based Expert Sy¬
stems: The MYCIN Experiments of the Stanford Heuristic
Programming Project (Eds. B. G. Buchanan and E. H.
Shortliffe), Addison-Wesley Pubi. Co (1984) pp. 441-452.

40) L. Fagan, Ph. D. Thesis, VM: Representing time-dependent
relations in a clinical setting (1980), Computer Science
Dept., Stanford University.

41) unpublished, see ref. 27b.
42) J. S. Bennet and D. Goldman, CLOT: A knowledge-based con¬

sultant for bleeding disorder, Rep. No. HPP-80-7, Computer
Science Dept., Stanford University.

43) J. F. Heiser, R. E. Brooks and J. P. Ballard, Proc. of
the 11th Collegium Internationale Neuro-
Psychopharmacologicum, Vienna, Austria (1978) pp. 233.

44) J. S. Bennet and C. R. Hollander, Proc. of the 7th Intl.
Joint Conference on Artificial Intelligence (Vancouver,
B.C.) (1981) pp. 843-845.

45) A. Bonnet, An Expert System for lithographic analysis,
Internal working paper, Schlumberger Corp., (1981) Paris,
France.

46) B. Mulsant and D. Servant-Schreiber, Computer and Biome¬
dical Research 17 (1984) pp. 71-91.

47) L. D. Erman, F. Hayes-Roth, V. R. Lesser and D. R. Reddy,
Computing Surveys 12 (1980) pp. 213-253.

48) D. M. McKeown, Proc. of the IEEE Intl. Conf. on Acou¬
stics, Speech, and Signal Processing, Hartford, Conn.
(1977) pp. 795-798.

49) G. Ernst and A. Newell, GPS: A Case Study in Generality
and Problem Solving, Academic Press, NY (1969);
N. Nilson, Problem Solving Methods in Artificial Intelligence,

McGraw-Hill, NY (1971):
E. E. Sacerdoti, Artif. Intell. 5 (1974) pp. 115-135.

72 B. Humpert H.P.A.

50) R. Balzer, L. Erman, P. London and C. Williams, Proc. of
the Natl. Conf. of the American Association for Artificial

Intelligence 1, (1980) pp. 108-110.
L. D. Erman, P. E. London and S. F. Fickas, Proc. of the
Intl. Joint Conference on Artificial Intelligence 7

(1981) pp. 409-415.
51) N. Goldman, AP3 User's Guide (1978), Information Sciences

Institute, Univ. of Southern California, Los Angeles.
52) W. Teitelman, INTERLISP Reference Manual (1978), Xerox

Palo Alto Research Center, Palo Alto, California.
53) C. E. Hewitt, Tech. Rep. TR-258 (1972), Artificial Intel¬

ligence Laboratory, MIT, Cambridge, Mass.
54) H. P. Nii and E. A. Feigenbaum, in: Pattern-Directed In¬

ference Systems, (eds. D. A. Waterman and F. Hayes-Roth),
Academic Press (1978) NY, pp. 483-501.
E. A. Feigenbaum, in: Expert Systems in the Micro
Electronic Age (eds. E. Michie) Redwood Burn Ltd. (1979),
England, pp. 3-25.

55) E. A. Feigenbaum, R. S. Engelmore and C. K. Johnson, Acta
Crystallographica A33 (1977) 13.

56) M. Stefik, Planning with Constraints, Ph. D. Thesis, Com¬

puter Science Dept., Stanford University, Stanford,
California (1980).

57) B. Hayes-Roth and F. Hayes-Roth, Tech. Rep. R-2366-ONR
(1979), The Rand Corporation, Santa Monica, California;
B. Hayes-Roth and F. Hayes-Roth, Cognitive Science 3

(1979) 275-310.
58) D. E. Rumelhart, Towards an Interactive Model of Reading,

Tech. Rep. 56 (1976), Center for Human Information
Processing, University of California, San Diego.

59) R. Balzer, L. D. Erman and C. Williams, HEARSAY-III: A
domain-independent base for knowledge-based problem
solving, Tech. Rep., USC/lnformation Sciences Institute,
Marina del Rey, California (1980).

60) H. P. Nii and N. Aiello, Proc. 6th Int. Joint Conf. Arti¬
ficial Intelligence, Tokyo (1979) pp. 645-655.

61) A. R. Hanson and E. M. Riseman, VISIONS: A computer sy¬
stem for interpreting scenes, Academic Press, NY (1978)
pp. 303-333.

62) E. M. Solovay and E. M Riseman, Proc. 5th Intl. Joint
Conf. Artificial Intelligence, Cambridge, Mass. (1977)
pp. 801-811.

63) M. D. Levine, in: Computer Vision Systems (Eds. A. Hanson
and E. Riseman) Academic Press, NY (1978) pp. 335-352.

64) W. C. Mann, 17th Ann. Meeting Assoc. Computational Lin¬
guistics, La Jolla, California (1979).

65a)R. 0. Duda, J. Gaschnig, P. E. Hart, K. Konolige, R. Re-
boh, P. Barrett and J. Slocum, Development of the
PROSPECTOR consultation system for mineral exploration,
SRI Projects 5821 and 6415, SRI International, Inc., Men-
lo Park, Calif. (1978).

Vol. 59, 1986 Knowledge engineering with expert systems 73

65b)R. Duda. J. Gaschnig. P. E. Hart, in: Expert Systems in
the Micro-Electronic Age, Edinburgh University Press
(1979) pp. 153-167.
R. Duda and J. G. Gaschnig, BYTE 6 (1981) pp. 238-281.

66) H. Pople, Proc. of the Intl. Joint Conf. on Artificial
Intelligence 5_ (1977) pp. 1030-1037.

67) G. G. Hendrix, in: Associative Networks - The Representa¬
tion and Use of Knowledge in Computers (Eds. N.V.Findler)
Academic Press, N.Y. (1979) pp. 51-92.

68) L. A. Zadeh, "Fuzzy Sets", Information and Control 8
(1965) pp. 338-353.
L. A. Zadeh, "Fuzzy Sets as a Basis for a Theory of
Possibility", Fuzzy Sets and Systems 1 (1978) pp. 3-28.

69) G. G. Hendrix, SIGART Newsletter 61 (1977) pp. 25-26.
G. G. Hendrix, The LIFER manual: A Guide to building
practical natural language interfaces. Tech. Note 138,
AI-Center, SRI International, Inc., Menlo Park,
California.

70) R. Reboh, Ph. D. Thesis, Knowledge Engineering Techni¬
ques and Tools for Expert Systems, Linkoping University,
Sweden (1981).

71) T. Johnson, The Commercial Application of Expert Systems
Technology, Ovum Ltd., London (1985)
B. Humpert, Artificial Intelligence: Impact on Pure and
Applied Science, HASLER F+S Al/113 (1985), to be published
in Helv. Phys. Acta.

72) See for example in Ref. [15], pp. 400, and Ref. [28]
73) D. B. Lenat et al. AI Magazine 3_ (1982) 17

74) M. Schindler, Electronic Design, August 1984,
pp. 106-146; ibid, January 1985, pp. 113-134

74 B. Humpert H.P.A.

FIGURE CAPTIONS

Fig. 3.1 : Forward and Backward chaining in production
Systems.

Fig. 5.1 : The program structure of the MYCIN-system.

Fig. 5.2 : A MYCIN production rule.

Fig. 5.3 : A MYCIN goal tree.

Fig. 5.4 : The search tree of a toy model for MYCIN.

Fig. 5.5 : The interrelation of MYCIN-type expert systems. •

Fig. 6.1 : The blackboard program structure of the
HEARSAY-II system.

Fig. 6.2 : The levels and knowledge sources in HEARSAY-II.

Fig. 7.1 : The program structure of the PROSPECTOR-system.

Fig. 7.2 : The size of the knowledge base of five PROSPECTOR
models.

Fig. 7.3 : Examples of taxonomies in the PROSPECTOR system.

Fig. 7.4 : Semantic network representation of: "a rhyolite
plug is present".

Fig. 7.5 : A sample inference network from a PROSPECTOR model.

Fig. 8.1 : List of expert-systems and tools (partially from
Ref. 74).

Fig. 8.2 : Application areas of expert-systems (adapted from
Ref. 71).

Vol. 59, 1986 Knowledge engineering with expert systems 75

Forward Chaining

pi.

i«?

P3^

,{b.a.hK

p>n

.{g.b.a.h}'

^®b.,.h}

P5^

ï)k.g.b.»,h}
Pi

,{k.g.b,i.h}

Backward Chaining

Ml P6

{..h} 0pi

Dynamic

Patient

Data

Physician Usar

j Consultation |

I Program JT

< Explanation

Knowltdga

Acquisition

Program

Infactious Disaasa

Export

Fig. 3.1

Static Factual

and Judgmtntal

Knowledga

Fig. 5.1

76 B. Humpert H.P.A.

Rule 050

PREMISE:

ACTION:

(AND (SAME CNTXT INFECT PRIMARY-BACTEREMIA)
(MEMBF CNTXT SITE STERILESITES)
(SAME CNTXT PORTAL Gl)

(CONCLUDE CNTXT IDENT BACTEROIDES TALLY .7)

MYCIN'S English translation:
IF

THEN

1) the infection is primary-bacterernia, AND
2) the site of the culture is one of the sterile

sites, AND
3) the suspected portal of entry of the organism is

the gastrointestinal tract,
there is suggestive evidence (.7) that the identity
of the organism is bacteroides.

Fig. 5.2

Enttrobacttriaccao

RHU 095

Sita
Wood

Gram«
Positiva

Portal • Locus •
G.I. Tract Abdomin or

Patvis

RULE 021

^
Recent Culture Therapeutically

Significant

RULE 054

/*
Sterile

Method of
Collection

Significant
Number of

Organisms

Non.

sterile
Site

Fig. 5.3

Vol. 59, 1986 Knowledge engineering with expert systems 77

FIND VALUE

OF F

FIND VALUE

OF A

FIND VALUE

OF G

RULE 4

OTHER RULES

FIND VALUE

OF C

FINO VALUE

RULE 3RULERULE

\U
FIND VALUE

OF H

FIND VALUE

OF I

IMO" S

*¦ CONGEN

DENORAI

1»70'S

MYCN •» META - 0EN0RAI

(QA) {INFERENCE) /exPUNMl-*\ ([VAU)»».) /KNOWLEMC \
\snsmir,) Ucouisition)/ J

su/x

BAOBAB

| TEIRESIAS |-»| EMYCIN

| 6UID0H | PUFf

SACON

CENTAUR

GRAVIDA

NEOMYCIN ONCOCIN DART

Fig. 5.4

Fig. 5.5

78 B. Humpert H.P.A.

BLACKBOARD

LEVEL

LEVEL

LEVEL

LEVEL

>-KS

>-KS

cBLACKBOARD

MONITOR

SCHEDULING

QUEUES

1

FOCUS-OF
CONTROL
DATABASE

< >-SCHEDULER

Fig. 6.1

LEVELS KNOWLEDGE SOURCES

DATA BASE
INTERFACE f SEMANT

PHRASE
I

i PARSE <
.pREDICT STOP

m
CONCAT m

WORD-SEQUENCE

1 1

twORD-SEQ
WORD-SEQ-CTL

WORD

1

fMOW

1

VERIFY *
WORD-CTL

RPOL

SYLLABLE
1

POM —
SEGMENT i i SEG i

MRAMETER i i

•

Fig. 6.2

Vol. 59, 1986 Knowledge engineering with expert systems 79

EXECUTIVI

TTT
ENGLISH S

^ANALYZES J
/EXPUNAIO))
k_ SYSTEM

INFERENCE

SENGINE
•SnONING
SYSTEM

iS^ ^Î9MATCHER

INFERENCE NETWORK

j—>J u NETWORK
COMPILER

fcNOWLEDGEÌ

A-.QUSITION
SYSTEM

MOOEL MODEL MOOEL

FILE FILE FILE FILE
KNOWLEDGE

BASE Fig. 7.1

Model Number of
assertions

Number
of rules

Koroko-type massive sulfide
Mississippi-Valley-type lead/sine
Type A porphyry copper
Komatiitic nickel sulfide
Roll-front sandstone uranium

Total

39 34
28 20

187 91
75 49

212 133
541 327

Fig. 7.2

80 B. Humpert H.P.A.

FORKS

T
INTRUSIVES

MATERIALS

ROCKS MINERALS XEUTIOKS —

/ \ SEDIMENT;
V f 4/h\\

AGES

SEDIMENTARY

CRYPTÛ..01C PHANEROZOIC ROCKS

'I-/
PRECAMBRIAN

ALTERATION
PRODUCTS COHP-ÛF \

SULFIDES SILICATES

i v ROCKS /à f \\X f\ 7 ' \
PROTEROZ01C ARCHEAN APHANIT1C PHANERITIC COPPER

S i i ROCKS ROCKS SULFIDES

Y 1" i

EARLY

ELSONIAR

x / M\ ' » / »

ITES/ Il ' ' iANDESITES

SULFIDES

r i L^.
CHAIOOPTRITE PYRITE

FORN-OF

BIOTITE

DACHE \ DORMITE

RH. OL ITE

Fig. 7.3

FORMS

INTRUSIVES

e\ \
\ \

PLUG

ROCKS

/
i

\

IGNEOUS ROCKS

i V

/•
L

RHYOLITE

arg 2arg 1arg!arg 2

FÖÜTÖF) (comp-OF

"a rhyolite plug is present" Fig. 7.4

Vol. 59, 1986 Knowledge engineering with expert systems 81

GIR FRE

r 1

GRANITIC 1

INTRUSIVES \- —-*| REGIONAL

IN REGION I l0.

0.001

FAVORABLE

REGIONAL

ENVIRONMENT

5700.10-4 5.0.7

OTFSYSFLE 0.005

PREINTRUSIVEFAVORABLE
THROUGHG0IN6LEVEL OF

FAULT SYSTEMEROSION

200. 2 tO-*too.

HYPE

HYPABYSSALCOEVAL

REGIONALVOLCANIC

ENVIRONMENTROCKS

300.1065.001

STR SfflR W
SUGGESTIVE

TEXTURE OF

IGNEOUS ROCKS

2.10 FMGS1PT

ANO

PORPHYRITIC

TEXTURE

SUGGESTIVE

MORPHOLOGY OF

IGNEOUS ROCKS

100,10"'

FINE-TO-MEDIUM

GRAIN SIZE

20.1
300.1

SMIRA

RCS RCAD

STOCKS DIKES

RCVP

INTRUSIVE VOLCANIC

BRECCIAS PLUGS

Fig. 7.5

82 B. Humpert H.P.A.

ABEL

Expert system for
diagnosing electrolytic
disorders

ACE

Expert System that
analyzes trouble reports
for telephone cables.

AGE

Attempt to generalize-
helps design expert
systems like PUFF.

AIPS
Advanced information
presentation system-
expert system for
graphical objects.

ALA
Assists in assembling
diagnostic expert
systems, based on Prospector.

AH

Expert system that
assists in forming
mathematical concepts.

APE

Expert System for
automatic programming in
LISP.

ARBY

Construction aid for
expert systems in
electronic systems-analysis.

ARGOS

General system simulating

the decision
taking of a robot.

ART

Expert system for building

different types of
expert systems.

AUSA

Automated reasoning

assistant-helps with
logic and software disi

gn.

BACON-3

Experimental system
concerning physics, the
laws by Kepler, Coulomb

and Ohm.

BAOBAB
Rule manipulation
system.

BETA

Battlefield exploitation
and target acquisition-
an experimental system.

CAA

Casual arhythmia
analysis-expert system
for analyzing
electrocardiograms

CADÜCEUS

Expert diagnostic system
for internal medicine
(undergoing clinical
trials).
CALLISTO
Experimental expert system

for the management
of large projects.

CASNET
Casual network- associates

glaucoma treatment
with diagnostic hypothe-

CATS-1
Operational expert system

for troubleshooting
diesel-electric locomotives.

CHI
Experimental expert
system for automatic software

development.

CMODA

CMU design automation-
comprises heuristic and
algorithmic VLSI tools.

CRIB
Expert system to train
field engineers in
resolving computer
malfunctions.

CRITTER

Expert system to critique
VLSI designs

interactively.

CRYSALIS

Expert system for data
analysis related to
protein crystallography.

DAA

Design automation
assistant-Al-based VLSI
design segment of CMUDA.

DART

Experimental expert system

for field diagnosis
of computer system
faults.

DELTA
An earlier term for
CATS-1.

DEMETER

Design methodology and
environment-for system
design above register
level.

DENDFAL

Expert system that
determines molecular
structure from mass
spectrograms.

DIPMETER

Expert system that
analyzes oil well data.

DOC

Prolog-based expert sys-

Fig. 8.1

Vol. 59, 1986 Knowledge engineering with expert systems 83

tem for computer field
' service.

DPL

Description language
for VLSI design.

DWIH
Do what I mean-context-
based error correction
in LISP systems.

EDD

Expert data base
designer-a Prolog-based
expert system.

EL

Expert system for
circuit analysis.

ELAS

Expert system for
analysis of oil-well data.

EMUCS

Algorithmic part of
CMUDA. Used for datapath

synthesis.

EMYCIN
Inference system of
Mycin, used to design
expert systems.

EPM

Extended program model-
so ftware repre sentation
for IPE.

EURISKO

Self-learning expert
system for VLSI design.

EXPERT
Basic inference system
used in medical
applications.

EXPERT-EASE
Tool to design expert
systems on a personal
computer.

FRL

Knowledge representation
language for frame
manipulation.

GAI
Expert system for chemical

data analysis.

GARI

Expert system for
production line.

GEM

Interface management
system used in Steamer.

GENESIS

Expert system for genetic
engineering.

GEN-X
Inference engine derived
from CATS-1.

GLISP
Programming language
that supports objects
and their behavior.

GUIDON

Experimental computer-
aided instruction system
for medical S technical
applications.

HAIL-1
Expert system that
configures printed circuit
boards.

HEADMED

Expert system for
pharmacological advice.

HEARSAY

Expert system to assist
in software design.

HYDRO

Consultation system for
solving water resource
problems.

IDT
Expert system for
diagnosing computer faults.

INFORM

Knowledge-based software
environment for rapid
prototyping.

INTERNIST
Expert system for internal

medicine-alternative
name for Caduceus.

IPE
Intelligent program
editor-expert system
that analyzes software.

ISIS
Experimental expert
system for job-shop
scheduling.

KAS

Experimental knowledge
acquisition system using
rule networks.

KBPA

Knowledge-based program
automation.

KBSA

Knowledge-based software
automation-a life-cycle
support system.

KBVLSI
Experimental expert
system for VLSI design.

KEE

Tool for assembling
knowledge bases for
expert systems.

KEPE

Knowledge representations
system.

84 B. Humpert H.P.A.

KL-TWO

Knowledge engineering
tool for expert systems
based on KL-One.

KMS

Assists in tAiilding
expert systems for medical

diagnosis.

KRL

Knowledge repre senta-
tion language-used in
framebased systems.

KRYPTON

Knowledge representation
system using

frame-based and logic-
based terms.

KS-300
Basic inference system
for industrial diagnostic

applications.

LIBRA
E fficiency-analysis
component of PSI software

automation
project.

LITHO
Expert system in
geology.

LOOPS

Object-based knowledge
representation system,
for VLSI and other

expert systems.

MACPITTS
Hardware specification
methodology for
algorithmic VLSI design.

MACSYMA

Knowledge-based system
for symbolic mathematical

manipulations.

MARS

Multiple abstraction

rule-based simultor-used
in Palladio.

MAXWELL

Knowledge base development

system written in
Prolog.

MDX

Expert system for medical

diagnosis.

MECHO

Expert system to simulate
mechanics.

METADENDRAL

Helps formulate rules
regarding fragmented
molecules from mass
spectrometer data.

METALOG-

Logic language.

MICON

Expert system for
designing single board
computers.

MOLGEN

Expert system for planning

bio-engineering
experiments involving DNA.

MRS

Metalevel repre sentation
system-used for knowledge

bases and problem
solving.

MYCIN

Operational expert
system for diagnosing
infectious diseases.

NASL

Expert system for
electronics simulations.

NETL

Knowledge representation
language for frame-based
systems.

NEWTON

Experimental expert
system that analyzes the
effects of gravity.

NIKL
Part of KL-Two that
handles structured
predicates.

NOAH

Expert system for planning

robotics projects.

NUDGE

Expert system for temporary

employment.

OBJTALK
Implementation language
for Inform project.

ONCOCIN

Expert system that guides

physicians in
administering chemotherapy.

0PS4, OPS5

Knowledge representation
and inference system
developed for R1.

PA

Programmer ' s apprentice-
experimental programming
consultant.

PALLADIO
Knowledge-based VLSI
design environment based
on Loops.

PART

Heuristic program for
the solution of arithmetic

exercises.

PEACE

System for the electricity
simulations.

PECOS

Program synthesis component

of PSI software

Fig. 8.1 (con't)

Vol. 59, 1986 Knowledge engineering with expert systems 85

automation system.

PENNI
Part of KL-Two that
works with
propositions.

PIP
Expert system for medical

diagnosis.

POLITICS
Expert system for natural

language
comprehension.

PONTIUS

Expert system for
flight instructions.

PEL

Program reference
language-used in IPE
project.

PROLOG

Programming language in
logic.

PROSPECTOR

Expert system that
evaluates sites for their
mineral deposits.

PROUST

Experimental expert
system that analyzes Pascal

programs.

PSI
Expert system that
converts English language
specifications to simple

programs.

PSN

Procedural semantic
network-knowledge base
using classés, objects,
and relations.

PTRANS

Rule-based expert
system for manufacturing

management.

PUFF

Operational expert
system for diagnosing lung
diseases.

QUAL

Expert system that-
explairis an electrical
circuiths behavior from
its description.

Rl
Original name for XCON

which configures VAX

systems.

RAFFIES
Precompilës the knowledge

for CRIB.

REDESIGN

Expert system for VLSI
design that emphasizes
modi fications.

RESEDA

Expert system for history
and biographies.

RITA
Language for computer
aided conception.

REX

Regression expert-frame,
based expert system for
statistical analysis.

ROGET

Experimental system that
adds knowledge engineering

expertise to Emycin.

ROSIE
Basic inference system
used in several
applications.

RDP

Reasoning utility
package-predecessor of
Penni.

RX

Expert system for
evaluating statistical data
from chronically ill
patient s.

SACON

Operational expert
system for structural
analysis.

SAFE

Experimental so ftware
automation system.

SAGE

Basic inference system
used in several
applications.

SAM

Expert system for the
treatment of
hypertension.

SCHEMA

Expert system for VLSI
design-still in early
development stage.

SCHOLAR

Computer-aided instruction
system for coaching

games.

SECS

Operational expert
system that helps chemists
plan organic synthesis.

SIMMIAS
Expert system for geological

analyses.

SMALLTALK

Language and environment
for graphics and object
based programming.

SMP

Symbolic manipulation
program-solve s differential,

integral,
transcendental equations.

86 B. Humpert H.P.A.

SNARK

Language in predicate
logics.

SNIFFER
Experimental expert
system that discovers
software bugs.

SOPHIE
Computer-aided instruction

for troubleshooting
electronics.

SPEAR

Expert system for field
analysis of error logs-
under development.

SPHINX

Project system in
medicine.

SRL
Schema representation
language-used for
knowledge description.

STEAMER

Expert system that
simulates steam plants
for Navy training.

sua
Expert system for
signal processing.

SYN

Expert system for
circuit synthesis.

rule acquisition for
expert systems.

TIMM
The intelligent machine
model-implements expert
systems in Fortran.

TROPIC

Expert system for computer
aided conception in

architecture.

TRUCKIN
An expert system game to
train students in the
use of Loops.

TUNER

Pascal-based expert
system for adjusting
signal-processing
systems.

UNITS
Knowledge representation
system used with AGE to
build Molgen.

VEXED
VKSI expert editor-
experimential self-
teaching IC design
system.

VM

Ventilator management-
monitors patients and
suggests respiratory
therapy.

XPLAIN
Expert system framework
that accounts for its
reasoning.

XSEL
Extension to XCON that
supplies salesmen with
floor plans.

SYSTEM-1
Knowledge engineering
tool for expert
systems-nearly
operational.

WAVES

Expert system for analyzing

seismic data for
the oil industry, uses
KS-300.

TALIB
Expert system that
synthesizers layouts for
NMOS cells.

TEIRESIAS
Guides knowledge and

XCON

Current version of Rl
expert system for
configuration of VAX and PDF-
11 systems.

Fig. 8.1 (con't)

Vol. 59, 1986 Knowledge engineering with expert systems 87

Oil and
minerals

exploration

Eng- | Elee-
ineering I troni«

r
Computing

I l >

Telecom-'Financial! Profes

munka-services sional

tions i iservices|
Military

CATS - 1

Fault

Diagnosis
DRILLING
ADVISOR

HPRL

PDS I MARCONI J.

DART

APRES

ACE

TRACKER |
M-ATE

r 4
Training
and

Counselling

I

STEAMER

ITAXAOVBOR

RSRE

-I-- t J. r -t a

Data

Analysis

Software

Front-ends

PROSPEC-
TOR

ELAS

EXPLORER

r—+—I
| FOLIO

OHSS
PROJECTS

EXPERT
EASE

TECH

l__
WIZARD 1

I

I

I KM-1

-i r T
i

j_ T
Real-time

Monitoring

AUTONOMOUS

VEHICLES

•~T -_l
SUS

Management

Support

Intelligent
CAD

I

ISIS

I

.-l__

PTRANS r
-n

__L__
PALUDIO

i-
XSEL

h
XCON

t r
| APEX

I

I

ISYNTELLI
GENCE

-f.OPERATIONALI

ASSOCIATES ¦

BATTLE |

+

I

I

I

T
i

l

i

I ««CHILD DRAGON

¦ + • T
i

-t

Fig. 8.2

	Knowledge engineering with expert systems

