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ABSTRACT

This paper examines a few typical methods

for knowledge representation and demonstra-
tes their application in a set of expert sys-
tems. We explain in particular the function
mode of the systems/shells: MYCIN/EMYCIN,
HEARSAY-II/III, PROSPECTOR/KAS, and finally
we elaborate on their possible fields of
application.

*) 1Invited Talk at the Meeting of the Swiss Physical
Society, Bienne, 3-4 Octobre 1985.
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1. INTRODUCTION

A part of artificial intelligence research [1] involves
the construction of systems which involve knowledge. A repre-
sentation of knowlege is a combination of data structures and
interpretive procedures that, if used in the right way in a
program, will lead to "knowledgeable" behaviour. Work on
knowledge representation in AI has involved the design of se-
veral classes of data structures for storing information in
computer programs, as well as the development of procedures
that allow "intelligent" manipulation of these data structu-
res to make inferences. What type of knowledge is needed to
be represented in AI systems? We can think of several kinds,
such as:

- objects: knowledge in terms of facts about objects, their
classes, categories or descriptions;

- events: knowledge about actions and events with a formalism
indicating the time course of a sequence of events and
their cause-and-effect relations;

- performance: knowledge about how to do things, the perfor-
mance of skills;

- meta-knowledge: knowledge about what we know including
knowledge about our own perfomance, as cognitive proces-—
sors: our strengths, weaknesses, confusability, and so on.

Knowledge-representation schemes are not chosen at will, but
they are subject to constraints allowing, for instance, for
an easy way of reasonig. There is a set of different kinds of
reasoning one might imagine such as for instance:

- formal reasoning, involving the syntactic manipulation of
data structures to deduce new ones following prespecified
rules of inference;

- procedural reasoning, using simulation to answer questions
and solve problems;

- reasoning by analogy, which is a natural mode of human
thought;

- reasoning by generalization and abstraction;

- and finally, meta-level reasoning.

Any construction of expert systems [2] is faced with this
kind of questions, in particular so if the system is intended
as a multi-purpose facility which allows for complex and in-
volved tasks. One here might also be concerned with questions
of efficiency which we however will not address. Expert Sy-
stems are distinct for three reasons: First, they perform
difficult tasks at expert levels of performance. Second, they
emphasize domain-specific problem-solving strategies. Third,
they employ self-knowledge to reason about their own inferen-
ce processes, and provide explanations or Jjustifications for
the reached conclusions. And, at last, they solve problems
that generally fall into one of the following categories:
interpretation, prediction, diagnosis, debugging, design,
planning, monitoring, repair, instruction, and control. As a
result of these distinctions, expert systems represent an
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area of AI research that involves paradigms, tools, and sy-
stem development strategies.

There exists already a wide variety of expert systems [1,
2, 3]. Instead of explaining all their details we rather de-
velop on their general characteristics by pointing to the
different domains of applications.

.This paper is divided in 3 parts. In the first part
(sections 2-4) we give the essentials of the knowledge repre-
sentations schemes: logic, production systems, semantic
networks. In the second part (sections 5-7) we explain the
expert systems/shells: MYCIN/EMYCIN, HEARSAY-II/III and
PROSPECTOR/KAS which are in the field of medicine, speech un-
derstanding and mineral exploration. We deliberately have
chosen these widely differing fields in order to demonstrate
the versatility of application, the difference in construc-
tion as well as the different realizations of the in section
2-4 introduced knowledge representation schemes. In section 8
we somewhat widen our outlook and aim at an overview about
the possible applications of expert systems. In section 9 we
present our conclusions.

23
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2. LOGIC

In this section we present Logic which was one of the
first representation schemes used in AI. Philosophers as Boo-
le, Frege, Russel and others [4,5] made essential contri-
butions to the development of this field. It has two impor-
tant and interlocking branches. The first one focuses on 'w-
hat can be said' (relations, implications,.., axioms) and the
second one on 'what can be derived'(rules of inference). Lo-
gic is a formal endeavor: it is concerned with the form, or
syntax, of statements and with the determination of truth by
syntactic manipulation of formulas.

The most fundamental notion in logic is that of truth. A
properly formed statement, or "proposition", has one of two
different possible truth values: TRUE or FALSE. Many of the
things we say and think about can be represented in proposi-
tions that use sentential connectives to combine simple
propositions:

AND(A, &), OR(V), NOT(-,n),
IMPLIES(-» ,2), EQUIVALENT( #», =).

The use of the sentential connectives in the syntax of propo-
sitions brings us to the simplest logic, the "propositional
calculus" in which we can construct compound propositions
using the following truth table:

X Y XAY XvY X=»Y =X X=Y
T T T T T F T
T F F T F F E
F T F T T T F
F F F F T T T

We thus can build sentences of propositional logic just 1like
expressions of mathematics. Among those we mention the tauto-
logy and the contradiction which are always TRUE resp. always
FALSE.

In the propositional calculus we encounter the first rules
of inference which allow for the deduction of a new sentence
from previously given sentences. The power of logic lies in
the fact that the sentence is assured to be true if the ori-
ginal sentences were true. The best known inference rule is
"Modus Ponens". It states: if two sentences of the form X and
X- Y are true, then we can infer that the sentence Y is true.
Note that if we think of this as two entries in the database
the modus ponens rule allows us to replace them with the
simple statement Y.

We turn to the predicate calculus which allows for rela-
tionships between objects. It is an extension of the notions
of the propositional calculus in that it allows for state-
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ments about specific objects or individuals; these are called
"predicates". A predicate is applied to a specific number of
arguments -one, two,...several- and has a value of either
TRUE or FALSE when "individuals", one might say constants,
are used as the arguments.

We introduce two new notions, those of "variable" and
"quantifier". A variable is a place holder, one that is to be
filled in by some constant. There are two quantifiers, ¥ ,
meaning "for all ...", and 3 , meaning "there exist ...".
We can again have inference rules for quantifiers. The
"elimination (or universal specialization) rule" states that,
for any wellformed expression 0 with a variable X:

if we have ‘VX.E(X) we can conclude that I(A).

"There are two additional notions. "Functions", likes predica-
tes, have a fixed number of arguments; but functions are dif-
ferent from predicates in that they do not just have the va-
lues TRUE or FALSE, but they "return" objects related to
their arguments. The second important addition is the predi-
cate: "EQUALS ( )". Two individuals X and Y are equal if and
only if they are indistinguishable under all predicate
functions. What we aim at with these additions is no longer
pure predicate calculus; it is a variety of first-order lo-
gic.

The important feature of logic and related formal systems
is that deductions are guaranteed correct to an extent that
other representation schemes have not yet reached. The sema-
ntic entailment of a set of logic statements is completely
specified by the rules of inference. Theoretically, the data-
base can be kept logically consistent and all conclusions can
be guaranteed correct. Other representation schemes are still
striving for such a definition and guarantee of logical
consistency.

One reason that logic-based representations have been so
popular in AI research is that the derivation of new facts
from old can be mechanized. Using automated versions of theo-
rem proving techniques, programs have been written to deter-
mine automatically the validity of a new statement in a logic
database by attempting to prove it from the existing
statement.

The idea of using formal logic as a representation scheme
and deductive inference as a reasoning method was apparently
first suggested as an approach to commonsense reasoning and
problem-solving by McCarthy in 1958 [6]. After several other
initial attempts, Robinson arrived in 1965 at an automatic
deduction technique for proving theorems which is relatively
simple and logically complete [7]. Robinson's procedure and
those derived from it are usually referred to as "resolution
procedures" because the basic rule of inference they use is
the "resolution principle":

From ( AvB ) and (=AvC ) infer ( ByC ).

25
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Robinson's work had a major influence on mathematical theorem
proving, commonsense reasoning and problem solving.

First-order logic demands a clean syntax (form or grammer
of the language), clear semantics (meaning of the formulas),
and above all, the notions of truth and inference. Clarity
about what is being expressed and about the consequences of,
or possible inferences from a set of facts is perhaps the
most important quality of this formalism. Logic is precise,
flexible and modular. Its major disadvantage stems from the
separation of representation and processing.

We point to a few logic-bases systems. The QA3-program by
Green [8] was one of the earliest general-purpose
questioning-answering systems that solved simple problems.
The STRIPS-program (Stanford Research Institute Problem Sol-
ver) [9] was designed to solve planing problems faced by a
robot in rearranging objects and navigationg in a cluttered
environment. The representation scheme chosen for STRIPS was
the first-order prodicate calculus. The FOL-system [10] is,
among other things, a flexible proof checker for proving sta-
tements in first-order logic. Deduction is done with the na-
tural deduction system of Prawitz [11].

Mechanical theorem proving goes back to the 1960's where
Gilmore and Prawitz [12], shortly followed by Davis and
Putnam [13], made the first attempts to implement Herbrand's
procedure on digital computers. This AI branch has meanwhile
considerably progressed and several useful computer systems,
to a large extent based on Robinson's principle exist. We me-
ntion TPU by Chang and Lee [14], LMA/ITP by Wos, Overbeek,
Lusk [15] and the BM-theorem prover by Boyer and Moore [16].

P.
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3. PRODUCTION SYSTEMS

In this section we consider the knowledge-representation
by "production systems". This method was developed in 1972
by Newell and Simon [17] for models of human cognition.

The term "production system" is used to describe several
different knowledge schemes, based on condition-action pairs,
called "production-rules" (or P-rules). A production system
consists of three parts: (a) a "rulebase" composed of a set
of production rules, (b) a special, buffer-like "database"
and (c¢) an "interpreter" which controls the system's activi-
ty. A production rule is a statement in the form: "IF this
{condition) holds, THEN this {action} is appropriate”.

A typical rule might be:

IF the patient has fewer, AND
the patient has a running nose,
THEN conclude that the patient has a cold.

During the execution of the production system, a P-rule,
whose condition=-part is satisfied, can fire; that is, it can
have its action-part executed by the interpreter. Typical AI
Systems nowadays contain hundreds of P-rules in their
rulebase. The database is the focus of attention of the
P-rules. The left-hand side of each P-rule in the rulebase
represents a condition that must be present in the database
before the P-rule can fire. The actions of the P-rules can
change the database, so that other rules will have their con-
dition part satisfied. The database may be a simple list, a
very large array, or more typically, a medium-sized buffer
with some internal structure of its own. The interpreter is a
programm which has the special task of deciding which produc-
tion to fire next.

Consider a production system that might be used to iden-
tify some items. The database (Db) consists of a list of sym-
bols, and the rulebase and evaluation hints by the interpre-
ter are as follows:

Rulebase: '
Pl : 1IF {a> THEN <{b?
P2 H IF {c> THEN {d»
P3 : IF {e OR Db?» THEN <{g>
P4 : IF ¢h AND i AND NOT(g)¥ THEN <3j?»
P5 : 1IF ¢g AND hY THEN <k?
P6 : IF <h AND b® THEN (1%

The condition-part of each of the P-rules corresponds to
a question: Is the item €ad TRUE, meaning is it in the data-
base, and similarly is the item <{c?» satisfied?, and so on.
The action-parts of the P-rules represent additions to our
knowledge about the unknow item.

27
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Interpreter:

Step 1

Find all P-rules whose condition parts are TRUE and
make them applicable.

If more than one P-rule is applicable, then deacti-
vate any P-rule whose action adds a duplicate sym-
bol to the database.

Step 2

Step 3

"

Execute the action of the lowest numbered (or only)
applicable P-rule. If no P-rules are applicable,
then quit.

Reset the applicability of all P-rules and return
to Step 1.

Step 4

Production systems operate in cycles. In each cycle, the
P-rules are examined in a manner specified by the interpre-
ter to see which are appropriate and could fire. Then, if
more than one is found appropriate, a single P-rule is selec-
ted from among them. Finally, the P-rule is fired. These th-
ree phases of each cycle are called "matching", "conflict
resolution" and "action".

Suppose the database originally consists of the list:
Db = {a, h}.
The first cycle starts with Step 1 of the interpreter algo-
rithm: Since only Pl is applicable, Step 2 is not necessary,
and Step 3 causes the action part of Pl to be executed. This
adds the symbol {b» to the Db-list, representing a new fact
about the unknown item:

Db = [b, a, h.}.

Step 4 ends the first cycle and brings us back to Step 1 -
finding all the applicable P-rules.

In the second cycle the (Pl, P3, P6)-rules are
applicable. So, in Step 2 we must check if any of these
three adds a duplicate symbol to the database. Pl adds (b},
which is a dublicate, so it is eliminated. Then in Step 3 we
select P3 to be executed (because it has a lower number than
P6), resulting in:

Db={g, b, a, hll-

In the third cycle we find that the (P1, P3, PS5,
P6)-rules are applicable. Checking, in Step 2, for redundant
entries, we eliminate the (Pl, P3)-rules from consideration.
In Step 3, we decide to execute P5, once again because it
comes before P6. This results in the database:

pb ={x, g, b, a, n}.

In the next two cycles of execution, our sample produc-
tion system will finish. In cycle 4, the symbol (1% is added
to the database, and in the last cycle, finding no non-
redundant P-rules to fire, the interpreter finally quits,
leaving the database-list:

Db={l, k, g, b, a, h}.
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The indicated items and in particular the last one can in
this way be deduced from the initial Db-list and the
P-rules (see Fig. 3.1).

The research on deductive inference has recognized two
fundamentally different ways that people reason. Sometimes
we work in a data driven, event driven or bottom—-up direc-
tion, starting from the available information as it comes in
and trying to draw conclusions that are appropriate to our
goals. This is how our sample production system worked, for
example. In production-system research this is called
forward chaining method of inference (Fig. 3.l). We sometimes
work the otherway, however, starting from a goal or expecta-
tion of what is to happen and working backwards, looking for
evidence that supports or contradicts our hunch. This is cal-
led goaldriven, expectation-driven or top-down thinking, and
in production systems it is referred as backward chaining me-
thode of inference (Fig. 3.1). It requires looking at the ac-
tion parts of rules to find ones that would conclude the cur-
rent goal, then looking at the left-hand sides of those rules
to find out what conditions would make them fire, then fin-
ding other-rules whose action parts conclude these conditions
and so on.

One obvious quality of production systems is modularity
which means that the individual P-rules in the rulebase
can be added, deleted or changed independently. They be-
have much like independent pieces of knowledge, and communi-
cate only by means of the data in the database. A uniform
structure is imposed on the knowledge in the rulebase and all
information is encoded with the rigid structure of produc-
tion rules. The structure of the left and right-hand side of
the P-rules has been progressively extended. The left-hand
side can now evaluate an arbitrarily complex condition, and
the form of the right-hand side also includes variables.

Production systems have been used to represent real world
tasks, like speech understanding, medical diagnosis, or mine-
ral exploration and in psychology, they were used for model-
ling human behaviors. The following utility criteria were
proposed:

l. Domains in which the knowledge is diffuse, consisting of
many facts (medicine), as opposed to domains in which
there is a concise, unified theory (physics).

2. Domains in which processes can be represented as a set of
independent actions, as opposed to domains with dependent
subprocesses.

3. Domains in which knowledge can be easily separated from
the manner in which it is to be used, as opposed to ca-
ses in which representation and control are merged.

The above-presented knowledge-representation scheme has
been used, most typically, in the MYCIN-System [18] which
acts as a medical consultant for the diagnoses and therapy
of bacteremia and meningitis infections. It also includes a
knowledge acquisition subsystem, THEIRESIAS [19], which helps

29
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expert physicians expand or modify the rulebase. MYCIN's ru-
lebase contains several hundred production rules representing
human-expert level about the domain. The system is distin-
guished by its use of a backward chaining control structure
and inexact reasoning involving confidence factors that are
attached to the conclusion part of each rule to help determi-
ne the relative strength of alternative diagnoses. There
exist a number of similar expert-systems such as PUFF [22],
EXPERT [20], AaM [21] ..... and many others which might differ
in their construction details but which use the same under-
lying knowledge-representation scheme.
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4, Semantic Networks

In this section we consider the knowledge representation
by "Semantic Networks". This method was developed in 1968 by
Quilian [23] for psychological modelling and by Raphael [24]
for the question-answering system SIR.

The term "semantic networks" stands for a class of repre-
sentation formalisms that share a common notation consisting
of nodes and arcs; it is a scheme for representing abstract
relations among objects (in a knowledge base), such as mem-
bership in a class: Robin ISA Bird, Sparrow ISA Bird, Bird
ISA Animal. Such relationships may be represented graphically
by a network of nodes and arcs where the nodes represent ob-
jects (e.g. Sparrow, Bird, Animal) and the links represent
the relations (e.g. ISA) among the objects. Semantic networks
were originally designed as a way to represent the meanings
of words. Suppose we wish to represent a simple fact like:
"All Robins are Birds", in a semantic network.

HAS-PART

2 e e [ -

We might do this by creating two nodes to designate:
"Robins" and "Birds" with an arc connecting them. If "Clyde"
were a particular individual who we wished to assert is a
robin, we could add a node for "Clyde". Please ignore the
WINGS-part for the moment. In this example we have represen-
ted not only the two initial facts, but we also deduced a
third fact, namely, that "Clyde" is a "Bird", simply by fol-
lowing the ISA-links. The ease with which it is possible to
make deductions about inheritance hierarchies, is one reason
for the popularity of the semantic networks as a knowledge
representation.

One often needs to represent knowledge about properties
of objects. For example one might wish to express the fact
"Birds have wings", which is expressed by the WINGS-part on
the right-hand side in the above chart. Our representation
makes it easy to deduce that "Robin" and "Clyde" also have
wings. All that is necessary is to trace up the ISA-
hierarchy, assuming any facts asserted about higher nodes
on the hierarchy can be similarly considered valid for the
lower ones. Note that each property stores a one-way arc. To
store bidirectional links, it is necessary to store each half
separately, possibly with a different label. Semantic nets
are usually represented using some kind of attribute-value
memory structure. So, for example, in LISP, each node would
be an atom, the arcs would be properties, and the nodes at
the other ends of the links would be the values:

ATOM PROPERTY LIST
CLYDE ((ISA ROBIN))
ROBIN ((ISA BIRD))

BIRD ( (HAS-PART WINGS))

31
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From the discussion sofar, it is clear that semantic nets
can be used to represent relationships that would appear as
two-place predicates in predicate logic. Many one-place pre-
dicates can be thought of as two-place predicates using some
very general purpose predicates such as ISA. Three or more
place predicates can also be converted to a binary form by
creating one new object representing the entire predicate
statement and then introducing binary predicates to describe
the relationship to this new object of each of the original
arguments. The sentence: "John gave the book to Mary" is in
predicate logic expressed by: gave (John, Mary, book).

The analogous semantic net is shown in the following graph:

=2
[ }

:ISA
ISA AGENT OBJECT
Person |«-- |John | +---- |give 1 |-=--- - | book l|
ACTIQ 1 :
T | BENEFICIARY | ISA
ISA L
| TIME [==-- |2 o'clock|[Mary] book

In the above example is the newly introduced
object. It is considered as a particular member, or instance

of the class |[give] since it is correlated to John, Mary,.. .
Similarly [book_l] is an instance of the general class [book].
Obviously, the above example now admits additional informa-
tion such as for instance on time[2 o'clock], and other parti-
cularities.

The reasoning mechanism used by many semantic network
systems is based on the "matching network structures". A net-
work fragment is constructed, representing a sought-for ob-
ject or a query, and then matched against the network databa-
se to see if such an object exists. Variable-nodes in the
fragment are bound in the matching process to the variables
they must have to make the match perfect. For example, suppo-
se we use the above sketched semantic network for the sen-
tence: "John gives Mary the book" and we wish to answer the
question: "What did John?". We might construct the fragment:

ISA
—-— Iactionl
b 1sa

AGENT |,
John |@-—-—--- | give ?l
which represents an instance of an action in which John is
the agent. This fragment is then matched against the network
Ithni

database looking for all nodes where is the AGENT. In
our case the only node is and the answer would be:
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"John gives". Had no match been found, the answer would have
been: "John didn't do anything".

Semantic networks are a very popular knowledge representa-
tion scheme. The node-and-arc structure captures something
essential about symbols and pointers in symbolic computation
and about association in the psychology of memory. Most cur-
rent work involves elaboration of the semantic net idea, in
particular, work on aggregate network structures called
"frames".

One of the major problems is how to handle gquantification.
One way of solving the problem is to partition the semantic
network into a hierarchy of spaces, each of which corresponds
to the scope of one or more variables.

Besides computational problems that arise when network da-
tabases become large enough to represent non-trivial amounts
of knowledge, there are many, more subtle problems involving
the semantics of the network structures.

The node-and-link formalism of semantic netwoks has found
use in a number of AI systems in different application do-
mains. We point to the early spreading activation model by
Quilian [23] and to Raphael's [24] questioning-aswering sy-
stem SIR. - :

A good example of a network deduction system, constructed
around the matching paradigm, is SNIFFER [25]. It has the ge-
neral power of a theorem prover for making deductions from
the network database and is capable of taking advantage of
heuristic knowledge embedded in procedures providing advice
about which network elements should be matched first and
about how to match the selected elements.

Semantic networks were also used in expert-systems.
PROSPECTOR [26], for example, is a computer-based consulta-
tion system to assist geologists working in mineral explora-
tion. It's mainfunction to match data from a particular si-
tuation against models that are descriptions of the most im-—
portant types of arc-deposits. The data are primarly surface
geological observations - uncertain and incomplete - so that
the conclusion is expressed as a probability or a degree of
match.

33
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5. MYCIN

The MYCIN [27] system (see Fig. 5.1) addresses the
problem of diagnosing and treating infectous blood diseases
such as bacteremia and meningitis. Its knowledge comprises of
approximately 450 rules relating possible "premises" to asso-
ciated "actions". In its problem-solving, MYCIN tests a ru-
le's conditions against available data or requests data from
the physician. If appropiate, it tries to infer the truth or
falsity of a condition from other rules.

5.1 MYCIN System

The knowledge in MYCIN is encoded in "production-rules"”
with an example given in Fig. 5.2. The rules are stored in-
ternally in LISP-form from which the English version is
generated. Each rule is a single "chunk" of domain-specific
information indicating an "action" that is justified if the
conditions, specified in its "premises", are fulfilled. Since
the rule employs a vocabulary of concepts common to the do-
main, its form itself involves a comprehensible part of do-
main knowledge. Each rule is highly stylized, with an
IF...THEN format and a specific set of admissible
"primitives". In fact, the internal form is executable LISP
code. This highly structured form makes it possible for a
program to be designed to examine the rules as well as to
execute them. For example, the rules can be translated into
readable English format, as shown above. The translation ca-
pability has been used in MYCIN to explain the program's in-
ferences to the expert.

The "premise" of each rule is a Boolean combination of one
or more "clauses", each of which is constucted from a
"predicate function" with an "associated triplet": <¢object,
attribute, value) as its arguments. Thus, each
"premise-clause" typically has the following four components:
{predicate function?» {object? {attributed {value). For examp-
le, the second clause in the above Rule-050: {{the site of
the culture is one of the sterile sites}), reads

(MEMBF CNTXT SITE STERILESITES)

{Predicate¥ {Object? <Attributed <(Value?

MEMBF is a predicate, and the triple says that the site of
the current €object?y (an organism, implicitly referred to by
CNTXT) is a member of the class of sterile sites. In general,
the content of an "associate triplet" can be translated into
English as follows:

THE {attribute? OF (object) IS {value?
A standardized set of

{predicate functions?»: MEMBF, SAME, KNOWN, BELONGING-TO,
IS, (NON-)SUSPECTED, DEFINITE,..
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{objects? ORGANISM, CULTURE, MEDICAMENT,

PATIENT, INFECTION, ...
{attributes? : SITE, PORTAL, LOCUS, GRAM, IDEN-

TITY, SENSITIVS, CONTAMINENTS,...
{associated values? : E.COLI, KLEBSIELLA, PENICILLIN,

BLOOD, ...

form the vocabulary of the "conceptual primitives" for con-
structing rules.

The €objectsd (called "contexts" in MYCIN) in the associa-
ted triplets are variables corresponding to domain entities.
These entities are instantiated and organized by the program-
into a simple hierarchy called the "context-tree". For examp-
le, in the MYCIN domain the ¢objects? might be PATIENT-1,
CULTURE-1, ORGANISM-1, and ORGANISM-2, and the "context-tree"
would indicate that ORGANISMs belong to CULTUREs and CULTUREs
belong to PATIENTs. The "context-tree" provides some of the
inheritance mechanisms of a frame representation. For examp-
le, since cultures also have sites, the system can discover
the site of ORGANISM-2 by knowning the ORGANISM-2 came from
CULTURE-1 and looking up the site of CULTURE-1l. The
{attribute? (called "clinical parameter" in MYCIN) represents
the characteristic of an ¢object? in the "context-tree": the
name of a patient, the site of a culture,... . The
{attributes?® known to MYCIN are therefore categorized in ac-
cordance with the particular <¢object?» to which they apply.
Each of the 65 {attributes?» currently known to MYCIN has an
associated set of properties that is used during its conside-
ration for a given {objectd. The {value} of every (€attribute?
in the associated triplet is stored by MYCIN along with an
associated certainty-factor that reflects the system's
"belief" that the value is correct.

A "rule-premise" is always a conjunction of "clauses", but
it may contain arbitrarily complex conjunctions or disjunc-
tions nested within each clause. Instead of writing rules
whose "premise" would be a disjunction of clauses, a separate
rule is written for each clause. The action-part indicates
one or more conclusions that can be drawn if the premises are
satisfied, making the rules purely inferential.

To summarize, there are two major forms of knowledge rep-
resentation: (i) the {objects, attributes, values? which form
a vocabulary of domain specific conceptual primitives, and
(ii) the inference rules expressed in terms of these
primitives.

Note that the rules are judgmental, that is, they make
inexact inferences. To accomodate uncertainty, MYCIN associa-
tes a "certainty-factor (CF)" with every {object, attribute,
valued triple. This number, a normalized probability, ranges
from -1 (when the triple represents a false assertion) th-
rough O (no opinion) to +1 (unquestionably true). Medical
facts about the patient are thus represented as 4-tuples
made-up of the "associative triple" and its current CF. Posi-
tive CF's indicate that the evidence confirms the hypothesis;
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negative CFs indicate disconfirming evidence. The following
are examples of such 4-tuples:

{object? {attribute? {value? CF
(ORGANISM-2 IDENT KLEBSIELLA +0.2)
(ORGANISM-2 IDENT E. COLI +0.7)
(ORGANISM-1 SENSITIVS PENICILLIN -1.0)
(PATIENT-1 IMMUNOSUPRESSED YES +1.0)

The {predicates?, according to their particular nature and
definition, evaluate, for some certainty interval such as 0.2
to 1.0, to the CF of their argument-triple, or they can take
the values TRUE or NIL in specific situations; they even can
be fuzzy-set functions that indicate a degree of truth. The
logical connective AND returns the minimum, and analogously
the connective OR returns the maximum value of the CFs of its
arguments. As a condition of applying a rule, a "premise" is
considered to be TRUE if its certainty is greater than some
threshold, typically +0.2, and FALSE if its certainty is less
than another threshold, typically -0.2.

The second use of CF's is in the statement of the
"production-rules" themselves. For example in the above
Rule-050, the asserted conclusion is weighted with a mild de-
gree of confidence: 0.7. This CF is thus a measure of the as-
sociation between the "premise-clauses" and the
"action-clauses" of each rule. The term "TALLY" in the LISP-
form of the "rule-action" indicates MYCIN's believe in the
"rule-premise"”.

A "fired" rule updates the CFs of the specified
"action(s)", or, as an alternative, it evaluates a set of at-
tached procedures. In doing this, the system combines: (i)
the CF of the "rule-premise", (ii) the present CF of the
"rule-action", and (iii) the CF associated with the rule. The
CF of a new fact, derived from a rule, is given by:

CF =CR x min[... CFi ...]

The CR is the certainty-factor attached to the rule and the
CFi is the certainty-factor of the i-th "premise-clause".
Thus if the premise was only weakly believed (low, positive
CF), any conclusions that the rule might make would be modi-
fied (reduced) to reflect this weak believe. If two different
rules lead to the same conclusion with the certainty-factors
CR1 and CR2, they enforce each other:

CF(conclusion) = CR1 + CR2 *(1- CR1l)
These simple rules are in fact based on a slightly more comp-

licated model of inexact reasoning [28] which, to a substa-
ntial part, can be traced back to probability theory with the
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assumption of statistical independence [29]. The alternative
action of evaluating the attached procedures, is an escape
mechanism that allows the execution of arbitrary LISP-code.

MYCIN's model of inexact reasoning permits the coexistence
of several plausible values for a single {attribute? if this
is suggested by the evidence. For example, after attempting
to deduce (IDENT) of an organism, MYCIN may have concluded
correctly that there is evidence of both E. COLI and KLEB-
SIELLA.

The mechanism to draw conclusions from the rules in the
knowledgebase and the current data, is called "inference
engine". In MYCIN, rules are invoked in a goal-directed
backward-chaining fashion that results in an exhaustive
"depth-first search" of an AND/OR goal tree with the sougth
topic at its top. Backward-chaining can go several levels
deep; for a "rule-action" to be true, the "premise-clauses"
must be true. However, each of them might itself be the
"action-part" of another rule, and so on.

For example, assume that the program is attempting to de-
termine the identity of a particular infection organism. It
thus retrieves all the rules that make a conclusion about
that topic and invokes each one in turn. The above Rule-050
for instance mentions in its "action-part": IDENT (organism)
= bacteria. In order to certify the validity of the rule,
each of its "premise-clauses" must be evaluated to see whe-
ther the rule's conditions can be satisfied. This process be-
gins with the first "premise-clause", where: INFECT = primary
bacteremia. Since the type of the infection is not given by
the data and it therefore is not known, the system sets up a
new subgoal and the process recurs. The system now looks for
rules that conclude about this new topic: the type of the
infection?, leading possibly to several answers with differnt
degrees of certainty. Among these answers one might find the
first "premise-clause" being certified.

We give another example in Fig. 5.3. Note, the subgoal
that is set up is a generalized form of the original goal. It
is always of the form: Determine the value of the (attri-
bute?, rather than: Determine whether the ¢attribute) =
{valued. ’

Thus, for the first "premise-clause" in Rule 050, the subgoal
is: Determine the type of infection. By setting up the gene-
ralized goal of collecting all evidence about an €attribute?,
the perfomance program effectively exhausts each subject as
it is encountered and thus tends to group together all ques-
tions about a given topic. This feature results in a system
that displays a much more focused, methodical approach to the
task, which is a distinct advantage when human-engineering
considerations are important. Obviously, this leads to the
deduction and collection of information that is not strictly
necessary. However, since such unnecessary efforts occur ra-
rely - only when the {attribute® can be deduced with certai-
nty to be the {(value> named in the original goal - is has not
proven to be a problem in practice.
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The search is thus "depth-first" because each
"premise-clause" is thoroughly explored in turn. The resul-
ting search is an AND/OR goal tree because the
"premise-clauses" also may have OR connections. The search is
exhaustive because all applicable rules are "fired" and their
conclusions are rank-ordered by the certainty-factor. Since
the rules are inexact they lead to conclusions of less than
total certainty. Thus even if one rule succeeds, the system
continues to collect further evidence about the subgoal from
other applicable rules; MYCIN considers all possibilities.

We give a toy example. Suppose MYCIN's goal is to find the
value of A, and some of its rules are

Rl : IF (F=f ? THEN {C=cl, 0.5
R2 : IF <G=g AND H=h ¥ THEN <C=cl, 0.6?
R3 : IF <{H=h AND I=i ¥ THEN (C=c2, 0.7?%
R4 : IF {B=b AND C=cl) THEN <{A=a, 0.8%

.. and other rules making conclusions about A ..

Suppose MYCIN also knows that the values of B, F, G, H, I, E
are laboratory data, determined by asking the user for their
values. The AND/OR tree corresponding to these rules is shown
in Fig. 5.4. MYCIN searches this graph depth-first from left
to right, determining the values of B, F, G, H, I, C and A in
turn. Note that when a rule such as R4 is involved, the sub-
goals MYCIN creates are not to prove that B=b and C=c, but
rather to find the values of B and C. The system can then fo-
cus on a particular topic when interacting with the user, ra-
ther than jumping from topic to topic. In addition B and C
need not be reevaluated if another rule is ever encounted
that requests information about them.

If, after trying all relevant rules to resolve a subgoal,
the total weight of the evidence about a hypothesis falls
between -0.2 and +0.2 (an empirically determined threshold
value), the answer is regarded as still unknown. This result
would occur: if no rules were applicable because their premi-
ses did not match the available data, if the applicable rules
were too weak, 1if the effects of several rules offset each
other, or if there were no rules for this subgoal at all. In
any of these cases, when the system is unable to deduce the
answer, it asks the user for the value of the subgoal.

This strategy, of always attempting to deduce the
{value(s)? of a subgoal and asking the user only when deduc-
tion fails, ensures a minimum of questions. This, however,
can lead to an extended search for a subgoal with a less than
definite answer, although the answer is known with certainty.
Some of the {attributes? have therefore been labeled
"laboratory data" to indicate that they represent definite
information from quantitative tests. In these cases the sy-
stem attempts to deduce the answer only if the user cannot
supply it. ‘

Two other additions increase the inference engine's



Vol. 59, 1986 Knowledge engineering with expert systems

efficiency. First, before the entire list of rules of a sub-
goal is retrieved, the program looks for a sequence of rules
that would establish its "action-part" with certainty, based
on what is currently known. Since this is a search for a se-
quence of (mainly definitional) rules with CF=1, the result
is termed a "unity path". In addition to efficiency, this
process offers the advantage of allowing the program to make
commonsense deductions with a minimum of effort. Second, the
inference engine performs a partial evaluation of the
"rule-premises". The value of one or several "premise-clause"
may already have been established while the rest is still
unknown. If this clause alone would make the premise false,
there is clearly no reason to do all the search necessary to
establish the others. Each "premise" is thus previewed by
evaluating it on the basis of the currently available infor-
mation which gives immediate insight whether the rule is gua-
ranteed to fail.

The "meta-rules" are implementations which allow the sy-
stem to guide its search process. They are strategic rules
that prevent an exhaustive enumeration by indicating the
best approach to determine a subgoal.

One of the meta-rule concerns, for instance, the general
aim to provide a therapy for a patient; it reads:

IF {a therapy is wanted?
THEN dconsider, in the given order, the rules for:
1) acquiring clinical information about the patient,
2) finding which organisms are the infection-cause,
3) identifying the most probable organisms,
4) finding all the potentially useful medicaments,
5) choosing a small number of most adepted rules ?

The meta-rule 001 of the MYCIN system, as another example,
has the form:

IF {the culture was not obtained from a sterile source) AND
{there are rules which mention in their premise a
previous organism which may be the same as the
current organism?

THEN {it is definite (1.0) that each of them is not
going to be useful?

with its content encoded in LISP-form:

(AND (NOTSAME CNTXT SITE STERILESOURCE)
(THEREARE OBJRULES )
(MENTION CNTXT PREMISE SAMEBURG) SET1))
(CONCLIST SET1 UTILITY NO TALLY +1.0)

It is important to note the character of the information con-
veyed by the meta-rules. First, note that in all cases we ha-
ve a rule that is making a conclusion about other rules. That
is, where "production-rules" conclude about the medical do-
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main, meta-rules conclude about the "production-rules". They
can make deductions about the likely utility of "production-
rules”, or they can indicate a partial ordering between two
subsets of "production-rules". Note also that meta-rules make
conclusions about the utility of "production-rules", not
about their validity. This is important because it has an im-
pact on the question of distribution of knowledge.

Adding meta-rules to the system requires only a minor ad-
dition to MYCIN's control structure. As before, the system
retrieves the entire list of rules to the current goal. But
before attempting to invoke them, it first determines if the-
re are any meta-rules relevant to the goal. If so, these are
invoked first. As a result of their actions, we may obtain a
number of conclusions about the likely utility and relative
ordering of the rules-list. The conclusions are used to
reorder or shorten the rules—-list, and the revised list of
rules is then used. Viewed in tree-search terms, the current
implementations of meta-rules can either prune the search
space or reorder the branches of the tree.

MYCIN's explanation program allows a user to examine both
the reasons for the conclusions reached in a particular ses-
sion and the information in the static data. This can be
done either through the use of simple "WHY" and "HOW" com-
mands when the system requests the {value) of an {attribute?}
or through the keyword parser that can interprete simple re-
quests given in English.

The representation of knowledge as "production-rules" and
the ability to explain specific rules allow MYCIN to interact
with an expert clinic in a manner that permits the system to
acquire new knowledge. The THEIRESIAS system [30] is a high-
level knowledge base editor that works in conjunction with
MYCIN and assists in entering and updating the (large) MYCIN
knowledge base, finding errors in the database, modifying
faulty rules, or adding new rules. It checks the rules for
syntactic validity, sees that they do not contradict or sub-
sume existing rules and inspects faulty reasoning
chains. The THEIRESIAS' rule acquisition process is based on
a record of MYCIN's search. Rule acquisition is guided by a
set of rule models that dictate the form and indicate the 1li-
kely content of new rules. Rule models are not given in ad-
vance, but are inferred from the knowledge base of existing
rules.

5.2 EMYCIN

The EMYCIN system [31] is basically a domain-independent
or an appropriate skeletal version of MYCIN that can provide
consultative advice. The basic control strategy employed by
EMYCIN is backward-chaining, its initial goal being to deter-
mine the value of a top-level attribute. At any subsequent
time, EMYCIN is working on the goal of establishing the value
of the attribute of some object. To do this, it retrieves a
precomputed list of rules whose consequents are known to bear
on that goal, and it systematically attempts to apply the ru-
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les until it either establishes the value with complete cer-
tainty or exhausts the rule list. If no value can be deduced
- whether because there are no rules or because the rules we-
re unsuccessful - it resorts asking the user for the value.

The resulting consultation system takes as input a body of
measurements or other information pertinent to a case and
produces as output some form of recommendation or analysis
of the case. This framework seems well suited for many dia-
gnostic or analytic problems, notably some classes of fault
diagnosis, where several input measurements (symptoms, labo-
ratory tests) are available and the solution space of possi-
ble diagnoses can be enumerated. It is less suited for
"formation" problems, where the task is to piece together
existing structures according to specified constraints to ge-
nerate a solution.

EMYCIN is not designed to be a general-purpose representa-
tion language. It is thus wholly unsuited for some problems.
The limitations derived largely from the fact that EMYCIN has
chosen one basic, readily understood representation for the
knowledge in a domain: production rules that are applied by a
backward-chaining control structure and that operate on data
in the form of associative triples. The representation as
implemented in EMYCIN, is unsuitable for problems of con-
straint satisfaction, or those requiring iterative
techniques. Among other classes of problems that EMYCIN does
not attempt to handle are simulation tasks and tasks invol-
ving planning with stepwise refinement. One useful heuristic
in thinking about the suitability of EMYCIN for a problem is
that the consultation system should work with a "snapshot" of
information about a case. Good advice should not depend on
analyzing a continued stream of data over a time interval.

5.3 MYCIN Family

MYCIN is the result of a concentrated effort within the

Stanford Heuristic Programming Project to use
"production-rules" as a knowledge representation. Durlng its
development and particularly after its successful completion
several related projects were persued which are shown in
Fig. 5.5.

DENDRAL [32] was the forerunner of MYCIN in the sense that
many of the lessons learned in its construction were used in
the design and implementation of MYCIN. GUIDON [33] is a
program for teaching MYCIN's infectious-disease rules to -
students. Its teaching knowledge is stated in the form of 200
tutorial rules which include methods for guiding the dialogue
economically, presenting diagnostic rules, constructing a
student model, and responding to the student's initiative.
Rather than teaching a student rule clause by rote, it is ad-
vantageous to convey an approach strategy for bringing those
steps to mind. To make this implicit design knowledge expli-
cit the NEOMYCIN system [34] is being developed.

EMYCIN [31] has been used as the starting point for a set
of application oriented expert systems of similar structure.
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We mention: SACON [35] is a system for advising structural en-
gineers in the use of a large, finite element analysis
program for modelling various mechanical structures. ONCOCIN
[36] assists physicians with the managment of patients enrol-
led in experimental plans for treating cancer with chemothe-
rapy. PUFF [37] /CENTAUR [38] /WHEEZE [39] diagnose patients
with pulmonary (lung) function disease. CENTAUR is based on
hypothesis-directed reasoning, and WHEEZE provides for a uni-
form declarative representation of the domain knowledge. VM
[40] monitors the post-surgical progress of patients (after
cardiac surgery) requiring a device called "mechanical venti-
lator" which provides breathing assistance, with the type and
setting of the ventilator being adjusted to match the pa-
tients need. GRAVIDA [41] reasons about complications of pre-
gnancy, CLOT [42] about blood clotting disorder, and HEADMED
[43] gives diagnoses and treatment for psychiatric patients.
Other recent MYCIN-based systems are: DART [44], LITHO [45],
BLUEBOX [46], .... .
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6. HEARSAY

The HEARSAY-II speech understanding system [47] has been
one of the most influential AI-programs, not so much because
of its speech unterstanding ability, but in the way it is
constructed; there are several "knowledge sources (KS)" coo-
peratively solving a problem by posting hypotheses on a glo-
bal "blackboard". This modular architecture - the KSs don't
address each other directly - proved to allow for great fle-
xibility in combining different knowledge sources and inve-
stigating various control strategies in a system. In problem
domains characterized by a large search space, by the need to
combine different kinds of knowledge, and by ambiguous or
noisy data, HEARSAY's modular architecture has proved espe-
cially well suited.

6.1 HEARSAY-II System

The system architecture of HEARSAY-II is shown in Fig.6.1l.
We notice on the right-hand side the KSs (or "Knowledge
Sources") and on the left-hand side the "blackboad"; we fur-
ther point to the "blackboard monitor" and the "scheduler".
The encircled units are "programm modules" and those in fra-
mes indicate "databases". The solid lines (or arcs) indicate
the data-flow and the dashed lines the control-flow.

The "blackboard" is the systems global database. It is di-
vided into a number of levels corresponding to a hierarchical
breakdown of the speech analysis. The different levels are
indicated on the left-hand side of Fig.6.2. The "blackboard"
is thus subdivided into a set of information levels corre-
sponding to the intermediate representation levels of the de-
coding process (wave form of utterance, sound segments, syl-
lable classes, words, word sequences, phrases); they can be
thought of as the various levels in a "problem—-reduction
tree" at which sub-problems are located. The sequence of le-
vels on the "blackboard" forms a loose hierarchical structu-
re: hypotheses at each level aggregate or abstract elements
at the adjacent lower level. The possible hypotheses at a le-
vel form a search space for KSs operating at that level. A
partial interpretation at one level can constraint the
search at another level. The hypotheses on the "blackboard"
are arranged along two dimensions: level and time. The time
dimension takes account of the time periods of the utterance
being analyzed. The goal of the system is to create a single
hypothesis that represents a solution to the problem: an ac-—
ceptable interpretation of an entire utterance.

The "knowledge sources (KSs)" are pattern-invoked
programs, meaning they encode domain-dependent knowledge in
the form of operators, such as for instance
"production-rules". They have the role of generating, combi-
ning and evaluating hypothetical interpretations and are the-
refore diverse and independent. The necessity for diverse KSs
derives from the diversity of tranformations needed to arri-
ve at an interpretation of an acoustic signal. Each KS can be
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schematized as a conditions-action pair. The "condition com-
ponent (or program)" prescribes the situations in which the
KS may contribute to the problem—-solving activity, and the
"action-component" specifies what that contribution is and
how to integrate it into the current situation. Each KS looks
at the hypotheses posted on one level, called its "structure
frame", and in turn posts its hypotheses on another {(possibly
the same), or on several levels, called the "response frame".
The KSs have been developed to perform a variety of
functions. These include extracting acoustic parameters,
classifying acoustic segments into phonetic classes, recogni-
zing words, parsing phrases, and so on. For example, the KS
(PREDICT) works completely within the phrase level on the
"blackboard"”, predicting the word that might extend a phrase.
In contrast the KS (VERIFY) looks for acoustic evidence in
the signal for hypotheses at the word level. The KSs indica-
ted by the transition arcs between the levels in Fig. 6.2 are
those of the 1976 C2-configuration of the HEARSAY-II system
[47]. The processing at the lower-part of the "blackboard"
was accomplished by the KS for acoustic segmentation (SEG)
and word-spotting (POW, MOW, WORD-CTL). The KS (SEG) ab-
stracts a string of allophones from the acoustic signal. The-
se are assigned to syllable classes by the KS (POM), and the
syllable classes are used by the KS (MOW) to hypothesize
word. MNote that HEARSAY's lexicon is organized by syllable
classes; each section of the lexicon contains pronounciations
of all the words that make one syllable-class. The creation
or modification of a hypothesis at any level immediately in-
vokes the KS (RPOL) which rates the credibility of the hypo-
theses. The number of hypotheses that the KS (MOW) can make
is controlled by the KS (WORD-CTL). The WIZARD procedure [48]
scores the hypothesized words by comparing their acoustic
characteristics to the stored representations of word-
pronounciations. The processing at the upper-part of the
“blackboard" involves predicting, testing and concatenating
multiple-word sequences, one or more of which will eventually
account for all of the words spoken. The KSs (WORD-SEQ) and
(Word-SEQ-CTL) extend those words recognized by the lower-
part of the "blackboard" into a small number of islands of
one or more words, using a data structure that contains all
legal pairings of words. By hypothesizing extensions of the
newly hypothesized words, the islands can be extended recur-
sively. However, the syntax of the islands was generated from
legal pairs of words and therefore the longer islands may not
be syntactically correct. The KS (PARSE) checks the syntax.
When a number of multiple-word islands are developed, the KS
(VERIFY) tries to check each word against the segmented acou-
stic signal in the context of its island. The KSs (PREDICT)
and (CONCAT) are also used to extend hypothesized word
sequences. The KS (PREDICT) generates all the words that can
immediately precede or follow a word wequence, while the KS
(CONCAT) tries to join word sequences together to form lon-
ger ones. Finally, the KS (STOP) is used to terminate proces-
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sing of the speech signal, either because the best interpre-
tation of the sentence has been found or because too much
processing time has been used. The KS (SEMANT) generates ma-
chine instructions to carry out the spoken command. The sy-
stem contains approximately 40 KSs, which are from 5 to 100
pages of source code a piece. Thirty pages is a typical KS
size. Each KS has up to 50 Kbytes of its own local data
storage.

The "processing" in HEARSAY-II combines both top-down and
bottom-up. The first type, associated with means-ends analy-
sis and problem reduction strategies [49] attempts to reach a
goal by dividing it into a set of simpler subgoals and re-
duceing these recursively until only primitive or immediately
solvable subgoals remain. Examples of top-down processing
include the reduction of a general sentential concept into
alternative sentence forms, each sentence form into specific
alternative word sequences, specific words into alternative
phone sequences and so on, until a last interpretation is
identified. The second, or bottom-up, method attempts to syn-
thesize interpretations directly from characteristics of the
data provided. One type of bottom-up method would employ
procedures to classify acoustic segments within phonetic ca-
tegories by comparing their observed parameters with the
ideal parameter values of each phonetic category. Other
bottom-up procedures might generate syllable or word hypothe-
ses directly from sequences of phone hypotheses, or might
combine temporally adjacent word hypotheses into syntactic or
conceptual units. As a result, processing at the lower-part
of the "blackboard" is strictly bottom-up. The KSs (SEG, POM,
MOW) are activated in that order, and the processing done by
one is completed before another is activated. -

The "scheduler", a special KS endowed with knowledge about
how to conduct best the search in a particular domain, deter-
mines the KSs to be activated next. It adapts automatically
to changing conditions of uncertainty by changing the breadth
of search, using as a basic mechanism the interaction between
KS—-assigned credibility ratings on hypotheses, and scheduler-
assigned priorities of pending KS activations. Messages po-
sted on the "blackboard" are noted by the "blackboard
monitor", which creates entries on the scheduling queues for
any KS whose applicability condition might be satisfied. When
a KS is activated, it examines the current contents of the
"blackboard" and applies its knowledge either to create a new
hypothesis and write it on the "blackboard", or to modify an
existing one. Although the execution of the entire HEARSAY-II
system consists of the asynchronous execution of a collection
of KSs, the execution of an individual KS is a sequential
process. Once a KS is activated, it executes without being
interrupted until it is finished.

We comment on the design ideas of the HEARSAY-II system,
with its architecture being summarized by: (i) separate, ano-
nymous knowledge sources, (ii) self-activating, asynchronous,
parallel procesing, (iii) globally accessed, structured data-
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base, (iv) goal-directed problem reduction, and data-directed
knowledge invocation. The main features that distinguish the
HEARSAY-II architecture from that of systems such as MYCIN
are the use of arbitrary pattern-invoked programs as units of
knowledge rather than "production-rules" and the flexibility
of the "scheduler" as opposed to the strict goal-driven invo-
cation used in MYCIN. For a large, complex problem such as
speech understanding, these features offer several
advantages. Since the KSs can be arbitrarily complex - and
arbitrarily different in their internal operation - the most
appropiate problem solving approach can be implemented at
each level of processing. Each KS may itself be a small
knowledge-based problem-solver, and its internal processes
have only local effects, rather than causing potential inte-
ractions with the rest of the system. The multiple levels of
the database provide the necessary abstractions for searching
a large solution-space, and the levels are heterogeneous to
match the diversity of the interpretation knowledge. The op-
portunistic scheduling combines the least-commitment idea
with the ability to manage computational resources by varying
the breadth of search and by combining top-down to bottom-up
processing. These qualities alleviate the "combinatorial exp-
losion" that often occurs when search techniques are used on
very large problems. In fact, when portions of HEARSAY-II
were experimentally rewritten as a "production system", ‘the
system ran approximately 100 times slower.

6.2 HEARSAY-III

The techniques developed in HEARSAY-II have since been ge-
neralized into the HEARSY-III system [50] a domain indepen-
dent framework for building large knowledge based expert-
systems. Its overall design concept was based on a set of re-
quirements abstracted from HEARSAY-II. Deemed particularly
important were facilities to do the following:

. support codification of diverse, general sources of

knowledge

. support their application and flexible coordination,

. represent and manipulate competing solutions that are

constructed incrementally

. reason about partial solutions

. describe and apply domain-dependent consistency con-

straints to the competing partial solutions

. support long-term, large-system development and

experimentation.

HEARSAY-III is built on the AP3-language [51], implemented

in INTERLISP [52], which offers a data base structure similar
to the PLANNER-like languages [53]. Atomic facts are held in
a "declarative" data base which also may hold some deductive
rules. The inference engine does pattern matching for retrie-
val and rule application and controls the process of deduc-
tion and transformation of the data base. Facts in the data
base are ordinarily used representationally in much the same
way as the formulas of logic. The knowledge source triggers,
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the inference rules and constraints, and the context mecha-
nism, allowing for reasoning along independent patterns, are
thus expressed in AP3.

In HEARSAY-III, the time dimension of the "blackboard" has
been removed, since it is not appropiate to all domains, but
the level structure of the global database has been retained.
The "blackboard" is used as a repository for a domain model,
for the representation of partial solutions, and for the rep-
resentation of pending activities. One important way in which
HEARSAY-III has been expanded beyond HEARSAY-II is that it
provides for the use of two "blackboards". The "domain black-
board" contains the hypotheses and is intended for reasoning
within the task domain, while the "scheduling blackboard" is
used exclusively for schduling. Further subdivisons are
possible. The "blackboard" supports the construction of labe-
led graphs consisting of structured nodes called "units" and
labeled arcs called "roles". Since the "blackboard" in
HEARSAY-III is implemented on top of a relational database
system, any relationship to the specific problem being solved
can be constructed. The "scheduling blackboard" allows the
scheduling process to be broken down, just as the rest of the
system is, into a set of independent KSs, each containing its
own knowledge about factors that are important to consider in
deciding how the system should best expand its resources.

Much of the domain-specific knowledge for an application
built in HEARSAY-III is embodied in "knowledge sources (KS)".
Each KS can be thought of as a large-grained
"production-rule": it reacts to "blackborad" changes produced
by other KS executions and in turn produces new changes. To
define a KS, three program—-units must be provided: the
"trigger-pattern", a predicate composed of AND and OR opera-
tors, the "immediate code" of the KS which may associate in-
formation with the activation record, the "body" of the KS
which is run in the triggering context and with the pattern
variables instantiated. Each KS execution is indivisible: it
runs to completion and is not interrupted for the execution
of any other KS activation. This insulates the KS execution
and simplifies the coding of the "body"; there need be no
concern that during a KS execution anything on the
"blackboard" will be modified except as effected by the KS
itself.

6.3 HEARSAY Family

In contrast with MYCIN, HEARSAY-II addresses an intrinsi-
cally hard problem with characteristics that require particu-
lar architectural prescriptions. These characteristics inclu-
de unreliable data or knowledge, a large search space of pos-
sible solutions, inadequate methods for evaluating partial
solutions accurately, lack of a fixed sequence of actions
that address separate subproblems of the task, the need to
guess likely sub-solutions to further the analysis, absence
of a strong problem-solving model that could determine effec-
tively which line of reasoning to pursue, the need for inte-
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grating diverse bodies of knowledge in the same problem-
solving system, and the need for specialized knowledge repre-
sentations to improve the efficiency of the knowledge appli-
cation. Because the HEARSAY-II speech-understanding system
addresses all of these problems to some extent, its organiza-
tion as a collection of cooperating, independent specialists,
provides a framework for a wide variety of related problem-
solving tasks. In fact this kind of design has been adopted
for a variety of applications including: signal interpreta-
tion [54], cristallography [55], experiment planning [56],
task planning and scheduling [57], psychological modelling
[58], automatic programming [59], text comprehension [60],
and image understanding [61].

SU/X [54]: This is a system that was tested in an applica-
tion whose details are classified. Its task is the formation
and conceptual updating, over long periods of time, of hypo-
theses about the identity, location and velocity of objects
in a physical space. The desired output is a display of the
"current best hypotheses" with full explanations. There are
two types of input data: the primary signal (to be under-
stood) and auxiliary symbolic data (to supply context for the
understanding). The primary signals are spectra, represented
as descriptions of the spectral lines. The various spectra
cover the physical space with some spatial overlap. The rules
given by the expert about objects, their behaviour, and the
interpretation of signal data from them are all represented
in the IF...THEN form. The situation-hypothesis is represen-
ted as a node-link graph, tree like in that it has distinct
"levels", each representing a degree of abstraction. A node
represents a hypothesis, a link to that node represents sup-
port for that hypothesis as in HEARSAY-II, 'support from abo-
ve' or 'support from below'. Lower levels are concerned with
the specifics of the signal data, higher levels represent
symbolic objects.

CRYSALIS [55]: This system hypothesizes the structure of a
protein from a map of electron density that is derived from
X-ray crystallographic data. The map is 3-dimensional, and
the contour information is crude and highly ambiguous. The
interpretation is guided and supported by auxiliary informa-
tion, of which the amino acid sequence of the protein's back-
bone is the most important. Density map interpetation is a
protein chemist's art. The automation of this task would re-
quire a computational system that could generate its own
structural hypotheses, as well as display and verify them.
This capability requires: a) a representation of the electron
density function suitable for machine interpretations, b) a
substantial chemical and stereochemical knowledge base, c) a
wide assortment of model building algorithms and heuristics,
d) a collection of rules and associated procedures for using
this knowledge to make inferences from the experimental data,
and 4) a problem-solving strategy for applying these knowled-
ge sources effectively, so that the appropriate procedures
are executed at the times that they are most productive. A
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problem-solving paradigm that meets the above specifications,
to a large degree, is the "blackboard" architecture of
HEARSAY-II, specifically with respect to the issues of know-
ledge integration and focus of attention. A number of dif-
ferent knowledge sources (facts, algorithms, heuristics) coo-
perate when working on various descriptions of the
hypothesis. To use the knowledge sources effectively, a glo-
bal database - the "blackboard" - is constructed that co-
ntains the currently active hypothesis elements at all levels
of description.

PLANNING: Although the HEARSAY-II framework was developed
around an understanding framework, many of its principal fea-
tures were extended to develop a model of planning [57]. Whi-
le understanding tasks require "interpretive" or "analytic"
processes, planning belongs to a complementary set of
"generative" or "synthetic" activities. The principal featu-
res of the HEARSAY-II system which make it attractive as a
problem-solving model for speech understanding also suggest
it as a model of planning. The planning application shares
all the principal features of the HEARSAY-II system, but it
also differs in several important ways. In particular, the
designers found it convenient to distinguish five separate
blackboard "planes", reflecting five qualitatively different
sorts of decisions. The "Plan plane" corresponds most closely
to HEARSAY-II's single blackboard, holding the desicions that
combine to form a solution to the planning problem, i.e.,
what low-level operations can be aggregated to achieve the
high-level outcomes of the plan. These kinds of decisions in
generative tasks can be thought of as the dual of the succes-
sively higher level, more aggregrated hypotheses constituting
the blackboard for interpretation tasks. In the speech task,
corresponding hypotheses express how low-level segments and
phones can be aggregated to form the high-level phrases and
sentences intended by the speaker. The other four planes of
the planning blackboard hold intermediate decisions that ent-
er into the planning process in various ways. For example,
based on the HEARSAY-II experience with selective attention
strategies, resource allocation strategies were formalized
and associated explicitly with an "Executive plane".

OTHER APPLICATIONS: Several interesting applications that
transfer the approach to other interpetation problems have
been made. The HEARSAY-II framework was proposed as a model
for human reading behaviour [58]. In this application only
one blackboard plane is used, the levels closely approximate
those used in the speech-understanding system task, and many
additional KSs are introduced to represent how varying
amounts of linguistic and semantic knowledge affect the rea-
ding skills. HEARSAY-II was further used in a learning sy-
stem [62] that develops multilevel models of observed game
behaviours, and systems were developed that mirror the
HEARSAY-II speech understanding components in the image-
understanding task [61,63]. Its incremental problem-solving
multilevel structure was proposed as a basis for neuroscience
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models, and it is considered by distinguished researchers as
a source for theoretical psychology fulfilling their intui-
tions about the form of a general cognitive processing
structure. Finally, the HEARSAY-II structure was adapted to
the task of interpeting human-machine communication dialogue
[64]. several researcher have focused their efforts on gene-
ralizing, refining, or systematizing aspects of the HEARSAY-
II architecture for wider applications. A system was develo-
ped that assists a programmer in developing a new special-
purpose variant [60], and a more formalized, domain indepen-
dent version has been applied to an automatic-programming
task [59], and the planning of genetic experiments [56].
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7. PROSPECTOR

The PROSPECTOR mineral-exploration consultation system
[65] (see Fig. 7.1), designed for problems in regional re-
source evaluation, ore deposite identification, and drilling
site selection, attempts to represent, like other systems
such as MYCIN [27a] or INTERNIST [66], a significant portion
of the knowledge and the reasoning processes of experts wor-
king in a specialized domain The main function of PROSPECTOR
is to match data from a particular situation against models
that describe a moderately large number of disjoint classes
of situations. To develop a model requires both scientific
understanding of the physical and chemical processes of ore
deposition and geological judgment based on informed expe-
rience. In PROSPECTOR's domain, the models are formal desc-
riptions of the most important types of "ore deposits" which
were developed in collaboration with several experienced
geologists, and the data are primarily surface geological ob-
servations. The available data are assumed to be uncertain
and incomplete, so that the conclusion is expressed as a
probability or a degree of match. The program also alerts the
user to different possible interpretations of the data and
identifies additional observations that would be most valua-
ble for reaching a more definite conclusion. PROSPECTOR re-
cently made a prediction about the location of molybdenum ore
at an exploration site in the state of Washington. The pre-
diction was substantially confirmed by drilling with a fin-
ding worth 100 million dollars.

7.1 PROSPECTOR System

The knowledge base is divided into two main categories of
knowledge that can be developed independently - a general-
purpose knowledge base and a special-purpose knowledge base.
The general knowledge-base encodes as much as possible of the
background knowledge that is useful for several applications
and situations of the domain. It is organized around models
of different "ore deposits" including "Mississippi Valey lead
and zinc", "Komatiitic nichel sulfide", "Yenington prophyry",
and others (see Fig. 7.2). The special purpose knowledge-base
encodes statements that are relevant to some specific subset
of the domain and contain primarily the inference networks
(rules and other inference structures) in which these state-
ments participate. All elementary domain-specific notions
are in PROSPECTOR integrated in "taxonomical tree
structures"; the nodes, representing the simple concepts of
the domain, are connected by arcs which indicate the element
(e) and subset(s) relationship between these concepts. Becau-
se the knowledge of whether or not an item belongs to a given
set is essential in question answering and fact retrieval,
the taxonomy itself often provides a natural and concise exp-
ression of portions of the information about a task domain.
In Fig., 7.3 we show examples of taxonomies in PROSPECTOR's
knowledge base including rock
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types, minerals, physical forms, and geological ages. Each
node X in the hierarchical structure is said to be a restric-
tion of its parent nodes or of any node occuring on a chain
of outgoing "e" and "s" arcs from X. Many sibling subsets
described in taxonomies are disjoint. For a more precise net-
work encoding of taxonomies, the standard set-theory notions
of set membership and set inclusion, (expressed by "e" and
"s" arcs), are supplemented by the more restrictive concepts
of "disjoint subsets (ds)" and "distinct elements (de)". A
ds—arc from a node X to a node Z indicates that X is a subset
of Z and that X is disjoint from any other set Y with an out-
going ds—-arc to Z. Similarly, de-arcs indicate that each of
two or more nodes denotes a different element of a set.

This basic concept of a network as a collection of nodes
and arcs can be extended by partitioning groups of nodes and
arcs and allowing them to be bundled into units. These units
can then correspond to nodes in a "higher level" network
(such as the inference network described below). "Partitioned
semantic networks" [67] are used to encode statements in the
knowledge base. Each statement is represented by a
"structured object" (called "unit") where the semantic repre-
sentation of the statement is strored in terms of primitive
relations and entries in the various taxonomies of the
domain. Let us illustrate this with the example: "a rhyolite
plug is present", which is presented in Fig. 7.4 as a small
network that makes the following three assertions:

(al) there exists a physical entity E1,

(a2) the composition of El is "rhyolite"

(a3) the form of El is "plug"
In general, an assertion corresponds to a node inside the
space (delimited by the rectangle in Fig. 7.4) that constitu-
tes the semantic representation of the statement. Because
"rhyolite"” and "plug" can be referred to from other state-
ments of the knowledge base, they are not included in that
space, but appear instead as entries in the taxonomy of
"rocks" and the taxonomy of "forms", respectively. These
"external references" are most frequently entries in the ta-
xonomy, but may ,also be disjunctions or conjunctions of such
entries as well as other concepts that are included in the
semantic representation of any other statement in the know-
ledge base. In addition to physical entities, a variety of
other concepts such as places (locations) and geological
processes are described in the knowledge base. The attributes
associated with a concept appear in the semantic representa-
tion as relations of two or more arguments. COMP-OF(,) and
FORM-OF(, ) are two common attributes of physical entities;
others are: AGE-OF, GRAIN-SIZE-OF, LOC-OF, etc. . The first
argument of the relation refers always to the concept being
described; the other arguments are values of attributes asso-
ciated with that concept . Most frequently, these attributes
are external references but can also be other concepts inclu-
ded in the statement being described.

The data structures for representing the geological know-
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ledge embodied in PROSPECTOR is called "inference network"
and guides the plausible reasoning performed by the system.
The nodes in this network correspond to various assertions
such as: "there is pervasively biotized hornblende (zE)", or
"there is alteration favorable for the potassic zone of a
porphyry copper deposite (sH)". Most of the arcs in the infe-
rence network define "inference rules" that specify how the
probability of one assertion affects the probability of ano-
ther assertion. For example, from {E» follows (H», or the ab-
sence of {E¥ is very discouraging for {H». In a particular
run, any assertion may be known to be true, known to be fal-
se, or suspected to be true with some probability. An infe-
rence network is equivalent to a collection of "inference
rules". In general, any inference rule has the form

IF {EY THEN* {H)»
*(to degree LS, LH)

The rule is interpreted to mean: "The observed Evidence (E}»
suggests (to some degree) the Hypothesis (HY". A probability
of truth is associated with every observation and hypothesis,
and the inference rules specify how the probability that

the hypothesis (right-hand side) is true is changed by the
observation of evidence (left-hand side). The two parameters
LS, LH establish the strength of the rule and specify how the
probability of {HY is to be updated given that of (E). In ge-
neral, we need to be able to say both how encouraging it is
to find the Evidence {E» present, and how discouraging it is
to find it absent. The two parameters thus specify the suffi-
ciency (LS) and the neccessity (LH) measures, respectively,
and must be supplied by the domain expert for each rule in
the inference network. Different pieces of evidence can also
be combined logically to form a single, compound piece of
evidence. The simpler elements are combined by means of the
primitive operations of conjunction (AND), disjunction (OR),
and complementation (NOT). Rules can interconnect in various
ways: through "chains" where the hypothesis for one rule is
the evidence for another, through several pieces of evidence
bearing on the same hypothesis, and through the same piece of
evidence bearing on different hypotheses. Fig. 7.5 shows a
portion of the inference network encoding of a PROSPECTOR mo-
del for "porphyry copper deposits". PROSPECTOR's knowledge
base contains 15 models with over 1000 rules and 1500
"units". The taxonomies shared by all models contain over
1000 entries.

Although the assertions (meaning Evidences and Hypotheses)
are statements that should either be true or false in a given
situation, there is usually uncertainty as to whether they
are true or false. Initially, the state of each assertion is
simply unknown. As evidence is gathered, some assertions may
be definitely established, whereas others may become only mo-
re or less likely. In general, we associate a probability-
value with every assertion. The "connections" in the inferen-
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ce network determine how a change in the probability of one
assertion will affect those of other assertions. The princip-
le or top-level assertion in an inference network for a model
is the assertion that the available evidence matches that
particular model. To establish this assertion, it is usually
necessary to establish several major factors. For example, to
establish the top-level assertion in one of the models
(called Model-I1), we must establish the following
hypotheses:

1. The petrotectonic setting is favorable for Model-II,

2. The regional environment is favorable for Model-II

3. There is an intrusive system that is favorable for

Model-I1I.
If any of these assertions were a field-observable evidence,
it could be established merely by asking the user of the
program whether they were true. However, since all of these
factors are hypotheses, each must be further related to other
factors. For example, the favorability of the "petrotectonic
setting" can be established through the following three fac-
tors, each of which happens to be determinable (at least in
principle) from observational evidence:

1. The prospect lies in a continental margin mobile belt;

2. The age of the belt is post—-Paleozoic;

3. The prospect is subject to tectonic and magmatic

activity related to subduction.
In general, the ore deposit models in PROSPECTOR have this
type of hierarchical structure. The top-level assertion is
determined by several major second-level assertions, each of
which may be determined by third-level assertions, with this
refinement continuing until assertions are reached that can
be established directly from field evidence. This is shown in
Fig. 7.5 where the regional environment of Model-II is decri-
bed. In addition to this "top-to-bottom" development in terms
of successive levels of assertions, the models also often ex-
hibit a "left-to-right" organisation in terms of spatial sca-
le, from the petrotectonic setting on the left to the local
details of mineralization and texture on the right. Exactly
how these considerations interact is determined by the rela-
tions that exist. among the assertions.

Three basically different kinds of relations are used in
PROSPECTOR to specify how a change in the probability of one
assertion affects the probability of other assertions. We di-
stinguish these as "Logical Relations", "Plausible Relations"
and "Contextual Relations". With "Logical Relations", the
truth (or falsity) of a hypothesis is completely determined
by the truth (or falsity) of the assertions that define it.
Such relations are composed out of the primitive operations
of conjunction (AND), disjunction (OR), and negation (NOT).
In general we do not know whether the assertions are true,
but can, of course, estimate a probability or degree of be-
lief that they are true. With "Logical Relations", to compute
the probability of a hypothesis from the probability of its
component assertions, the fuzzy-set formulas of Zadeh [68]



Vol. 59, 1986 Knowledge engineering with expert systems

are used. Using these formulas, the probability of a hypothe-
sis that is defined as the logical conjunction (AND) of seve-
ral pieces of evidence equals the minimum of the probability
values corresponding to the evidence. Similarly, a hypothe-
sis, defined as the logical disjunction (OR) of its evidence
"units", is assigned a probability value equal to the maximum
of those values assigned to the evidence "units". With "Plau-
sible Relations", each assertion contributes "votes" for or
against the truth hypothesis. This would be expressed by re-
lating the assertions to the hypothesis through a set of
plausible inference rules. Each rule has an associated rule
strength that measures the degree to which a change in the
probability of the evidence-assertion changes the probability
of the hypothesis. This change can be positive or negative,
since an assertion can be favorable or unfavorable for a
hypothesis. As with all parts of the model, these rule
strengths are obtained by interviewing an authority on the
corresponding class of ore deposits. This information is
translated into numerical terms (as shown in Fig. 7.5), the
changes in probability being computed in accordance with the
rules of Bayesian probability theory. The Bayesian method as-
sumes that, before any information has been obtained from the
user, every statement S has some prior probability P(S). As
evidence is acquired during the consultation, a posterior
probability corresponds to the updated probability of S. If
E'denotes all the evidence accumulated to some point in the
consultation, then the posterior-probability P(S E') denotes
the current probability of S given the evidence E'. The
prior-probabilities are generally supplied by the domain ex-
pert at the time the model is constructed, but can also, in
some cases, be computed from the prior-probabilities assigned
to the related "units". The "Conceptual Relations" take into
account that assertions cannot be considered in an arbitrary
order, but must be considered in a particular sequence. For
example, the existence of a "continental margine belt" would
be specified as a context for asking about the age of the
"belt". Thus, before inquiring about the age, the system
would employ all its resources to establish the existence of
the belt, and would not ask about its age unless the probabi-
lity of the belt were greater than its initial value. Contex-
tual relations are also used when one assertion is geologi-
cally significant only, if another assertion has already been
established. In such instances it would not be useless to ask
the former question without first establishing the latter,
but it is the case that the former evidence is geologically
irrelevant without the latter to establish a match to the
model. Two such instances are depicted by the dashed arrows
in Fig.7.5.

PROSPECTOR is a mixed-initiative system that begins by al-
lowing the user to volunteer information about the geological
prospect. This volunteered information is currently limited
to simple statements in constrained English about the names,
ages, and forms of the rocks and the types of minerals
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present. These statements are parsed by LIFFER [69], a natu-
ral interface facility, and represented as "partitioned seman-
tic networks". A network matching program compares each of
these volunteered "units" against the "units" in the models,
noting any subset, superset, or equality relations that
occur. If a volunteered "unit" is exactly equal to a "unit"
in a model, the probability of the model-"unit" is updated
and that change is propagated by forward-chaining through the
inference network. If a volunteered "unit" is a subset of a
"unit" in a model and if it has a higher probability than the
model-"unit", once again the probability of the model-"unit"
is updated and that change is propagated through the inferen-
ce network. Unfortunately, if the volunteered "unit" matches
a superset of a model-"unit" no probability change can be ma-
de unless the user expresses doubts about the situation. For
example, if the user mentions "biotite", the probability of
the "unit" that asserts that there is "pervasively biotized
hornblende" is unchanged, unless the user has said that he
doubts that there is any "biotite". However, it is obvious
that the system may want to follow up this observation, and
the existence of the connection to the model is recorded.
When the user has finished the initial volunteering, PROSPEC-
TOR scores the various models on the basis of the number and
types of connections that have occured and selects the best
matching model for further investigation. From here on the
basic control strategy is MYCIN-like "backward-chaining". At
any given time there is a "current—-goal unit" whose existence
is to be determined. The initial goal "unit" is the one that
corresponds to the best matching model. The various "units"
in the models represent either evidence that can be sought
form the user (are "askable") or internal hypotheses that are
to be deduced from evidence (are "unaskable"). Naturally, the
initial goal "unit" is always unaskable. If the current goal
"unit" has any unestablished "context-units", they are pushed
on the goal stack and one of them becomes the current goal.
If the current goal is askable and has not been asked before,
the user is asked about it, the effects of the answer are
propagated througth the inference network, and the process is
repeated. If it is unaskable, it must be either the conse-
quence of one or more inference rules or a logical combina-
tion of one or more other "units". In the former case, the
rules are scored to determine their potential effectiveness
in influencing the Hypothesis ¢H?, and the Evidence (EY (or
antecedent) of the best-scoring rule becomes the next goal.
In the latter case, a predetermined supporting "unit" becomes
the next goal. In either case, the same procedure is repeated
until a) the top-level goal becomes so unlikely that another
top-level goal is selected, b) all of the askable "units" ha-
ve been asked, or c) the user interrupts with new volunteered
information.

7.2 KAS (Knowledge Acquisition System)
The KAS-system [70] is the PROSPECTOR consultation-program
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without its domain-specific knowledge. Related to PROSPECTOR
in basically the same way, as EMYCIN is to MYCIN, KAS allows
the PROSPECTOR inference and control mechanisms to be used on
new problems when the domain-specific knowledge can be repre-
sented in the KAS rule language. The KAS/PROSPECTOR inference
engine is distinguished from EMYCIN mainly by performing
"forward- and backward-chaining". This allows significant
changes in the choice of the "high-level goals" to occur in
response to information acquired. KAS tries to avoid low-
payoff questions by using a heuristic evaluation function to
choose the most promising rules. KAS'use of variables is se-
verely restricted. EMYCIN allows repeated use of the rules by
creating different instantiations of the objects in its
{attribute, object, value) triplet, whereas KAS allows only
one for which the situation description by the triple is
thought to be most certain. This characteristic allows KAS to
interconnect its rules into a static network before run-time,
thereby eliminationg the need for searching through the rules
to propagate inferences.

The approach in KAS is to view an expert system as a su-
perposition of "layers of knowledge" where each layer further
specifies the knowledge contained in previous ones or in-
troduces new knowledge along some dimension. The first layer
was selected to contain general knowledge about networks. The
subsequent layers contain further specification of the va-
rious kinds of network, and knowledge about every component
that constitutes the resulting expert system, including the
inference procedures, the consultation systems, and finally
knowledge about the domain of application. The knowledge ac-
quisition tools, such as the resident network editor and the
book keeping system are driven by the information contained
in this layered structure, and their operation can be modi-
fied by simple declarations for modifying the information co-
ntained in the appropiate layer. The advantage of this laye-
red structure is that knowledge acquisiton tools can be desi-
gned efficiently and with a high level of generality to as-
sist in different phases of the knowledge acquistion process,
where in each phase only some aspect of the knowledge base is
of interest or available to the knowledge engineer. It fol-
lows also that the same tools can be useful in building a
broader class of expert systems, because the "nuts and bolts"
that constitute each layer can be replaced, new layers added
and old ones discarded, affecting each component of the ex-
pert system.

In KAS there is no formal top-level goal, but certain
"consequents" are distinguished as "top-level hypotheses". A
consultation narrows down continually this list by establi-
shing the truth or falsity of the most promising ones. If no
clear conclusions can be reached, the system identifies the
missing information for resolving the situation. Thus KAS ei-
ther tries to identify the best top-level hypothesis which is
worth to be pursued (goal-selection mode) or it questions the
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user in order to establish that hypothesis (question-asking
mode) .

The "goal-selection mode" is guided by the user
information. Initially any relevant information is voluntee-
red in the form of simple English statements. It is parsed
and integrated in the semantic networks, whereby each asser-
tion is matched against the descriptive statements in the
knowledge base. If partial or exact matches are detected, the
system updates a heuristic score for that top-level hypothe-
sis which is supported by that statement. This scoring func-
tion takes into account the certainty of the evidence, the
nature of the match, and , by tracing through the rules, whe-
ther the evidence is favorable or unfavorable for the
hypothesis. The best-scoring hypothesis is usually persued
further by the system. It however also supports mixed-
initiative control by allowing the user to overrule the sy-
stem in selecting the current goal hypothesis {HY.

If the goal-hypothesis €HY» has been determined, the
program switches into the "question-asking mode". The state-
ments lying one level below (H» are inspected in order to
find the one that has the strongest influence on the probabi-
lity of the statement (HY». Let {S)» denote this statement. If
{S?» is marked as "askable" and if the user has not been asked
about {S?» previously, the system asks whether {S» is true,
forward-chains to propagate the consequences of the answer,
and returns a new goal, and the same procedure is reapplied,
resulting in "best-first backward-chaining". How is the sta-
tement with the greatest effect on (HY determined? First, the
required "contexts" of {H» are immediately established by a
new goal. The next step then depends upon whether (HY is a
"logical statement" or a "descriptive statement". For
"logical statements", a special procedure chooses the least
likely unexhausted argument for disjunctions. This procedure
fails if all the arguments are exhausted or if the certainty
of the logical expression is appropriately bounded. For
"descriptive statements", another special procedure uses heu-
ristic criteria to score the rules having {HY as a
"consequent". The scoring function takes into account the
current certainty of both the "antecedent" and the "conse-
quent", as well as the strengths of the rules.

KAS provides a well-engineered environment for developing
and debugging rules, semantic networks, and taxonomic
structures. Its knowledge-base editor has three particularly
valuable features: 1) it operates directly on network struc-
tures, 2) it uses knowledge about representational formalism
to assist the knowledge-base designer, and 3) it facilitates
the development by allowing the designer to get immediate
feedback on the consequences  of changes to the knowledge ba-
se. For details we refer to Ref. [70].
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8. APPLICATION DOMAINS

In this section we give some insight into the diversity of
the application domains for expert systems. In the first part
we focus on the different tasks [2], and in the second part
we give an overview about some of the present day expert sy-
stem activities [71].

There are several generic tasks that experts can perform,
and examining these tasks will provide us with a guide for
the requirements and preferred architectural structure for an
expert system of a particular task. We distinguish in parti-
cular: interpretation, diagnosis, monitoring, prediction,
planning, and design, as well as debugging, repair, instruc-
tion and general control.

INTERPRETATION: the analysis of data with a specific
interpretation goal in mind. The interpretation of the mass-
spectrometer data, as is done for instance in the DENDRAL-
system [32], is a typical example. The data are measurements
of the masses of molecular fragments, and the interpretation
means the determination of one or several chemical
structures. The main task is to find the correct and consi-
stent interpretations of the data, whereby one expects a ri-
gorous and complete analysis of all possible interpretations
with potential candidates being ruled out only when there is
enough evidence to do so. The data are often noisy and error-
ful which means that there might be missing or erronous or
even extraneous values. The interpretation system must there-
fore cope: 1) with partial information, 2) with data that
seem contradictory, requiring a hypothesis on which of them
are correct, 3) with unreliable interpretations of the sy-
stem, and 4) with the requirement to get information about
the sometimes rather long reasoning steps.

DIAGNOSIS: the process of fault-finding in a system most-
ly based on uncertain and noisy data. The MYCIN-system for
infectuous blood-diseases [27] is a typical example. It is
necessary that the system's organization is understood, inc-
luding the relations and interactions between its
sub-systems. Some of the key problems arise from the fact
that: 1) the faults are sometimes masked by the symptoms of
other faults, 2) the faults can be intermittent, 3) the dia-
gnostic equipment itself fails, 4) some data are inaccessi-
ble, or 5) the function of the system itself is not fully
understood.

MONITORING: this means the continous interpretation of si-
gnals to set off the alarm when an intervention is required.
There exist a few computer-aided monitoring systems, still in
the research stage, for nuclear plants [72], for air traffic
control as well as for disease [37-39], regulatory [40-43]
and fiscal management goals. As a representative example we
mention the VM-system [40] which is a physiological monito-
ring system designed to: i) detect possible measurement
errors, ii) recognize untoward events in the patient/machine
system and suggest corrective action, iii) summarize the pa-

59



60 B. Humpert H.P.A.

tient's physiological status, iv) suggest adjustments to the
therapy based on the patients status over time and long-time
therapeutic goals, and v) maintain a set of case-specific ex-
pectations and goals for future evaluation by the program. A
monitoring system recognizes the alarm conditions in
real-time. The key difficulty arises from the recognition of
an alarm condition which is often context-dependent. To ac-
count for this key problem, monitoring systems have to vary
signal expectations with time and situation.

PREDICTION: the future course of a system is predicted,
based on a model of the past and present. Examples of this
category are: wheather forecasts, demographic and traffic
predictions, military forecast, voting forecasts and so on. A
prediction system typically employs a parametric dynamical
model with its parameter values fitted to a given well-
understood situation. The consequences, inferable from a mo-
del, then form the basis of the predictions. By ignoring
probability estimates, the prediction systems can generate
large numbers of possible scenarios. Prediction requires rea-
soning about time, meaning that the predictors must be able
to refer to things that change over time and to events that
are ordered in time. There are several key problems that can
arise: 1) the prediction requires the synthesis of incomplete
information, 2) it must acount for a spectrum of possible si-
tations in the future, whereby variations in the input data
is likely to occur, 3) the data must be diverse since the in-
dicators for the future may appear at quite different places,
4) the predictive theory may need to be contingent since the
likelyhood of distant futures may depend on the nearer but
unpredictable events.

PLANNING: it consists of the preparation of program-
actions to be carried out to achieve a goal. Typical systems
involve automatic programming as well as robot, project, rou-
te, communication, experiment, and military planning
problems. Planning systems emply models of the agent beha-
viour to infer the effects of the planned agent activities.
As a typical example we mention the MOLGEN-system [56], a
knowledge-based program that helps molecular geneticists in
planning experiments. A planing system constructs a plan that
achieves goals without consuming excessive resources or vio-
lating constraints; it establishes priorities if some goals
conflict and it must be flexible and opportunistic since the
planning requirements can change with time or decision data
which are possibly incomplete. Planning always involves a
certain amount of prediction. Some of the arising problems
are: 1) the consequences of a planned action can often not be
forseen, and consequently tentative action is most appropria-
te, 2) if there are many details, focus on the most important
problems is required, 3) in large, complex systems there can
be interactions between the plans for different sub-goals
which must be localized and taken into account, 4) since the
context in a planning goal is not fully known there is quite
some uncertainty involved, and 5) if there are multiple ac-
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tors, there is need for coordination.

DESIGN: this is the configuration of objects that satisfy
the constraints of the design problem. Circuit-layout,
building-design, budgeting, etc. are typical examples; the
EURISKO-system [73], which ranges in this category, has been
successfully applied to the VLSI-design. Many design-systems
are built to minimize an objective function that measures
costs and other undesirable properties of potential designs.
This view of the design problem can also subsume the goal-
setting behaviour, with the objective function incorporating
measurements of goal attainment. The design has often similar
requirements as reasoning. Several types of difficulties can
arise: 1) the design possiblities must be explored tentative-
ly, 2) the design constraints can come from many sources, 3) a
large design problem is preferably factored into sub-problems
whereby possible interactions may not be ignored, 4) a large
design system should keep a justifying record about the de-
sign decisions as a mean to memorize the design decisions, 5)
whilst redesigning parts of a program the influence on the
overall program must be taken into account preventing locally
relevant modifications only, 6) reasoning about spatial rela-
tions demands considerable computing resources since the ef-
fective techniques about this type of problems are still re-
search topics.

There are a few other categories which are closely related
to those discussed above such as:

DEBUGGING: such computer-systems prescribe remedies for
the mal-functioning of a task-system; they rely on planning,
design and prediction capabilities to create specifications
of recommendations for correcting a diagnosed problem.

REPAIR: the computer-systems of that type develop and exe-
cute plans to administer a remedy for diagnosed problems;
they incorporate debugging, planning and execution
capabilities.

INSTRUCTION: the computer-systems of that type are inten-
ded as teaching assistance since they diagnose and debug the
students behaviour. They begin by construction a hypothetical
description of the students knowledge, subsequently they spot
the incompleteness in the students knowledge and identify
possible remedies, and finally they plan a tutorial action.

CONTROL: the expert control system adaptively govern the
overall behaviour of a complex system. It repeatedly interp-
rets the current situation, predicts the future, diagnoses
the causes of the anticipated problems, formulates a remedial
plan, and monitors its execution to ensure success.

In the above classification of the expert systems accor-
ding to their goals and purposes, one comes across several
design issues: large solutions space, tentative reasoning,
time-varying and noisy data. The large solution spaces usual-
ly appear in interpretation, planning and design systems,
whereas the tentative reasoning is a typical characteristic
in diagnostic, design and planning tasks. The reasoning in
real-time, called real-time systems control [72], is quite
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often needed in monitoring systems with interpretation, dia-
gnostic and monitoring tasks.

We sofar have limited ourselves to a rather qualitative
and quite general classification of the expert systems by
considering the, in principle possible, classes of tasks. We
now go to the practical side by considering the expert-
systems that exist as well as some of the projects currently
being carried out at the main research centers. For this pur-
pose we have assembled in Fig. 8.1 [74] an extended list of
expert-systems and tools indicating their principle goals:;
this list is however by no means complete and it keeps rapid-
ly growing. It would go beyond the purpose of this paper to
give an introduction or overview about all these systems. We
therefore chose to discuss a few important topics giving the
reader a flair of the main lines of research being currently
pursued and of the related fields of application.

In Fig. 8.2 [71] we show how some of the leading present-
day (planned) applications are distributed according to their
particular purpose and the industrial need. On the top-
horizontal axis the industries and related professions are
shown, such as: Engineering, Electronics, Telecommunications,
etc., and on the left-vertical axis there are the possible
applications. In the following we dwell on a few of these
topics:

INTELLIGENT CAD: In this field of design we distinguish
several important directions of applications such as for in-
stance confiquration systems and VLSI-design.

One of the first areas where expert systems have proved
commercially valuable is the computerisation of the design
process, with applications ranging from the planning of large
buildings to the layout of integrated circuit. By comparison
with "conventional" computer-aided design (CAD) techniques,
symbolic computing with the expert system tools has several
advantages: :

1) The symbolic languages allow a more direct representa-
tion of the design concepts. These include the objects
being manipulated, the rules governing their arrangement,
the dependencies which link them, and the contraints
which limit them.

2) The expert-systems methodology makes it much easier to
cope with uncertainty. By definition, any design process
works from a starting point where the ultimate result
cannot yet be defined. It is usually necessary to strike
a balance between the objectives the design is intended
to achieve and the resources available. An exploratory
approach is needed to find an optimal result.

3) A knowledge-base provides a suitable means of represen-
ting design expertise, much of which is heuristic and
informal. The development of a common knowledge base can
provide an important resource in itself for the user
community.
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This is an area where the computer industry itself is in the
lead. DEC's XCON/Rl-system for configuring VAX computer-
system orders is an often cited example. XCON/R1l does all the
work of deciding whether the order is valid and complete as
it stands and how all the components can be fitted together
as a working system. The system uses a forward-chaining
strategy. A complete configuration design is divided into six
tasks, from the initial check whether there are any major
errors in the order to finally working out the cabling
requirement. Tasks are further subdivided into a total of
nearly 300 sub-tasks, typically 5 to 15 rules each. The
program can search this relatively small description space
without facing a combinatorial explosion. XCON/R1l starts each
task from a partially complete configuration and then extends
it step-by-step until it is complete, according to rules
provided in the knowledge base. Once the task is complete it
proceeds to the next, following the same sequence each time
with no provision for backtracking. DEC's XCON-system is cu-
rently being complemented by several other, similar expert
systems called: XSEL, XSITE, ISA, IMACS and ILOG., Digital's
"Expert Sales Assistant System (XSEL)" is intended to provide
the field sales force with help in configuring customer sy-
stems, planning the site requirements and floor layout, and
estimating delivery dates. The "Expert Site Planning System
(XSITE)" is intended to complement XCON and XSEL at the other
end of the sales cycle by helping the customer service de-
partment to prepare for the installation and maintenanc of
computer systems. The "Intelligent Scheduling Assistant (ISA)"
schedules customer orders against current and planned mate-
rials allocations, customer credit lines, and planned delive-
ry dates. The "Intelligent Management Assistant for Computer
Systems (IMACS)" provides management assistance in planning
the assembly and test of computer systems, paperwork, capaci-
ty planning, floor loading, throughput, testing plans and
inven-tory control. The task of the "Intelligent Logistics
Assistant (ILOG)" is to generate plans for the distribution
of computer systems to customers. Together these five systems
represent only a part of DEC's current work in applying ex-
pert systems technolbgy to its own business. The company is
currently working on a total of nine cooperating systems
which could ultimately provide integrated assistance in mana-
ging the company as a whole. IBM and NCR are two other compu-
ter manufacturers known to be developping configuration sy-
stems, and ICL already has a sizing system called DRAGON in a
well developed state.

VLSI-DESIGN: The integrated circuit industry is also making
early use of "intelligent CAD". Helped by the close proxi-
mity of several Stanford academic institutions and the rela-
ted AI centers to the semiconductor component industry in Si-
licon Valley, firms such as Xerox, Fairchild Camera, Hewlett
Packard and Daisy Systems are known to be applying expert sy-
stems techniques to raise the quality and productivity of the
VLSI design. No doubt most of the other leading semiconductor
firms are doing the same. The work on applying expert system
technology to VLSI design can be seen as a two step process.
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A number of companies have taken the first step and are using
Al programming environments as the most productive means of
developing the highly complex software required for a VLSI
design workstation. We mention the NEWDRAW logic design sy-
stem (by LISP Machine Inc.) as an example. NEWDRAW itself ma-
kes use of AI concepts to improve designer productivity. For
example, it can allow considerably more flexible use of the
conventional design hierarchy, descending from highlevel
block diagrams where each individual block may itself contain
a block diagram, down to the level where individual compo-
nents are represented. In a conventional system, the designer
can define a component and use it repeatedly throughout the
hierarchy without needing to redefine it, but if it needs
small changes in different contexts it is necessary to define
each version as an entirely new object. An "intelligent CAD"
system, such as NEWDRAW, can allow the user to define a gene-
ric type of object, and then to modify it in the context whe-
re it is used. This can allow considerable savings in design
time in tailoring a circuit to fit a requirement precisely,
or changing the characteristics of a generic type throughout
a design. Stanford University is one of the leaders in taking
the natural next step by developing expert systems for logic
and VLSI-design, in the EURISKO and PALLADIO projects [74].
EURISKO is a very generalized system which is able to make
discoveries and formulate hypotheses in an assign domain. It
has been used to explore the possiblities of 3-dimensional
microelectronic circuits - todays semiconductor chips have an
essentially planar, 2-dimensional structure - and it was able
to propose some novel and potentially useful devices. Among
other things, the experiment showed the importance of selec-
tive search strategies guided by heuristic rules. Running EU-
RISKO with an exhaustive search strategy, it was able to syn-
thesize a possible 3-dimensional device every 0.9 seconds,
but the proportion of good devices was estimated at below one
in a billion. Using a search strategy guided by about 100
heuristic rules it took 30 seconds to synthesize a device de-
sign, but the proportion of some interest rose to one in ten.
EURISKO is still a long way short of designing complete cir-
cuits, but clearly it could help a designer to explore a wi-
der range of new ideas and possiblities than before. PALLADIO
is more specialized, providing an exploratory environment for
integrated circuit design. It allows the designer to define
models, called "perspectives", at different levels of circuit
design, ranging from the specification of the masks used to
fabricate the circuit on silicon to the high-level design of
novel logic architectures. Expert system aids assist in
translating an abstract design into more concrete specifica-
tions; for example by specifying the interconnection requi-
rements for a circuit described in terms of switches and
gates.

REAL-TIME MONITORING: A great deal of AI work has been
concerned with "signal understanding" systems, typically ai-
ming to operate in real time. The biggest area of all is na-
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tural and spoken language understanding. Language develop-
ments such as the HEARSAY-II system (at Carnegie Mellon Uni-
versity) have been an important source of the programming
tools and architectural ideas which are being used as the
basis of real-time expert systems in other areas.

A "blackboard" architecture is the common basis of most if
not all real-time expert systems. The blackboard provides an
effective interface between a continuous flow of data from
many sources - local databases, online information retrieval,
physical sensors and monitors - and the knowledge base which
must monitor events. Typically, incoming data is posted to a
hierarchy of levels on the blackboard and monitored by a num-
ber of expert system modules called "knowledge sources". The
function of the KSs is to draw conclusions from the data in-
puts at their level of the blackboard and forward the conclu-
sions up to higher levels so that the system as a whole can
achieve a wider undertanding of events in the domain it is
observing, and report on it, or suggest actions to its users.

Three major aplication areas where real-time expert-
systems using blackboard architectures are seen as having
special value in the short term are: i) military command and
control, ii) proecess control of industrial plants, iii) fo-
reign exchange and commodity trading. Beyond these applica-
tions, there is a very wide long-term potential for the
blackboard architecture approach. Civilian air traffic con-
trol, driving vehicles, perhaps the control of robots with
something of the agility of humans, are possiblilities which
are seriously considered.

Among the "US military expert-systems" currently being deve-
loped there are three major application areas: autonomous ve-
hicle, operational associates, battle management.

The "autonomous vehicle application" envisages systems
able to control land, submarine, air and space vehicles quite
freely without human intervention. For example it might be
used to control tracked land vehicles travelling through ha-
zardous battle zones for reconnaissance, the re-supply of
forward positions, or ammunition handling.

The "operational associate" would have the different role
of assisting human combatants to control their machines - the
examples suggested are pilots and tank crew. It would be
trained, by a pilot for example, to act as a personal assis-
tant in making split-second flying decisions with performance
requirements about 100 times faster than current technology.

The "battle management application" would assist the com-
mander in different types of battle to assimilate the mass of
incoming data, identify threats, and decide how to counter
them. Versions are foreseen for land battles at battalion le-
vel, naval fleet battle, ballistic missile defence and the
control of adaptive hardware for electronic counter-measures
to radio jamming effects. First systems of this type exist
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such as for instance AIRPLAN which assists air operations
officers with the task of landing an aircraft on a naval ca-
rrier, or the "Signal Understanding System(SUS)" which has
been conceived to monitor the wide variety of different types
of information available to the commander of a naval vessel
at his control centre. SUS is able to combine these varied
inputs to provide a real-time display of the ships, submari-
nes and aircraft in a 200-mile zone around the vessel, tag-
ging them as hostile or friendly, and providing immediate
warning of an imminent threat. SUS is a classic blackboard
architecture system, with 35 knowledge sources monitoring and
analysing signals and passing messages up to the level where
threats can be identified.

The expert-systems for "Industrial Process Control" can be
adapted from those for military objective. The task for SUS
is required, is directly parallel in the monitoring and con-
trol of an industrial plant. Instead of continuous radar in-
put, the plant operator has continuous instrument readings,
instead of military intelligence he has personal observations
and reports from other staff, instead of military plans there
are operating schedules, and so on. Clearly, expert-systems
could be very significant for the control of nuclear power
stations and other plant requiring very high safety
standards. Although it has yet to be demonstrated in practi-
ce, expert-systems could lead to a significant improvement in
the safety and responsiveness of process control.

Another field is "Foreign Exchange and Commodity Trading".
Speed in the sense of immediate response to immediate infor-
mation is vitally important to banks and brokers in the fo-
reign exchange and commodity markets. Again, the blackboard
architecture is an appropriate way to combine a numer of dif-
ferent sources of data - the incoming news service, the tra-
ders client database, knowledge bases about the character of
each market and about the business of trading. One problem
about integrating these streams of data at the computer level
is that the most advanced news service (by Reuters) is provi-
ded only in analogue video form; it however is unlikely that
this will remain a barrier for long.

MANAGEMENT SUPPORT: Some of the biggest and most ambitious
expert systems yet undertaken for commercial applications are
aimed at providing management assistance of some kind. Carne-
gie Mellon University (jointly with some computer companies)
has specialized in this area, aiming to develop systems which
tackle directly the major tasks of managing a large organisa-
tion, and which can be linked together to provide an
"Integrated Management Systems (IMS)". This is envisaged to
be able to: i) sense the state of the plant under management
by automatically acquiring datd, ii) representing the status
of all the objects, machines, people and concepts involved,
iii) model the organisation at many levels of abstraction,
iv) analyze and manipulate the model to answer management in-
quiries, and v) anlyze how the performance of the organiza-
tion could be improved by changes. Some of the earlier men-
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tioned expert-systems by DEC are being developed as part of
the IMS project.

Another major project has been the ISIS-system. The goal
has been to produce an operational prototype system for the
management and control of production in an engineering job-
shop (such as for instance Westinghouse turbine-component
plant), and so to investigate the application of AI techni-
ques to this type of management task. In a jobbing shop, com-
ponents are produced in batches which are largely unpredicta-
ble in size, timing or detailed specification. Their produc-
tion is subject to many different constraints, and a major
reason for the limited success of conventional computer sche-
duling packages in this area has been their inability to take
account of all the constraints which apply. Thus the plan
they produce can be no more than suggestions, subject to
change on the factory floor when unscheduled constraints
intervene.

FINANCE SERVICE: Several new venture companies in the
field of expert-systems are targeting on financial services
as a major or exclusive application area. The expert-systems
applications identified by most financial service companies
are: i) credit extension, ii) financial planning for clients,
iii) asset and liability management for the company itself,
iv) foreign exchange operations, and v) insurance
underwriting. Of these is the "portfolio management" func-
tions which fit most naturally into the management support
category. As financial institutions on both sides of the At-
lantic become more diversified, the advantages of being able
to provide a genuine portfolio management service to middle-
market clients are becoming increasingly obvious. One way in
which expert-systems technology can help to solve the problem
is illustrated by a system called FOLIO. This is a small ex-
pert system which uses a 50-rule forward-chaining knowledge
base as the means of automatically assessing the client's in-
vestment goals. This is combined with a simple interview sy-
stem to gather data from the client, and a linear programming
algorithm to optimise the distribution of assets between ni-
ne different fund types once the goals have been determined.
Fund types are broad categories such as "high-income, low-
risk stocks" or "government bonds"; it remains the Jjob of the
investment advisor to select particular securities within
these categories. The management of a bank' ownd portfolio
raises similar problems on a much bigger scale. The bank must
continually seek to match its assets and liabilities to main-
tain its liquidity while earning a profit. A strategy for
doing this has to take into account the bank's views on the
future trends of interest rates and the funds it has availa-
ble. Not only are these subject to change, but they are al-
ways uncertain, and the bank must ensure that it is covered
even if the outcome is considerably less favourable than ex-
pected. The task of funds managment in this environment is
one of developing alternative strategies and evaluating their
future results against a range of possible scenarios.
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9. SUMMARY

In this paper we have given an introduction into the
"world" of expert-systems and knowledge engineering by dis-
cussing a few typical examples: starting from the basics of
"knowledge-representation", subsequently considering, in so-
mewhat more detail, a few concrete expert-system programs and
their specific characteristics, and finaly widening our ho-
rizons with a glimps on the present-day and the planned acti-
vities in a few selected domains.

Knowledge engineering offers a spectrum of exciting acti-
vities ranging from : the development of new expert-system
tools with better knowledge-representation formalisms, search
strategies, user facilities and so on; to the actual con-
struction of a concrete system with domain-specific knowled-
ge; and to the search and selection of new useful
applications. This latter issue is in particular always in
the back of the author's mind, and the aim of this paper is
therefore a deeper understanding of these knowledge manipula-
tion systems.

Obviously, this presentation is incomplete: the frame,
script and procedural representations and their corresponding
computer systems could not even be touched upon; the third
part of this paper, concerning the advanced present-day acti-
vities, is fragmentic and sketchy. We nevertheless would like
to encourage the interested reader to go beyond this last
(summary) section in order to form a realistic opinion, free
of over-enthusiasm or even euphorism, on the usefulness of
the expert-systems.
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Rule 050

PREMISE: (AND (SAME CNTXT INFECT PRIMARY-BACTEREMIA)
(MEMBF CNTXT SITE STERILESITES)
(SAME CNTXT PQRTAL GI) )

ACTION: (CONCLUDE CNTXT IDENT BACTEROIDES TALLY .7)

MYCIN's English translation:

IF 1) the infection is primary-bacteremia, AND
2) the site of the culture is one of the sterile
sites, AND

3) the suspected portal of entry of the organism is
the gastrointestinal tract,
THEN there is suggestive evidence (.7) that the identity
of the organism is bacteroides.

Fig. 5.2
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FILE

KNOWLEDGE

BASE Fig. 7.1
Model Number of Number
assertions of rules

Koroko-type massive sulfide 39 34
Mississippi-Valley-type lead/sinc 28 20
Type A porphyry copper 187 91
Komatiitic nickel sulfide | 75 49
Roll-front sandstone uranium 212 133
Total 541 327
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ABEL

Expert system for diag-
nosing electrolytic di-
sorders

ACE

Expert system that ana-
lyzes trouble reports
for telephone cables.

AGE

Attempt to generalize-
helps design expert
systems like PUFF.

AIPS

Advanced information
presentation system-
expert system for
graphical objects.

AL/X

Assists in assembling
diagnostic expert sys-—
tems, based on Prospec-
tor.

AM

Expert system that as-
sists in forming mathe-
matical concepts.

APE

Expert System for auto-
matic programming in
LISP.

ARBY

Construction aid for
expert systems in elec-
tronic systems-analysis.

ARGOS

General system simula-
ting the decision ta-
king of a robot.

ART

Expert system for buil-
ding different types of
expert systems.

AURA
Automated reasoning

assistant-helps with
logic and software di-

sign.

BACON-3

Experimental system con-
cerning physics, the
laws by Kepler, Cou-
lomb and Ohm.

BAOBAB
Rule manipulation sy-
stem.

BETA

Battlefield exploitation
and target acquisition-
an experimental system.

CAA

Casual arhythmia
analysis-expert system
for analyzing elec-
trocardiograms.

CADUCEUS

Expert diagnostic system
for internal medicine
(undergoing clinical
trials).

CALLISTO

Experimental expert sys—
tem for the management
of large projects.

CASNET

Casual network- associa-
tes glaucoma treatment
with diagnostic hypothe-
ses.

CATS-1
Operational expert sys-
tem for troubleshooting
diesel-electric locomo-
tives.

CHI

Experimental expert sy-
stem for automatic soft-
ware development.

B. Humpert

CMUDA

CMU design automation-

comprises heuristic and
algorithmic VLSI tools.

CRIB

Expert system to train
field engineers in re-
solving computer mal-
functions.

CRITTER

Expert system to criti-
que VLSI designs inte-
ractively.

CRYSALIS

Expert system for data
analysis related to
protein crystallography.

DAR

Design automation
assistant-Al-based VLSI
design segment of CMUDA.

DART

Experimental expert sys-
tem for field diagnosis
of computer system
faults.

DELTA
An earlier term for
CATS-1.

DEMETER

Design methodology and
environment-for system
design above register
level.

DENDRAL

Expert system that de-
termines molecular
structure from mass
spectrograms.

DIPMETER

Expert system that ana-
lyzes oil well data.

DOC

Prolog-based expert sys-

8.1
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tem for computer field
‘service.

DPL
Description language
for VLSI design.

DWIM

Do what I mean-context-
based error correction
in LISP systenis.

EDD

Expert data base
deésigner-a Prolog-based
expert system.

EL
Expert system for cir-
cuit analysis.

ELAS
Expert system for ana-
lysis of oil-well data.

EMUCS

Algorithmic part of
CMUDA. Used for data-
path synthesis.

EMYCIN

Inference system of My-
cin, used to design ex-
pert systems.

EPM

Extended program model-
software representation
for IPE.

EURISKO
Self-learning expert
‘system for VLSI design.

EXPERT

Basic inference system
used in medical
applications.

EXPERT-EASE

Tool to désign expert
systems on a personal
computer.

Knowledge engineering with expert

FRL

Knowledge representation
lanquage for frame
manipulation.

GAl
Expert system for chemi-
cal data analysis.

GARI
Expert ‘system for
production line.

GEM
Inter face management sy-
"stem udised in Steamer.

GENESIS
Expert system for gene-
tic engineering.

GEN-X
Inference engine derived
from CATS-1.

GLISP

Programming language
that supports objects
and their behavior.

GUIDON

Experimental computer-
aided instruction system
for medical & technical
applicatiors.

HAIL-1
Expert system that con-
figures printed circuit
boards.

HEADMED

Expert system for phar-
macological advice.
HEARSAY

Expert system to assist
in software design.

HYDRO

Corisultation system for
solving water resource
problems.

systems 83

IDT
Expert system for dia-
gnésing computer faults.

INFORM

Knowledge-based software
environment for rapid
prototyping.

INTERNIST

Expert system for inter-
nal medicine-alternative
name for Caduceus.

IPE

Intelligent program
editor-expert system
that analyzes software.

IsIs

Experimental expert sy-
stem for job-shop
scheduling.

KAS

Experimental knowledge
acquisition system using
rule networks.

KBPA
Knowledge—-based program
automation.

KBSA

Knowledge-based software
automation-a 1life-cycle
support system.

KBVLSI
Experimental expert sy-

"stem for VLSI deésign.

KEE

Tool for assembling
knowledge basés for ex-
pert systernis.

KEPE
Knowledge representa-
tiornis system.
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KL-TWO

Knowledge engineering
tool for expert systems
based on KL-One.

EKMS

Assists in building ex-
pert systems for medi-
cal diagnosis.

KRL

Knowledge representa-
tion language-used in
framebased systems.

KRYPTON

Knowledge representa-
tion system using
frame-based and logic-
based terms.

KsS=300

Basic inference system
for industrial diagno-
stic applications.

LIBRA
Efficiency-analysis
component of PSI soft-
ware automation
project.

LITHO
Expert system in
geology.

LOOPS

Object-based knowledge
representation system,
for VLSI and other ex-
pert systems.

MACPITTS

Hardware specification
methodology for algo-
rithmic VLSI design.

MACSYMA

Knowledge~based system
for symbolic mathemati-
cal manipulations.

MARS
Multiple abstraction

rule-based simultor-used
in Palladio.

MAXWELL
Knowledge base develop-
ment system written in
Prolog.

MDX
Expert system for medi-
cal diagnosis.

MECHO
Expert system to simula-
te mechanics.

METADENDRAL

Helps formulate rules
regarding fragmented mo-
lecules from mass spec-
trometer data.

METALOG-
Logic language.

MICON

Expert system for desi-
gning single board
computers.

-MOLGEN

Expert system for plan-
ning bio-engineering ex-
periments involving DNA.

MRS

Metalevel representation
system-used for knowled-
ge bases and problem
solving.

MYCIN

Operational expert sy-
stem for diagnosing in-
fectious diseases.

NASL
Expert system for elec-
tronics simulations.

NETL

Knowledge representation
language for frame-based
sy stems.

B. Humpert H.P.A.

NEWTON

Experimental expert sy-
stem that analyzes the
effects of gravity.

NIKL

Part of KL-Two that
handles structured
predicates.

NOAH
Expert system for plan-
ning robotics projects.

NUDGE
Expert system for tempo-

rary employment.

OBJTALK
Implementation language
for Inform project.

ONCOCIN

Expert system that gqui-
des physicians in admi-
nistering chemotherapy.

OPS4, OPS5

Knowledge representation
and inference system de-
veloped for R1.

PA

Programmer's apprentice-
experimental programming
consultant.

PALLADIO

Knowledge-based VLSI de-
sign environment based
on Loops.

PART

Heuristic program for
the solution of arithme-
tic exercises.

PEACE
System for the electri-
city simulations.

PECOS
Program synthesis compo-
nent of PSI software

Fig. 8.1 (con't)



Vol. 59, 1986

automation system.

PENNI

Part of KL-Two that
works with
propositions.

PIP
Expert system for medi-
cal diagnosis.

POLITICS

Expert system for natu-
ral language
compreherision.

PONTIUS
Expert system for
flight instructioms.

PRL

Program re ference
language-used in IPE
project.

PROLOG
Programming language in
logic.

PROSPECTOR

Expert system that eva-
luates sites for their
mineral depdsits.

PROUST

Experimental expert sy-
stem that analyzes Pas-
cal programs.

PSI

Expert system that con-
verts English language
specifications to simp-
le progranms.

PSN

Procedural semantic
network-knowledge base
using classes, objects,
and relations.

PTRANS
Rule-based expert sy-
stem for manufacturing

Knowledge engineering with expert

management.

PUFF

Operational expert sy-
stem for diagndsing lung
diseases.

QUAL

Expert system that-
explains an electrical
circuit's behavior from
its description.

Rl
Original name for XCON
which configures VAX

‘systems.

RAFFIES
Precompileés the knowled-
ge for CRIB.

REDESIGN

Expert system for VLSI
deésign that emphasizes
modifications.

RESEDA
Expert system for histo-
ry and biographies.

RITA
Language for computer
aided conception.

REX

Regression expert-frame,
based expert system for
statistical analysis.

ROGET

Experimental system that
adds knowledge enginee-
ring expertise to Emycin.

ROSIE

Basic inference system
used in several
applicatiors.

RUP

Reasoning utility
package-predecessor of
Penni.

systems

RX

Expert system for eva-
luating statistical data
from chronically ill
patients..

SACON

Operational expert sy-
stem for structural
analysis.

SAFE
Experimental software
automation system.

SAGE

Basic inference system
used in several
applicatiorns.

SAM

Expert system for the
treatment of
hyperterision.

SCHEMA

Expert system for VLSI
désign—-still in early
development stage.

SCHOLAR

Computer-aided iristruc-
tion system for coaching
games.

SECS

Operaticnal expert sy-
stem that helps chemists
plan organic synthesis.

SIMMIAS
Expert system for geolo-
gical analyses.

SMALLTALK

Language and environment
for graphicés and object
based programming.

SMP

Symbolic manipulation
program=solves differen-
tial, integral, trars-
cendental equatiorms.
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SNARK
Language in predicate
logics.

SNIFFER

Experimental expert sy-
stem that discovers
software bugs.

SOPHIE

Computer-aided instruc-
tion for troubleshoo-
ting electronics.

SPEAR

Expert system for field
analysis of error logs-
under development.

SPHINX
Project system in
medicine.

SRL

Schema representation
language-used for know-
ledge description.

STEAMER

Expert system that si-
mulates steam plants
for Navy training.

sU/X
Expert system for si-
gnal processing.

SYN
Expert system for cir-
cuit synthesis.

SYSTEM-1

Knowledge engineering
tool for expert
systems-nearly
operational.

TALIB

Expert system that syn-
thesizers layouts for
NMOS cells.

TEIRESIAS
Guides knowledge and

rule acquisition for ex-
pert systems.

TIMM

The intelligent machine
model-implements expert
systems in Fortran.

TROPIC

Expert system for compu-
ter aided conception in
architecture.

TRUCKIN

An expert system game to
train students in the
use of Loops.

TUNER

Pascal-based expert sy-
stem for adjusting
signal-processing
systems.

ONITS
Knowledge representation

‘system used with AGE to

build Molgen.

VEXED

VKSI expert editor-
experimential self-
teaching IC design
sy stem.

M

Ventilator management-
monitors patients and
suggests respiratory
therapy.

WAVES

Expert system for analy-
zing seismic data for
the oil industry, uses
Ks~-300.

XCON

Current version of Rl
expert system for confi-
guaration of VAX and PDF-
11 systems.

B. Humpert

XPLAIN

Expert system framework
that accounts for its
reasoning.

XSEL

Extension to XCON that
supplies salesmen with
floor plariis.

Fig. 8.1 (con't)

H.P.A.
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