
Zeitschrift: Helvetica Physica Acta

Band: 58 (1985)

Heft: 6

Artikel: Niederenergetische Proton-Proton-Streuung und Paris-Potential

Autor: Piepke, G.

DOI: https://doi.org/10.5169/seals-115637

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-115637
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Helvetica Physica Acta, Vol. 58 (1985) 1049-1071 0018-0238/85/061049-23S1.50 + 0.20/0

© 1985 Birkhäuser Verlag, Basel

Niederenergetische Proton-Proton-Streuung
und Paris-Potential

von G. Piepke

Institut für Theoretische Physik der Universität Zürich, Schönberggasse 9, CH-8001 Zürich

14. I. 1985

Abstract. We have calculated the pp scattering phase shifts for the uncoupled 'Sc„ 'D2, 3P0, -'P,
and coupled ,P2, 3F2 states using the Paris potential. It turns out that this potential cannot account for
the 'S„ scattering length which is precisely known from low energy scattering experiments. Our
numerical calculations at low energy are controlled by the effective range approximation. For the
coupled states an appropriate effective range approach is derived and applied.

1. Einleitung

Im niederenergetischen Bereich zwischen 0.4 und 3 MeV Labor-Stossenergie
liegen schon seit langem Messungen des differentiellen Proton-Proton-
Wirkungsquerschnitts vor. Eines der früheren Experimente ist die Messung [1],
die das engere Gebiet um das Interferenzminimum untersucht. Bei dieser
Laborenergie von 0.3825 MeV und 90° Schwerpunktswinkel führt eine destruktive

Interferenz zwischen Coulomb- und Kernamplitude zur fast vollständigen
Auslöschung des Wirkungsquerschnitts. Das erlaubt eine besonders genaue
Bestimmung der s-Wellen-Streuphase.- Es folgen die Experimente [2]
(1.4 bis 3 MeV), [3] (0.5 bis 1.9 MeV) und [4] (0.35 bis 1 MeV). Mit den älteren
Daten haben sich schon mehrere Phasenanalysen befasst, während die jüngeren,
sehr präzisen Messungen aus Basel [3] und Zürich [4] erst in neuerer Zeit
ausgewertet worden sind [5].

Ein Ziel dieser Arbeit ist es nun, die Ergebnisse der genannten Experimente
mit den Vorhersagen des Paris-Potentials [6] zu vergleichen. Dieses
semiphänomenologische Potential beschreibt den lang- und mittelreichweitigen
Teil der Nukleon-Nukleon-Wechselwirkung durch die Boson-Austauschtheorie,
den kurzreichweitigen Teil mit einem phänomenologischen soft core. Die Anpassung

der phänomenologischen Parameter des Potentials an Proton-Proton-
Streudaten erfolgte im Energiebereich ELAB>3MeV.

Die Streuung unter 3 MeV Laborenergie ist im wesentlichen s-Wellen-
Streuung. Für eine genaue Anpassung der s-Welle an das Experiment braucht
man jedoch zusätzliche Informationen über die höheren Partialwellen, die das
niederenergetische Experiment selbst nicht liefert. Diese Informationen besorgt
man sich entweder aus einem Potentialmodell oder man benutzt das bekannte
analytische Verhalten der Partialwellenstreuamplitude, wie es in den Effective
Range (ER)-Formeln für niedrige Energien zum Ausdruck kommt. Auch zur
Kontrolle der Rechnungen mit einem Potentialmodell, die vor allem bei kleiner
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Energie numerische Probleme aufwerfen, ist es äusserst zweckmässig, die ER-
Näherung heranzuziehen. Im Einkanalfall sind die entsprechenden Formeln schon
lange allgemein hergeleitet worden (siehe z.B. [7] und [8]) und werden bei
Phasenanalysen auch verwendet. Für die 3P2-Phase CP2-3F2 ist das niedrigste
gekoppelte Zustandspaar des Proton-Proton-Systems) ist seit [9] auch eine
ungekoppelte, die Ein-Pion-Austausch (OPE)-Wechselwirkung berücksichtigende
ER-Näherung üblich, deren Anwendbarkeit aber von [10] bezweifelt wird. In [11]
ist jedoch schon am neutralen Fall gezeigt worden, dass bei gekoppelten Kanälen
das Inverse der Ä-Matrix als richtige Verallgemeinerung für den Kotangens der
Streuphase in der ER-Funktion verwendet werden muss. [12] erweitert die
gekoppelte Theorie auf den geladenen Fall unter der Annahme eines hard core in
allen Kanälen (zusätzlich werden in [12] für die diagonalen Matrixelemente von
.yt_1 Formeln für den Fall ohne hard core angegeben).-

Im Abschnitt 2 dieser Arbeit werden nun unter allgemeineren Voraussetzungen

(ohne hard core), aufbauend auf [13] und [14], ER-Formeln für die
gekoppelten Zustände 3P2-3F2 des Proton-Proton-Systems hergeleitet. Die
Verallgemeinerung auf die anderen gekoppelten Drehimpulszustände ist
offensichtlich. Die Ergebnisse für die diagonalen Matrixelemente von ft1 stimmen
mit [12] überein.

Im Abschnitt 3 wird die Bornsche Näherung im Kernpotential (im Falle
L>0 ist das i.a. eine gute Näherung) für die neu definierten verallgemeinerten
Streulängen entwickelt. Ausserdem wird der Zusammenhang mit der Para-
metrisierung der ©-Matrix durch Eigenphasen und Mischungsparameter [15]
hergestellt. Es zeigt sich, dass eine endliche "nichtdiagonale Streulänge" dazu führt,
dass der Mischungsparameter im Grenzfall verschwindender Stossenergie gegen eine
Konstante der Grössenordnung a2 geht. Damit ist im gekoppelten Coulomb-Fall
eine eindeutige Zuordnung der Eigenphasen zu Bahndrehimpulsen nach der
Vorschrift von [15] nicht möglich.

Im Abschnitt 4 werden schliesslich die mit dem Paris-Potential [6] gerechneten
numerischen Resultate diskutiert. Der Vergleich mit den Experimenten zeigt,

dass das Paris-Potential den Verlauf der s-Wellenphase bei kleiner Energie nicht
gut wiedergibt. Der Einfluss der Kopplung zwischen den Bahndrehimpulsen L \
und L' 3 unter 5 MeV Laborenergie kann anhand der in Abschn. 2 definierten
ER-Funktionen nachgewiesen werden.

2. Effective Range-Theorie

2.1. Bezeichnungen und Einheiten

h =c=l
y 0.577215 Eulersche Zahl
Mp 4.754797 fmx Protonenmasse
k Wellenzahl der Relativbeweguhg in fm~l
k =kMp1
x Abstand der Protonen voneinander in fm
r xMp
v Laborgeschwindigkeit des einfallenden Protons

e2
T) —

V
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a 2ktj Feinstrukturkonstante
J Gesamtdrehimpuls-Quantenzahl
L Bahndrehimpuls-Quantenzahl
© ©-Matrix zum Gesamtdrehimpuls J, definiert bezüglich

Coulombfunktionen
r~ _

/cos Ej -sin £j\ /e2,s,j 0 \ / cos ej sin ec}\
Vsin ecj coseJ/V 0 e2'8'') l-sin e"} cos ej/
in Blatt-Biedenharn-Parametrisierung [15]

_/eiff" 0 \/cos2êï i sin 2eJ\/e's- 0 \
"'û e^-'/\isin2ëS cos 215 A 0 e*W

in Stapp-Ypsilantis-Metropolis-Parametrisierung [16]
(mit L J-1, L' J+1)

8\j, ej Kern-Eigenphasen und Mischungsparameter definiert in
[15], bezüglich Coulombfunktionen

8lj, ëj Kern-Barphasen und Mischungsparameter def. in [16],
bezüglich Coulombfunktionen
Im ungekoppelten Fall (ëï=ej 0) sind Eigen- und
Barphasen gleich.

8u, ef, Sf>, ef Definitionen wie oben, aber bezüglich elektrischer Funk¬
tionen [17]; wenn kein oberer Index an den Phasen steht,
ist die betreffende Aussage immer für beide Fälle gültig.

ft_1 i(© + 1)
x(©-t)_1 reelle, symmetrische Matrix

(JM | LML, SMS) Clebsch-Gordan-Koeffizient

Falls nicht ausdrücklich anders bezeichnet, benutzen wir für numerische Angaben
folgende Einheiten:

-Winkel im Schwerpunktssystem in Grad
- Energien als Laborenergien in MeV
- ER-Parameter in Potenzen von fm

In unseren numerischen Ergebnissen geben wir nur signifikante Stellen an.

Spezielle Funktionen (def. wie in [18]):
Fl(tj, Kr) reguläre Coulombfunktion
G, (t), Kr) irreguläre Coulombfunktion
In(r), Kn(r) modifizierte Besselfunktionen

în(r):=n\a n'2rU2In(2(ar)U2)

_2_

(n-l)!
C2(r,) =2rrr,(e2^-X

Kn(.r): -, -a"/2r,/2Kn(2(ar)I/2)

C'(t,)=L(2L+1)Cl-'(t,)
iJj(z) logarithmische Ableitung der T-Funktion
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2.2. Herleitung für die Si'1-Matrixelemente

Im folgenden wird die ER-Entwicklung für gekoppelte Kanäle unter
Einschluss des Coulombpotentials in heuristischer Weise hergeleitet. Eine
mathematisch befriedigendere Herleitung bestünde z.B. in der Erweiterung der
Methoden von [19] auf den Fall gekoppelter Kanäle.

Der Einfachheit halber nehmen wir im folgenden immer an, dass ein lokales
kurzreichweitiges Kernpotential V(x) vorliegt (siehe jedoch Anhang A2), welches
für r>r() verschwindet.

Wir gehen aus von der zeitunabhängigen Schrödingergleichung für die
Relativbewegung zweier Protonen in der Ortsdarstellung

(A+fc2-Mp(V(x)+VrouL(x)))^ 0

Die Triplett-Wellenfunktion S 1 entwickeln wir wie üblich in Drehimpulseigenfunktionen

SjmlS

iMs=M): VTrt<" tp(x)xY

rZ Z (47r(2L+l))"2iL^^g)JML1(JM|L0,lM)
* J L=J-1 X

Gehen wir mit diesem Ansatz in die Schrödingergleichung ein (bzgl. Einzelheiten
siehe [20]), erhalten wir unter Ausnutzung der Orthogonalitätsrelationen für die
Sjmls im Falle L J die übliche ungekoppelte Radialgleichung für ü(x) (wie auch
im Singlett-Fall). Der Tensoroperator im Kernpotential V(x) ist jedoch im
Unterraum der Drehimpulseigenfunktionen zu festem J und L=Jr—1, J, J+l
nicht diagonal, sondern koppelt die beiden Differentialgleichungen für üJL1 und
üJLy (wobei L J—\,L'= J+\). Mit den neuen Radialfunktionen

Mjli(x) := (2L + l)1/2iL(JM | LO, lM)«iL1(x)
und nach Einführung dimensionsloser Koordinaten (u(r):= u(rMp')) erhalten wir
dann für festes / und S 1 (die Indices / und S werden im folgenden
unterdrückt):

/ u, (r
DA ')\u, \r

(1)

mit: Dk:=(32+k2)1 +P

_j_/L(L + l) 0 \_a (VL(r) VLL.(r)

'r2\ 0 L'(L'+1)/ r Wu.(r) VL.(r)

p .p.o.+ v(r)
L J-1
L' J+1

V(r) ist die Matrix des effektiven Kernpotentials (explizite Form für das Paris-
Potential siehe Anhang A2). Je 2 linear unabhängige Spaltenlösungen u(1) und
u<2> von (1) fassen wir zu einer Lösungsmatrix

„, ("ÏX) "L2)(r)
U(r)- \u[X) u(2)(r)



Vol. 58. 1985 Niederenergetische Proton-Proton-Streuung und Paris-Potential 1053

zusammen. Solche Lösungsmatrizen haben offensichtlich folgende Eigenschaft:
Multipliziert man sie von rechts mit einer beliebigen nichtsingulären Matrix,
ergibt sich wieder eine Lösungsmatrix von (1).

Von nun ab sei ll(r) diejenige reguläre Lösungsmatrix von (1), für welche
gilt:

ü(r) X(r) falls r>r0
mit X(r):=(F(r)Ä-, + G(r))2K
Die reelle symmetrische Matrix Ä_1 hängt in der angegebenen Weise
(Abschn. 2.1) mit der unitären symmetrischen Matrix © zusammen (beide
hängen natürlich von k ab).

rv vx/ mto ((2L + i)CLiv)Kl
Die Wahl 99t := I

Ü

:+\)c,u)klJ0 (2L'+1)Cl.(t))(-

bedeutet eine bequeme Normierung der Lösung.

Fir):=(F^QKr) FJ%Kr))

0

l(v, Kr)/
r,, /G,(t), Kr)
G(r):=l 0 G

9S(r) sei diejenige reguläre Lösungsmatrix von (1) für « =0, für welche gilt:

93(r)= Y(r) falls r>r0
mit Y(r):=I(r)?l + K(r)
91 ist eine konstante Matrix; es gilt:

lim X= Y
K—-I)

Iir):=\ 0 i2L.+ y(r)

fI2L+1(r) 0

0

(K2L+y(r)
tr;:= |

Es gilt

K(r):^ o
-

°
K2L-+y(r)/

lim (G(r)äR) K(r)

Wir betrachten nun zwei Lösungen U(r), SS(r) von (1) zu verschiedenen ku k2
(vorerst nicht notwendig k2 0):

DKlU 0

DK293 0

^«TDKU-(DK2SS)TU 0

s3t(H"+k?u+pu)-((SS")t+k1»t+»tpt)U
oder, weil P symmetrisch ist:

9STU" - (S3T)"tt (k§- k2)%tü
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integriert:

[9StU'-(SSt)'U]^ (k1-k?) P 33TUdr (2)

Wir subtrahieren von (2) eine zu (2) analoge Gleichung für Y' und X; mit:

rb^co U XI
ra^0 %=y\ fUr r>r"

k2 0 11(0) 93(0) 0

Kj K

folgt dann:

lim((YTX-(YT)X)-K2 [ (YTX-8STU)dr') 0 (3)

Aus (3) kann man direkt die ER-Entwicklung für die ft'-Matrix gewinnen: Auf
das Integral lässt sich Bethes Argument [8] anwenden: Innerhalb der Reichweite
des Potentials (nur dort ist der Integrand von Null verschieden) hängen die
Wellenfunktionen nur schwach von der Stossenergie ab, da hier k2 viel kleiner als

V(r) ist. Wir können das Integral also als rasch konvergierende Potenzreihe in k2
mit konstantem erstem Term schreiben. Die Wronski-Determinante
limr_^ (YTX'-(YT)'X) haben wir mit L 1, L' 3 durch Einsetzen der Entwicklungen

für Coulomb- und Besselfunktionen [18] explizit ausgerechnet. Die
asymptotischen Funktionen Y, X sind zwar bei r 0 nicht regulär, aber die
divergenten Terme in (3) heben sich in allen Fällen weg. Nach längerer Rechnung
erhalten wir dann für (3)

32K3C?(T1)(Sr1 + 2T,Cö2(T,)fi1(T,))-3?l1

4
loga + aK2(27--) K2B1 (3a)

72K7Cl(Tj)(tatr + 2T,Cö2(T,)h3(T])) - 7%3 -— log a

+ a5K2nl + a*K4n2 + aK('n3= k2B3 (3b)

3 •7K5C1(T,)C3(T))^r31-391,3 =k2B3, (3c)

3 • 7k5C1(t))C3(t,)Ä731 -72l3, K2Bt3 (3d)

mit den Bezeichnungen:

*_!_ /ÄZ1 ftÜ'\ w_ /9Il «ix
¦W. av> v«LX «L,

ß(r)=:
BL(r) B

^Lx(r) B

B13(r) B31(r) 0

(f
*ix-(r)\
BL.(r) /
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èy(r) (3C1(T,)K)-1(r1 + « log r)

B3ir) ilC3iV)K2) \r5KX+ X[-hvl
+ XKUXirì2+ì2]-XK2U12V3 + ^v]
+ r-1K3MtZX + ìlX + ì}
+ (\ogr)K42h[7X + 4ûv3 + 2ri])

»'=^(7h-|,H-f)-2-»-10-4

128^-^H2^.?/'1]^)-1-2'10"'
h,(T?):=Re(^(l + iT))) + log(2K) + -!:i4^

Pl(î))

^(t.), Pl(ti) endliche Polynome in tj (siehe unter Kap. Coulombfunk¬
tionen in [18]; r, (tj) dort rL(n))

Mit lim ((2L + 1)2k2L+12t)C^Cö2) a2L+1((2L).r2
K—>0

lim /tL(T)) log a
TI—»cc

folgt aus (3a) bis (3d):

lim (3k3C2®~1) «„ lim (3 • 7ksC1C3Ä131) 3«13 7«31
K—-C, K-«0

lim(7K7Cl.(tlJ,) 9I3
K-»<>

Dieses letzte Ergebnis ist eine Folge der Forderung limK_^) X Y Die Existenz
der Matrix « ist aequivalent zur Existenz der Streulänge in der ungekoppelten
Theorie.

Da Ä-1 symmetrisch ist, muss gelten «13:«31 7:3, und daher gilt mit (3c),
(3d) By3 B3l. Die nichtdiagonalen Elemente von « verschwinden im
allgemeinen nicht, wie wir in Abschnitt 3 noch explizit sehen werden.

Schreiben wir B als Potenzreihe in k2 und fassen die Terme geeignet
zusammen, so ist (3a) bis (3d) schon die gewünschte ER-Entwicklung für ®_1 mit
phänomenologischen Koeffizienten. Die Definition sämtlicher Funktionen und
Hilfsfunktionen ist so gewählt, dass der Uebergang a —» 0 direkt gemacht werden
kann und die übliche ER-Entwicklung für den neutralen Fall liefert [11J. Für die
ER-Funktion im ungekoppelten geladenen Fall ist aber eine etwas andere Definition

als die durch (3a), (3b) gegebene (cot ô^j-o-,^1) üblich. Um daran Anschluss
zu gewinnen, ziehen wir in (3a), (3b) zusätzlich alles, was sich als rasch
konvergierende Potenzreihe in k2 entwickeln lässt, auf die rechte Seite. Durch Entwik-
keln von (2L+ \)2K2l'+i2T]C2Cr]2fL(7\)pl}(-r\) verlieren wir allerdings dabei die
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Möglichkeit, den Limes a —> 0 in den diagonalen Gleichungen zu machen. Wir
erhalten dann schliesslich (in Potenzen von fm), geschrieben für allgemeine L:

Q[Mii)-.= ((2L+\)\\)2k2L + ìCl(rì)m: + 2rìCl)2(yì)h(v))

¦ ±-+rlk2+... (4a)
a, 2

QL analog

QX&.l^-aL + viiau+iy.ik1 '•Uic,U)C.Av)&,.L

-)x+fxk2+--- <4b)
Plita' 2.

für festes J (als Index überall unterdrückt), wobei

L J-1,L' J+1

h(Tj) Re(t//(l + iT())-logT), lim h(T)) 0,
T)—-^

mit phänomenologischen Koeffizienten aL, rL, ßLLL-, pLl- (4a) reproduziert das
Ergebnis von [12] und gleicht formal der in der Literatur üblichen ungekoppelten
Entwicklung ([21], [22]), wenn man $£J durch cotS^j ersetzt- Für den numerischen

Gebrauch im Energiebereich < 3 MeV sind die durch (3a) bis (3d) und (4)
gegebenen Entwicklungen gleichwertig; im folgenden beziehen wir uns immer auf
(4).

3. Bornsche Näherung und Parametrisierungen

3.1. Bornsche Näherung im Kernpotential für die verallgemeinerten Streulängen

Wir gehen aus von dem bekannten Ausdruck für die ft -Matrix in Bornscher
Näherung (siehe Anhang AI):

®L X f Ft(Kr)VL(r)dr :XfL

für die diagonalen Elemente und:

®Ll=X f Fl(Kr)Fu(Kr)VXr)dr :Xfli:
für die nichtdiagonalen. Es folgt:

e-i _
K fc "/ix-

/ut.' fu.' \ 111- fc

Aus (4) lassen sich jetzt im Limes «—»0 die "Streulängen" berechnen. Wir
erhalten nach einigen trivialen Zwischenschritten:

-^-((2L+1).n'Mg"" ^^ (5a)
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-\ ((2L'+1)! !)2M<P2' '+" Nl
(5b)

=(2L+1V ' (2L' + D' ' M<L+I'+n —— (5c)
ßlu ^L+l>--(AL+l)--M" NLNL--NlL.

K '

mit: NL:= f (/2L + 1(r))2V, (r) dr

N,.L-:= f /2L + .(r)/2Ita+,(r)VLL.(r)dr

/3(r)=r2(l+iar + ^aV+---)
/7(r)=r4(l + 0(a))

3.2 Phasen und Mischungsparameter

Es ist üblich, ©- und ft-Matrixelemente (und damit Wirkungsquerschnitte)
durch die reellen Streuphasen und Mischungsparameter auszudrücken. Eine
gebräuchliche Parametrisierung ist die durch Eigenphasen 6£j und
Mischungsparameter ecj [15]. Im folgenden wollen wir einige Bemerkungen über das

niederenergetische Verhalten dieser Parameter machen. Die ft ~'-Matrix wird:

_
/cos2 Ejcot 5(j + sin2e5cot 8CLJ ^sin 2eJ(cot S^-cot <5lj) \
V ìsin2ecjicot SIj-cot 8L.j) cos2 ejcot S^.j + sin2 ecjCOt 8t,/

L J-1, L' J+\
Es folgt mit (4):

cot 6CLJ= I + Z - 2T,Cö2(Ti)ri(T,)
L L'

2\ 1/2

Si"2«;-l((Z-l)2+(z)T"2
ix,vxl t:' Yl'' '

mit den Abkürzungen:

1 ¦= ("-7 +f k2+ ¦ ¦ -)(2((2L+ 1)! !)2k2' +1Cf (r,))"1
r ^ M L 2 I

£ analog

I (-^-+4^ /c2+ • • -)((2L + 1)! (2L'+ 1)! fcL+L'+'CL(T))CL.(T,)r'
LL' > PIX 2 I
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Im Limes k —»0 führt (6) (bis auf höhere Ordnungen in a) zu:

lim (C2fc2L+1 cot Sh) «2L + 1)! x(-\ + tt[t—2) <7a>

lim (C£.fc2L'^' cot 8c,.j) ((2L'+ 1)! !r2(--^) (7b)
k-m V a\j/

a2Ml a\\.
Iime5= -Xttt- (70
k-o 24 ß^-

(Der Index J ist an den ER-Parametern immer unterdrückt.) Mit den aus dem
Paris-Potential [6] berechneten Werten (siehe Abschn. 4): a\ 3.35 fm3, a3
19.6 fm7, ß^3 2.31 fm5 ergibt sich

lim e2 =-0.0244° (8)
k-K)

Zum Vergleich sei hier erwähnt, dass für / 2 das Ein-Pion-Austausch (OPE)-
Potential zu einer denkbar schlechten Bornschen Näherung für die
Streulängenführt. Es gilt nämlich:

foc r cc

Ny=\ r4Vy(r)dr + X rXi(r)dr+0(a
Jo 2. J0

N13= f ròVy3(r)dr+0(a)
Jn

wobei Jo r4VPPE(r) dr 0. Es folgt damit in Bornscher Näherung nach (5) und
(7c) z.B. für ec2:

¦V ntOpe
li™ c.OPE _ -* - 2 '

_
13

7! N\
6'/2 M,

a—- in niedrigster Ordnung in a
o m„

-0.89° mit w„ 0.684/m"'

Gleichung (7c) zeigt,') dass die Forderung in [15] limk___„ e,= 0, die erst die
Zuordnung der Eigenphasen zu Bahndrehimpulsen eindeutig macht, im
Coulomb-Fall nicht erfüllt ist. Die Gleichungen (7) sind ein weiteres Argument
für die verbreitete Verwendung der Barphasen-Parametrisierung [16] der ©-
Matrix in der Nukleon-Nukleon-Streuphysik (vgl. auch [16] und [24]): Während
die 5[j für fc—»0 exponentiell gegen Null gehen (C2 proportional (e27rn- 1)~'),
geht ej gegen eine Konstante, obwohl das nichtdiagonale ©-Matrixelement auch
exponentiell verschwindet. ec} ist also ein schlechtes Mass für die Mischung der
Zustände. Ausserdem ist die Näherung für das diagonale Matrixelement ©L —

2/5^+1 wegen der Zumischung der anderen Eigenphase auch bei kleiner Energie

relativ schlecht. Anders dagegen in der Barphasen-Parametrisierung: Aus den

') Schon der Arbeit [231 kann man entnehmen, dass limk ^„ e'j const, (ohne Angabe der
Grössenordnung).
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Umrechnungsformeln

tan 2ëj
tan 2ej

sin (8h~8lj]

sin2e^
t. sin(5u-8,.j)

sin 2ej

8h+ SL-j= S£j+ Slj
und (7) sehen wir sofort, dass hier sowohl S^j wie êj exponentiell gegen Null
gehen für fc —» 0. Damit ist ©L 2.5^ + 1 eine gute Näherung bei kleiner Energie.

Wir geben ein numerisches Beispiel mit dem Paris-Potential: Elab
3.037 MeV

©, cos2 e'2e2,fi'- + sin2 e2e2'8'-

0.965f2iS<'-' + 0.035e2iS«

©, cos 2i2e2,s'^ 0.9999e2iS-

4. Numerische Ergebnisse mit dem Paris-Potential

4.1. Allgemeines

Alle unsere Rechnungen wurden mit dem Isospintriplett-Anteil des Paris-
Potentials in der parametrisierten Form [6] durchgeführt. Wir berechneten
bezüglich Coulombfunktionen die Streuphasen für die ungekoppelten Zustände
'S0, XD2, 3P0, 3P1 und die beiden Phasen und den Mischungsparameter für das
erste gekoppelte Zustandspaar 3P2-3F2. Aus dem Niederenergieverhalten der
Phasen bzw. des Mischungsparameters wurden dann die durch (4) definierten
ER-Parameter bestimmt (im ungekoppelten Fall ist Q, (cot <5,j) identisch mit der
in der Literatur [22J üblichen Definition der ER-Funktion). Für sämtliche
Rechnungen verwendeten wir wie die Paris-Gruppe ([61, [25]) das Coulombpotential
für punktförmige Protonen und rechneten ohne relativistische Korrekturen. Wir
können deshalb unsere Rechnungen direkt mit den Ergebnissen der Paris-Gruppe
vergleichen.

Der zentrale Anteil des Paris-Potentials enthält das Quadrat des

Impulsoperators. Durch eine einfache Transformation der radialen Wellenfunktion [26]
gelangt man aber zu einem effektiven lokalen Potentialoperator (explizit in
Anhang A2 für gekoppelte Radialgleichungen durchgeführt). Als Integrationsroutine

für die resultierenden effektiven radialen Schrödingergleichungen kann
man dann die Numerov-Methode verwenden, ein spezielles Verfahren für
Differentialgleichungen der Form U"(r) w(r)U(r) mit einem Fehler der
Grössenordnung (Schrittlänge)6. Mit dieser Routine war es möglich, die Streuphasen

bis zu sehr kleiner Energie auf mindestens drei signifikante Stellen zu
berechnen. So konnten alle in den Tabellen I und II angegebenen Parameter in
einem Energiebereich ermittelt werden, in dem höhere als lineare Terme in fc2

numerisch keine Rolle spielen. Als typisches Beispiel für unser Vorgehen und die
Zweckmässigkeit der ER-Näherung einige Ergebnisse für das nichtdiagonale
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Tabelle I
Mit dem Paris-Potential gerechnete ER-Parameter für die gekoppelten Zustände iP-iriF1^ des Proton-
Proton-Systems (in Potenzen von fm). Definitionen siehe Gleichungen (4).

<~\ r'l <»3 r3 013 PÏ3

3.35 -7.60 19.6 -3.04 2.31 -11.8

Matrixelement ft73: Im Energieintervall 0.5 • 10 4MeVâELABâ0.5 MeV wurde
an 10 Stellen mit der Numerov-Methode ft73 bestimmt. Die Phasen und ft13
variieren dabei um mehrere Grössenordnungen, die durch (4b) definierte ER-
Funktion Qi3(ft73) ist aber in sehr guter Näherung (Betrag des

Korrelationskoeffizienten - 0.99998) eine Gerade (Fig. I) mit den in Tabelle I
angegebenen Parametern. Dies ist eine wirksame Kontrolle der Integrationsroutine

bei niedriger Energie. Einen Test bei hoher Energie liefert der Vergleich
mit den Ergebnissen der Paris-Gruppe selber: Hier erhalten wir in allen Fällen für
25SELABâ330 MeV Uebereinstimmung mit den Phasen aus Table III in [6].

4.2. s-Welle

Aus differentiellen Wirkungsquerschnitten für Proton-Proton-Streuung bei
E lab < 3 MeV kann man im wesentlichen neben der zentralen Triplett-
Phasenkombination Ac =^(S10+3SU + 5512) nur die dominierende s-Wellenphase
entnehmen. Ueber die s-Welle besitzt man auch schon lange genaue experimentelle

Informationen: Die ersten Messungen untersuchen die engere Nachbarschaft
des Interferenzminimums (IM) [1] und den Energiebereich 1.4SELABrs3 MeV
[2]. Im IM führt eine destruktive Interferenz bei 90°C Schwerpunktswinkel
zwischen Coulomb- und Kernamplitude zu einer fast vollständigen Auslöschung des

da
Wirkungsquerschnitts u. Der grosse Differentialquotient —— an dieser Stelle

ööoo
erlaubt eine besonders genaue Festlegung der s-Wellenphase <500. So bestimmen
Gursky und Heller [27] aus den Daten [1] die Lage des IM zu E,M
0.38243X0.00020 MeV und geben für diese Energie die elektrische [17] s-
Wellenphase Sf0 mit 8^,(0.38243) 14.611°±0.01o an. Noyes et al. ([28] bis
[30]) analysieren mit der Wisconsin-Gruppe deren Daten [2] für 1.4ê ELAB2=
3 MeV (die Ergebnisse für Sf0 siehe Tabelle III). Gestützt auf diese Daten, die
Messung [1] und ein weiteres Experiment bei 9.918 MeV werden in [29] für die

Tabelle II
Mit dem Paris-Potential gerechnete ER-Parameter für ungekoppelte Partialwellen des Proton-Proton-
Systems (in Potenzen von fm). Die Definition der Parameter ist durch (4a) gegeben, wenn man dort
&11 durch cot ô)j ersetzt.

'S X 3PMl 3P,

tal' -7.887 -2.15 -3.32 2.04

rc 2.805 11.7 3.59 -7.61
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EL4B [MeV]

0.1 1 2 3 4 5

-0.1

0, (cot Sfj)
-

-

0.5

-1

^^^^ -^.-=: -

-1.5 slO-QjOCj1)

3.3
3.2 u ï
3.1 l">

Figur I
Energieabhängigkeit der durch (4) definierten ER-Funktionen (man beachte die verschiedenen

Einheiten der linken Ordinate für die gekoppelten Funktionen: Q, in fm \ 013 in fm5, Q3 in fm 7;

die rechte Ordinate ist der Massstab für die ungekoppelte ER-Funktion Q, (cotS',2) in fm~3). Die
durchgezogenen Kurven sind durch Losen der Schrödingergleichung mit dem Paris-Potential berechnet.

Die gestrichelten Geraden sind die ER-Geraden mit den Parametern aus Tabelle I, die durch

Anpassung von (4) bei sehr kleiner Energie an die Losung der Schrödingergleichung gewonnen
wurden. Q,(&, ') folgt im Gegensatz zu O^cotS^) bis 5 MeV sehr gut der linearen Näherung.

ER-Parameter folgende Werte angegeben: a„ -7.8146±0.0054, r„
2.7950±0.0080 (auf Vakuumpolarisation korrigierte ER-Näherung für 5(f0 nach

[17]; die Fehler sind rein statistisch), ac0 -7.823±0.01, r^ 2.794±0.015 (8|0
ist in [29] durch Anwendung einer modellabhängigen Korrektur [31] aus 8f0
berechnet worden; die Fehler schliessen neben den statistischen Fehlern noch die

Tabelle III
Unsere Ergebnisse für die elektrische s-Wellenphase gerechnet mit dem Paris-Potential im Vergleich
mit dem Experiment (Phasenanalysen [29] und [5]). Verwendet sind die experimentellen Daten aus

a)-[4], ß)-[3] und t)-[2]. Wir zitieren aus [5] die multi energy fits der drei Datengruppen; die

Fehler, die wir in dieser Spalte angeben, stammen jedoch aus den single energy fits in [5].

8S,[Grad]

Expe riment
ElabIMsV] [291 [5] Paris-Potential

0.35009
«)
13.298 ±0.056 13.42

0.42006 16.074±0.025 16.22
0.49923 18.995 ±0.006 19.17
0.74996 26.783±0.011 27.00
0.99183 32.521 ±0.014 32.76

ß)
0.49925 18.971±0.025 19.17
0.99190 32.482±0.014 32.76
1.88060 44.617±0.016 44.86

y) y)
1.397 39.3213±0.028 39.307±0.018 39.60
1.855 44.3292 ±0.023 44.353 ±0.017 44.64
2.425 48.3553±0.026 48.349±0.018 48.61
3.037 51.0233 ±0.040 51.029 ±0.025 51.27
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Unsicherheiten aus dieser Modellabhängigkeit und zusätzlich die Unsicherheiten
in der Pion-Nukleon-Kopplungskonstante (Shape-Korrektur) mit ein).- Naisse
[10] benutzt zusätzlich Messungen bis 30 MeV und kommt in Uebereinstimmung
mit [29] zu: ac0= -7.828±0.008, ro= 2.80 ±0.02. Dabei berücksichtigt er allerdings

explizit in seinem Modell die endliche Ausdehnung des Protons ([32], Dipol-
Formfaktoren).- Inzwischen haben die sehr präzisen Querschnittsmessungen aus
Basel [3] und Zürich [4] zusätzliche Daten unter 2 MeV geliefert. Diese neuen
Messungen und die Daten [2] untersucht die Nijmegen-Gruppe in ihrer
Phasenanalyse [5] (Tabelle III). Sie kommt zum Schluss, dass insbesondere die
Daten [4] eine leichte Aenderung der alten, hauptsächlich durch die Daten
[2] zustandegekommenen Niederenergieparameter nahelegen. Die Ergebnisse
sind: do -7.8016±0.0029, rf= 2.773 ±0.014, E,M 0.38254± 0.00005,
8oo(0-38254) 14.608°±0.001°. Die Ergebnisse am IM stimmen sehr gut mit
den älteren Werten aus [27] überein.

Diese experimentellen Werte einerseits und unsere Ergebnisse mit dem Paris-
Potential auf der anderen Seite haben wir nun zu vergleichen. Wir erhalten:
üq= —7.887 für die Streulänge und rJi 2.805 für den Effective Range. Das
Ergebnis für die Streulänge liegt weit ausserhalb der experimentellen Grenzen
und ist auch im Widerspruch zu dem von der Paris-Gruppe selbst für ihr Potential
angegebenen Wert (a„ -7.810, rc0 2.191 [6]). Bei den Phasen 800 stimmen die
Ergebnisse der Paris-Gruppe aber auch bei kleiner Energie bis hinunter zum IM
mit unseren überein ([25]; unsere Rechnungen und diejenigen der Paris-Gruppe
basieren auf der gleichen Fassung des Paris-Potentials [6]). Möglicherweise hat
die Paris-Gruppe bei der Bestimmung der ER-Parameter in [6] aus ihrem
Potential Phasen bei zu grosser Energie verwendet, wo höhere Terme in k2 in der
ER-Entwicklung nicht mehr vernachlässigt werden können- Die Diskrepanz zu
den experimentellen Werten zeigt sich auch, wenn wir unsere mit dem Paris-
Potential errechneten Phasen Sq0 mit den Standardmethoden aus [31] und [33]
näherungsweise auf die Phasen 8(E0 umrechnen (Tabelle III, bei ELAB
0.38254 MeV erhalten wir Soo 14.74°). Bei der Umrechnung So0^Sf0 haben
wir allerdings die vom verwendeten Potentialmodell abhängige Foldy-Korrektur
[31] A0 nicht selber mit dem Paris-Potential gerechnet (8o0 + t0= So0 + A0 mit den
Bezeichnungen t0 und A0 aus [17]). A0 ist für vier Potentialmodelle schon
berechnet worden (0.01 ë-ELAB-g 9.918 MeV, [31] und [29]). Die vier Werte für
A0 zu einer festen Energie weichen jeweils nur um maximal 6% von ihrem
Mittelwert ab. Diese Mittelwerte haben wir (zum Teil musste interpoliert werden)
in unserer Umrechnung benutzt. Die 6% Abweichung führen zu einer maximalen
Unsicherheit in 8f0 von±0.01°. Nach Angaben der Paris-Gruppe [25] aber weicht
A0, mit dem Paris-Potential berechnet, um 60% bis 150% (0.38243 S ELAB g
3.037 MeV) von den Mittelwerten der schon bekannten Potentialrechnungen ab
(die Werte des nicht modellabhängigen t0 sind in keiner Weise strittig). Das führt
dazu, dass die Paris-Gruppe mit den S00, aus denen sich eine von den experimentellen

Zahlen stark verschiedene Streulänge a0 ergibt, durch die
Vakuumpolarisations-Korrektur zu Phasen Sf0 kommt, die mit dem Experiment
(ELABS3MeV) ausgezeichnet übereinstimmen [34].- Eine andere Situation bei
9.85 MeV: Hier geben Barker et al. [35] einen neuen experimentellen Wert
8oo= 55.24°±0.15°. Gleichzeitig rechnen sie die Phasen auch mit dem Paris-
Potential [6]: 8oo 55.19° in völliger Uebereinstimmung mit unserem eigenen
Ergebnis. Die Paris-Gruppe selber aber erhält mit ihrem Potential Sq0= 55.05°
[25], und zwar mit genau den gleichen Rechenmethoden wie in [34].
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Tabelle IV
Différentielle Wirkungsquerschnitte für Proton-Proton-Streuung in der Nähe des Interferenzminimums.

o-[mb] bei E, Ali 400.04 keV

Paris-Potential
mit korrigierter

Ö^^Grad) Paris-Potential Experiment [4] s-Welle

29.200 228 228.9 + 0.7 229
42.512 4.76 4.468 ±0.08 4.56
45.012 1.76 1.564±0.01 1.55
47.512 4.83 4.655 ±0.08 4.64

Wie schon erwähnt, erscheinen in der Nähe des IM kleine Aenderungen der
v-Phase vergrössert im Wirkungsquerschnitt. Ein Beispiel dafür gibt Tabelle IV:
Hier wird eine différentielle Querschnittsmessung aus [4] bei ELAB
0.40004 MeV mit der Vorhersage unserer Rechnung mit dem Paris-Potential
verglichen (in den Streuamplituden sind alle oben erwähnten Partialwellen
berücksichtigt worden; unsere Formeln für die Amplituden haben wir an [36]
kontrolliert; die Korrekturen auf Vakuum-Polarisation wurden wieder nach [31]
und [33] vorgenommen). In der letzten Spalte stehen die Querschnitte, die wir
erhalten, wenn wir in den Amplituden die s-Phase des Paris-Potentials durch eine
der Phasenanalyse [5] angepasste .«.-Phase ersetzen, die höheren Phasen aber nach
wie vor mit dem Paris-Potential berechnen. Wie man sieht, führt die s-
Wellenphase des Paris-Potentials zu Abweichungen vom Experiment in der
Grössenordnung von maximal 10 %.-

Offensichtlich ([6], [25]) rechnet die Paris-Gruppe alle ihre Phasen mit dem
gewöhnlichen Coulombpotential für punktförmige Protonen und verfuhr bei der
Anpassung der Potential-Parameter ebenso. Die oben erwähnten
Phasenanalysen verwenden aber in ihren Modellen von Fall zu Fall unterschiedliche
Korrekturen zum gewöhnlichen Coulombpotential. Bei der Reduktion einer
relativistischen 1-Photonaustausch-Amplitude mit Proton-Formfaktoren auf
ein nichtrelativistisches Potential, das man in einer Schrödingergleichung
verwenden kann, ergeben sich neben dem Coulombpotential eine Reihe von Kor-
rekturtermen, welche wir in zwei Gruppen einteilen können: Die erste enthält
impulsabhängige Terme. Diese berücksichtigt man näherungsweise [32], indem
man in der nichtrelativistischen Schrödingergleichung und in der gewöhnlichen
Coulombamplitude das nichtrelativistische n durch das relativistische (T)relal

e2/v, wobei v die relativistisch aus der Laborenergie berechnete Geschwindigkeit
des einfallenden Protons im Laborsystem ist) ersetzt. Diese Korrektur wenden
alle oben zitierten Phasenanalysen an ([10] und [5] behandeln dieses Problem
noch ausführlicher). In [27] wird jedoch anhand der Daten [1] gezeigt, dass der
Einfluss auf die Phasen bei kleiner Energie gering bleibt: Der oben zitierte Wert
Sfo(0.38243) 14.611°±0.01° ist mit relativistischem r\ bestimmt; mit
nichtrelativistischem r\ erhalten die Autoren Ôq0= 14.606°. Trotzdem haben wir
zur Kontrolle die radiale Schrödingergleichung für die s-Welle mit dem Paris-
Potential für einige Energien auch mit relativistischem 17 gelöst. Bei 1 MeV ergibt
sich z.B. 800= 33.04" mit relativistischem tj, dagegen 8|)0 33.05" mit
nichtrelativistischem t). Mit dieser Korrektur lässt sich also die hier diskutierte
Diskrepanz zwischen den Experimenten und unserer Rechnung mit dem Paris-
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Potential nicht erklären- Die zweite Gruppe der oben erwähnten Korrektur-
terme ist lokal. Sie bewirkt (aufgrund der Formfaktoren) die Regularisierung des
Coulombpotentials bei r 0 und seine Modifizierung im Bereich sehr kleiner
Nukleonenabstände (r<2fm). Wegen dieser Kurzreichweitigkeit und wohl um
zu vermeiden, modellabhängige Grössen wie Formfaktoren in die Rechnungen
einführen zu müssen, haben alle oben erwähnten Phasenanalysen (ausser [10]) die
endliche Ausdehnung des Protons nicht explizit berücksichtigt. Damit wird quasi
der kurzreichweitige Teil der elektromagnetischen Wechselwirkung per
definitionem in die hadronische s-Welle gesteckt. Da die Paris-Gruppe bei der
Anpassung ihres Potentials (d.h. des soft core) offensichtlich ebenfalls keine
Formfaktoren berücksichtigt, "enthalten" die an experimentelle Phasen ange-
passten Kern-Parameter diesen elektromagnetischen Anteil. Korrektur der
Phasenrechnungen mit dem Paris-Potential auf endliche Ausdehnung des Protons hiesse
also, diesen Effekt doppelt zu zählen. Es ist aber trotzdem von Interesse zu
wissen, wieviel etwa von den ER-Parametern a^, rj„ die man aus dem Paris-
Potential errechnet, "auf das Konto der elektromagnetischen Formfaktoren
geht". Um dies zu testen, verfuhren wir folgendermassen: In [32] werden für
verschiedene experimentell gefundene Formfaktoren explizit die Korrekturterme
zum gewöhnlichen Coulombpotential angegeben, genähert durch eine Funktion

e2
S(r). Das korrigierte elektromagnetische Potential lautet dann —(1+S(r)). Für

r
zwei der in [32] vorgeschlagenen S(r), nämlich derjenigen für Dipol-
Formfaktoren und der für Formfaktoren nach Fried und Gaisser (siehe
Literaturangaben in [32]) haben wir die Schrödingergleichung für die s-Welle mit

2 2
e~ e~

dem Paris-Potential und — (1 + S(r)) statt mit — gelöst. Wir geben aber hier nicht
r r

die Absolutwerte der so errechneten Phasen oder ER-Parameter an, weil diese ja
aus oben erläuterten Gründen die Strukturkorrektur zweimal "enthalten",
sondern nur prozentuale Abweichungen von unseren Standard-Ergebnissen mit dem

gewöhnlichen Coulombpotential: Die Streulänge a\\= -7.887 veränderte sich mit
den Dipol-Formfaktoren um 0.27%, mit den Formfaktoren nach Fried/Gaisser
um 0.55% (d.h. a% wurde kleiner); r%-2.805 änderte sich mit den Dipol-
Formfaktoren um -0.1%, mit den Formt', nach Fried/Gaisser um -0.18%. Diese
Prozentzahlen sind also (in guter Näherung) die "Anteile" der elektromagnetischen

Formfaktoren des Protons an Streulänge und Effective Range des Paris-
Potentials (Isospintriplett).-

Zusammenfassend lässt sich folgendes sagen: Es gelingt nicht, mit dem
Paris-Potential die Ergebnisse der heute vorliegenden Proton-Proton-
Streuexperimente unter 3 MeV befriedigend zu reproduzieren (z.B. ist die
Diskrepanz zu den Ergebnissen der Experimente aus Basel [3] und Zürich [4] weit
grösser als die kleine Differenz zwischen diesen beiden Messungen). Dieser
Mangel des Paris-Potentials zeigt sich am einfachsten im hochsignifikanten
Abweichen der Streulänge um ca. 1% von den experimentellen Werten, was zu
Abweichungen im differentiellen Wirkungsquerschnitt bis zu 10% führt. Allerdings

lassen sich die niederenergetischen Experimente mit dem Paris-Potential gut
reproduzieren, wenn man nur die Ein-Pion-Austausch-Kopplungskonstante des
Paris-Potentials um einen Faktor 0.9936 verändert. Es ist jedoch klar, dass dieses
Vorgehen nicht ohne eine gleichzeitige Anpassung aller Parameter des Paris-
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Potentials erlaubt ist. Die vorliegende Fassung des Paris-Potentials ist jedenfalls
unverkennbart für den mittelenergetischen Bereich der Proton-Proton-Streuung
angepasst worden [6].

4.3. Höhere Partialwellen

Tabelle II zeigt alle ungekoppelten ER-Parameter, die wir mit dem Paris-
Potential erhielten (siehe auch Tabelle V). Für die p-Wellen ist die experimentelle
Unsicherheit in den ER-Parametern noch recht gross [22]. Für die 'D2-Parameter
gibt es bis jetzt noch keine experimentellen Daten.- In [35] werden ebenfalls mit
dem Paris-Potential für die 3P,-Zustände Phasen (bei 5.05 und 9.85 MeV) und
ER-Parameter gerechnet. Diese Ergebnisse unterscheiden sich zum Teil
beträchtlich von unseren (im Gegensatz dazu stimmen wir bei allen Streuphasen
für LX) einschliesslich Mischungsparameter, die wir mit dem Paris-Potential
gerechnet haben, mit der Paris-Gruppe selber ([6] und [34]; 6.141 rSE,ABg330)
überein). Die mit dem Paris-Potential gerechneten Ergebnisse bei 5.05 MeV in
[35] scheinen jedoch für die p-Wellen nicht zuverlässig zu sein. Zum Beispiel liegt
die Phasenrechnung für 3P, bei 9.85 MeV gut auf der ER-Geraden, die durch die
Parameter in [35] definiert wird, bei 5.05 MeV aber nicht. Auch in [37] werden in
den Tabellen diese p-Phasen-Ergebnisse aus [35] bei 5.05 MeV nicht benutzt,
wohl aber die bei 9.85 MeV, mit denen wir gut übereinstimmen.-

Der heutige Stand der experimentellen Technik für Proton-Proton-Streuung
erlaubt es leider nicht, bei ELAB < 3 MeV Informationen über die Partialwellen
L > 1 aus den Messungen zu entnehmen. Nach unseren Berechnungen mit dem
Paris-Potential beträgt der Beitrag von 3F2-Phase und e2 Mischungsparameter
zum Wirkungsquerschnitt etwa bei E,M= 0.383 MeV und 90° nur ca. 0.01%o, bei
3 MeV liegt dieser Beitrag über alle Winkel bei maximal 0.1%o. Die experimentellen

Fehler im Wirkungsquerschnitt liegen jedoch bei den neueren Messungen in

Tabelle V
Proton-Proton-Streuphasen für die niedrigsten ungekoppelten Zustände. Unter "exakt" stehen die
Werte, welche wir durch Lösung der Schrödingergleichung mit dem Paris-Potential erhalten, unter
"ER" die Werte, die sich aus Gleichung (4a) (Si, ' ersetzt durch cot S\ j) mit den ER-Parametern aus
Tabelle II ergeben (höhere Terme in k2 werden vernachlässigt). Diese Parameter sind ihrerseits
wieder durch Anpassung von (4a) an die Lösung der Schrödingergleichung bei sehr kleiner Energie
gewonnen worden.

Sool

exakt

[Grad]

ER

Sh [Grad] Sh, [Grad] Scu [Grad]

F exakt ER exakt ER exakt ER
[MeV]

0.1 2.437 2.437 0.115-5 0.115-5 0.140-2 0.140-2 -0.860-3 -0.860-3
0.5 19.31 19.30 0.156-3 0.157-3 0.0412 0.0412 -0.0250 -0.0250
1 33.05 33.02 0.102-2 0.103-2 0.141 0.141 -0.0846 -0.0846
2 45.94 45.81 0.588-2 0.597-2 0.435 0.436 -0.257 -0.257
5.05 54.95 54.52 0.0477 0.0510 1.68 1.69 -0.945 -0.946
9.85 55.21 54.43 0.173 0.205 3.82 3.95 -2.09 -2.10

t Inzwischen ist ein Grossteil der hier vorliegenden numerischen Resultate von einem Gutachter
der Zeitschrift Journal of Physics auf unabhaengige Weise nachgerechnet und vollumfaenglich
bestaetigt worden.
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diesem Bereich ([3], [4]) zwischen l%o und 2%. Deshalb ist es zur Zeit nicht
möglich, mit experimentellen Ergebnissen für die in Abschn. 2 definierten gekoppelten

ER-Parameter zu vergleichen. Es besteht jedoch die berechtigte Hoffnung,
dass Nukleon-Nukleon-Wechselwirkungsmodelle, die den mittel- und langreich-
weitigen Teil der Wechselwirkung durch die Boson-Austauschtheorie beschreiben
(das Paris-Potential berücksichtigt Ein-Pion-, Zwei-Pion- und w-Austausch), eine
realistische Vorhersage der höheren Partialwellen liefern. Umgekehrt können die
so gewonnenen Ergebnisse dann z.B. als Input-Daten für eine genauere Anpassung
der s-Welle an das Experiment dienen.

In der Literatur ist seit [9] für die 3P2-Phase eine ungekoppelte ER-
Näherung gebräuchlich. Diese Autoren machen nach dem Muster der üblichen
ungekoppelten ER-Näherung für Q,(cot 8\2) einen linearen Ansatz, zeigen aber
anhand numerischer Rechnungen mit mehreren Wechselwirkungsmodellen, dass

"... the 3P2 effective range function exhibits large curvature below 10 MeV." Erst
nach Subtraktion der Ein-Pion-Austausch-Phase von 8\2 konstatieren sie für
Q,(cot S',2): "... that by using this difference, the 3P2 effective range function is

well described below 30 MeV by a straight line."Dagegen kommt [10] nach
Rechnungen mit seinem Potentialmodell für Qy(cot8\2) zum Schluss: "... for the
3P2 state, none of the choices for S'12 (gemeint ist 8C12 mit oder ohne Subtraktion
der Ein-Pion-Austausch-Phase) is compatible with a linear dependence on k2 in

any reasonable range of energies
1 / (8C \^\ 1

Nun ist cot8"ì-, -— 1 — )==-=— für kleine Phasen. Ebenfalls für kleine
8X 3 / 8<12

Phasen gilt in guter Näherung:

2 \ -1 1 (ï<:\22)®-i^jL(i-lplJ\ =:^-A, wöbe.
S^2 ' 8\2832/ 8Cy2 Oy2832

nicht klein gegen 1 ist. Es besteht daher die Hoffnung, dass der Faktor À., der die
Kopplung zwischen den Zuständen L 1 und L' 3 berücksichtigt, das
Konvergenzverhalten von Qi(ä7') gegenüber dem ungekoppelten QjtcotS',^)
entscheidend verbessert. Figur I zeight auch, dass das tatsächlich der Fall ist: Die
schon in [9] und [10] beobachtete Krümmung von Q,(cot S',2), hier mit dem
Paris-Potential gerechnet, findet sich unterhalb 5 MeV in Q,(.W7') nicht mehr.
Oberhalb 5 MeV beginnt auch 0[(^71) von der Geraden abzuweichen. Für die
anderen Matrixelemente Q3(M3') und Q13(®y3) wird die lineare Näherung
allerdings schon ab ca. 1 MeV schlechter (es sei angefügt, dass wir in allen drei
Fällen versucht haben, höhere als lineare Terme in fc2 anzupassen; die
entsprechenden Koeffizienten sind aber nicht mehr signifikant). Das beschränkt
aber die praktische Anwendbarkeit der gekoppelten ER-Näherung in dieser
Form. Im Experiment sind nämlich nur S-Matrixelemente (bzw. Phasen und
Mischungsparameter) direkt beobachtbar und jedes 3-Matrixelement (bzw. jede
Phase und der Mischungsparameter) ist eine Funktion aller drei ^
'-Matrixelemente. Dadurch ist für praktische Zwecke die Anwendbarkeit der linearen
Näherung durch jenes Matrixelement von Si1 bestimmt, welches am stärksten
von der linearen Näherung abweicht. Dies zeigt Tabelle VI: Hier werden die aus
der gekoppelten ER-Näherung (mit den Parametern aus Tabelle I) gerechneten
Barphasen mit den durch Integration der Schrödingergleichung direkt gewönne-
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Tabelle VI
Proton-Proton-Barphasen und Mischungsparameter für J 2. Unter "exakt" stehen die Werte, welche
wir durch Lösung der Schrödingergleichung mit dem Paris-Potential erhalten, unter "ER" die Werte,
die sich aus den Gleichungen (6) mit den ER-Parametern aus Tabelle I (nach Umrechnung auf die
Bar-Grössen) ergeben (höhere Terme in fc2 werden vernachlässigt). Diese Parameter sind ihrerseits
wieder durch Anpassung von (4) an die Lösung der Schrödingergleichung bei sehr kleiner Energie
gewonnen worden.

El AB
[MeV]

s. 2 [Grad] f'. [Grad] Sl.,|Grad]

exakt ER exakt F.R exakt ER

0.1 0.127-3 0.127-3 -0.133-5 -0.133-5 0.115-8 0.115-8
0.5 0.387-2 0.387-2 -0.183-3 -0.183-3 0.761-6 0.763-6
1 0.0138 0.0137 -0.120-2 -0.120-2 0.990-5 0.996-5
2 0.0465 0.0443 -0.694-2 -0.701-2 0.112-3 0.115-3
5.05 0.219 0.179 -0.0567 -0.0602 0.215-2 0.247-2
9.85 0.634 0.417 -0.206 -0.242 0.0137 0.0193

Tabelle VII
Proton-Proton Streuphasen und Mischungsparameter (in Grad), gerechnet mit dem Paris-Potential [6].

*^I AB
[MeV] 8So S'22 &u, 8n «._¦ êr2 5« ä',2 «2 su

(1.35009 13.51 0.567-4 0.0210 -0.0128 0.194-2 -0.661-4 0.193-6 0.195-2 -1.95 -0.205-5
0.42006 16.32 0.957-4 0.0297 -0.0181 0.277-2 -0.112-3 0.393-6 0.278-2 -2.30 -0.410-5
0.49923 19.28 0.156-3 0.0411 -0.0250 0.386-2 -0.182-3 0.757-6 0.387-2 -2.69 -0.781-5
0.74996 27.13 0.476-3 0.0856 -0.0517 0.823-2 -0.558-3 0.347-5 0.827-2 -3.86 -0.342-4
0.99183 32.88 0.100-2 0.139 -0.0834 0.01.36 -0.117-2 0.963-5 0.0137 -4.89 -0.909-4
1.397 39.72 0.242-2 0.246 -0.146 0.0250 -0.285-2 0.328-4 0.0253 -6.43 -0.288-3
1.8.5.5 44.74 0.490-2 0.387 -0.229 0.0408 -0.577-2 0.870-4 0.0416 -7.91 -0.715-3
2.425 48.70 0.932-2 0.586 -0.343 0.0645 -0.0110 0.214-3 0.0664 -9.45 -0.162-2
3.037 51.34 0.0157 0.820 -0.475 0.0944 -0.0186 0.444-3 0.0979 -10.8 -0.310-2

nen verglichen. Es zeigt sich, dass 8\2 bei 5 MeV nur noch mit einem Fehler von
ca. 20% durch die lineare ER-Näherung wiedergegeben wird, während Q,(Ä7')
bei dieser Energie (siehe Fig. I) noch sehr gut der linearen Näherung folgt.

Man kann vermuten, dass erst eine Berücksichtigung der Ein-Pion-Austausch-
Wechselwirkung in der Definition der ER-Theorie diesen Mangel der gekoppelten

Theorie beheben kann. Die numerischen Ergebnisse für Q,(cot 8\2) bzw.
Qy(S\] ') mit dem Paris-Potential zeigen jedoch, dass die koppelnde Wirkung des

Tensorpotentials auch bei sehr kleiner Energie deutlich in der ER-Näherung
nachweisbar ist.
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Anhang

AI. Bornsche Näherung für die ^-Matrix

Wir gehen aus von:

((fl2+K2+P((")1 + V(r))SB(r) 0

Als asymptotische Randbedingung für die reguläre Lösung 3B geben wir vor2

(festes J,L=J-\,L' J+\):

«*>-*>?«*•-(? .G>(<St £t)
für r > r„.

Die ungestörte Lösung mit V(r) 0 sei

2B(0,(r):=F(r)

Die Greensfunktion, passend zu den vorgegebenen Randbedingungen ist:

@(r, r')

_JFL(Kr')GL(Kr) 0
K

\ 0 F,.(Kr')G,.((<r)
_1/FL((<r)GL((<r') 0

V 0 FL.(«r)GL(Kr')

für r>r'

für r<r'

Sie erfüllt: (d2+K2+P(0))1 ®(r, r') S(r-r')
Es gilt dann:

8B(r) 2B(0)(r) + f ®(r, r')(- V(r'))3B(r') dr'

und in Bornscher Näherung:

SB"> 2B«»-[ ®VSB(("dr'
Jo

Durch Vergleich mit der asymptotischen Randbedingung

G(r)® - [ @(r, r') V(r')2B(0,(r') dr'
¦"o

für r —* oc

Es gilt F(r) + G(r)S X(r)2). 'Ä; mit X(r) ist also auch F(r) + G(r).ft eine Lösung der
Schrödingergleichung für r>r0, da (SPÏ_1A) eine nichtsinguläre Matrix ist.
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erhalten wir

lL K-' f Fl(Kr')V.(r')dr'

,Sl,. analog

»ll-=k ' f Fi.dcr'iF^KrOVu.^rO dr1
Jo

A 2. Explizite Form der radialen Schrödinger-Gleichung mit dem Paris-Potential
im gekoppelten Fall

Die zeitunabhängige Schrödingergleichung für die Relativbewegung zweier
Protonen lautet:

(A+ k2- Mp(V(x)+ Vcou,(x)))^ 0

Das Paris-Potential ist jedoch nichtlokal, es gilt für den Spin- und Isospin-
Triplettfall (S= 1, T= 1) mit den Bezeichnungen aus [6]:

V(x, p2) Vy(x, p2)[3
+

<74'"°"2 + V,_s(x)L • S

-, J3(ât • x)(q2 - x) _
"1

+ VT(x)| —2 CT y
¦ 0-2J

+ VS02(x)M(cr, • L)(ä2 ¦ L) + (ö2 ¦ L)(<x, ¦ £)] wobei:

ri £21 vî(x) v?(x) ri L2

Mit den in Abschnitt 2.2 beschriebenen Standardmethoden führt das für die
Radialfunktionen u, (r), uL(r) (L =J— 1, L' J+ 1) zum gekoppelten
Gleichungssystem :

/ L(L+\) a\
\c,;+K2 J )ML + gL«JL + gLL'WL'=0

/ L'(L'+1) a\
\cK+K2 J j«L-+gL-"L'+gl.I.-"L=0

Vls 2 Vso2 2L V, V?
g, :=—L L 1 • 1-
81

Mp Mp 2L + 3 M„ Mp

-2L(L2+1) v?+v?a?+a?(v?-)
r

6(J(J+1))'/2 VT
8ll'"" 2J+1

'

M„

gl.:=(L'+l)^-(L'+l)2^ +^-^-^-^-Kl 'Mp Mp 2L'-1 Mp Mp

VÏ+Vhyd2 + d2(VÎ-)

(9)

L'(L'+1)
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Um zu einer effektiven (lokalen) Schrödingergleichung zu kommen, machen wir
den Ansatz [26]:

üt(r):=ut(r) ¦ (\+2Vhi(r))U2 i L, V
und gelangen so durch Einsetzen in (9) zur Gleichung (1) aus Abschnitt 2.2

o 0 (10)

für die neuen Radialfunktionen mit dem lokalen Potentialoperator:

(]+2Vhy)\ M„ Mp 2L + 3 Mp M,,

7>

VlX)

2Vy +

6(J(J+\))U2

(a.V,)2
1 '

(i+2vt:

27+1 MP(1 + 2VÎ)

VL.(r)=
l

„ ((L'+l)^-(L'+l)2^ +^-^-^ +L (1 + 2VÏ)\ Mp Mp 2L'-1 Mp Mp

1

(1 + 2 VÌ)

Da V,(0) endlich ist und wir annehmen, dass Vj 0 für r>r0, erfüllt mit jeder
Lösungsmatrix U(r) auch die Matrix Û(r): ll(r)(l+2V',')"2 die in Abschnitt 2.2
definierten Randbedingungen (analog 93(r)). Insbesondere stimmen die Lösungen
U(r) von (9) und Û(r) von (10) asymptotisch überein. Es macht also keinen
Unterschied, ob man die ft- (bzw. (S-)-Vlatrix bezüglich der asymptotischen
Lösungen von (9) oder (10) definiert. In diesem Sinne ist das Paris-Potential
einem effektiven lokalen Potentialoperator aequivalent, und alles in den
vorhergehenden Abschnitten unter der Voraussetzung eines lokalen Kernpotentials
Gesagte bleibt auch für das Paris-Potential gültig.
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