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Niederenergetische Proton-Proton-Streuung
und Paris-Potential

von G. Piepke

Institut fiir Theoretische Physik der Universitat Zirich, Schonberggasse 9, CH-8001 Ziirich

14. 1. 1985

Abstract. We have calculated the pp scattering phase shifts for the uncoupled 'S, 'D,, *P,, *P,
and coupled *P,, *F, states using the Paris potential. It turns out that this potential cannot account for
the 'S, scattering length which is precisely known from low energy scattering experiments. Our
numerical calculations at low energy are controlled by the effective range approximation. For the
coupled states an appropriate effective range approach is derived and applied.

1. Einleitung

Im niederenergetischen Bereich zwischen 0.4 und 3 MeV Labor-Stossenergie
liegen schon seit langem Messungen des differentiellen Proton-Proton-
Wirkungsquerschnitts vor. Eines der fritheren Experimente ist die Messung [1],
die das engere Gebiet um das Interferenzminimum untersucht. Bei dieser
Laborenergie von 0.3825 MeV und 90° Schwerpunktswinkel fithrt eine destruk-
tive Interferenz zwischen Coulomb- und Kernamplitude zur fast vollstandigen
Ausloschung des Wirkungsquerschnitts. Das erlaubt eine besonders genaue
Bestimmung der s-Wellen-Streuphase.— Es folgen die Experimente [2]
(1.4 bis 3 MeV), [3] (0.5 bis 1.9 MeV) und [4] (0.35 bis 1 MeV). Mit den alteren
Daten haben sich schon mehrere Phasenanalysen befasst, wiahrend die jingeren,
sehr priazisen Messungen aus Basel [3] und Zirich [4] erst in neuerer Zeit
ausgewertet worden sind [5].

Ein Ziel dieser Arbeit ist es nun, die Ergebnisse der genannten Experimente
mit den Vorhersagen des Paris-Potentials [6] zu vergleichen. Dieses
semiphanomenologische Potential beschreibt den lang- und mittelreichweitigen
Teil der Nukleon-Nukleon-Wechselwirkung durch die Boson-Austauschtheorie,
den kurzreichweitigen Teil mit einem phinomenologischen soft core. Die Anpas-
sung der phanomenologischen Parameter des Potentials an Proton-Proton-
Streudaten erfolgte im Energiebereich E; .3 >3 MeV.

Die Streuung unter 3 MeV Laborenergie ist im wesentlichen s-Wellen-
Streuung. Fiir eine genaue Anpassung der s-Welle an das Experiment braucht
man jedoch zusatzliche Informationen uber die hoheren Partialwellen, die das
niederenergetische Experiment selbst nicht liefert. Diese Informationen besorgt
man sich entweder aus einem Potentialmodell oder man benutzt das bekannte
analytische Verhalten der Partialwellenstreuamplitude, wie es in den Effective
Range (ER)- Formeln fiir niedrige Energien zum Ausdruck kommt. Auch zur
Kontrolle der Rechnungen mit einem Potentialmodell, die vor allem bei kleiner
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Energie numerische Probleme aufwerfen, ist es dusserst zweckmassig, die ER-
Naherung heranzuziehen. Im Einkanalfall sind die entsprechenden Formeln schon
lange allgemein hergeleitet worden (siehe z.B. [7] und [8]) und werden bei
Phasenanalysen auch verwendet. Fiir die *P,-Phase (°P,-’F, ist das niedrigste
gekoppelte Zustandspaar des Proton-Proton-Systems) ist seit [9] auch eine un-
gekoppelte, die Ein-Pion-Austausch (OPE)-Wechselwirkung berucksichtigende
ER-Naherung ublich, deren Anwendbarkeit aber von [10] bezweifelt wird. In [11]
ist jedoch schon am neutralen Fall gezeigt worden, dass bei gekoppelten Kanalen
das Inverse der -Matrix als richtige Verallgemeinerung fur den Kotangens der
Streuphase in der ER-Funktion verwendet werden muss. [12] erweitert die
gekoppelte Theorie auf den geladenen Fall unter der Annahme eines hard core in
allen Kanilen (zusatzlich werden in [12] fur die diagonalen Matrixelemente von
f~! Formeln fiir den Fall ohne hard core angegeben).—

Im Abschnitt 2 dieser Arbeit werden nun unter allgemeineren Vorausset-
zungen (ohne hard core), aufbauend auf [13] und [14], ER-Formeln fur die
gekoppelten Zustinde *P,—F, des Proton-Proton-Systems hergeleitet. Die Ver-
allgemeinerung auf die anderen gekoppelten Drehimpulszustinde ist offen-
sichtlich. Die Ergebnisse fir die diagonalen Matrixelemente von & ' stimmen
mit [12] uberein.

Im Abschnitt 3 wird die Bornsche Niaherung im Kernpotential (im Falle
L >0 ist das i.a. eine gute Naherung) fiir die neu definierten verallgemeinerten
Streuldngen entwickelt. Ausserdem wird der Zusammenhang mit der Para-
metrisierung der ©-Matrix durch Eigenphasen und Mischungsparameter [15]
hergestellt. Es zeigt sich, dass eine endliche “‘nichtdiagonale Streuldnge” dazu fiihrt,
dass der Mischungsparameter im Grenzfall verschwindender Stossenergie gegen eine
Konstante der Grossenordnung o« geht. Damit ist im gekoppelten Coulomb-Fall
eine eindeutige Zuordnung der Eigenphasen zu Bahndrehimpulsen nach der
Vorschrift von [15] nicht mdglich.

Im Abschnitt 4 werden schliesslich die mit dem Paris-Potential [6] gerechne-
ten numerischen Resultate diskutiert. Der Vergleich mit den Experimenten zeigt,
dass das Paris-Potential den Verlauf der s-Wellenphase bei kleiner Energie nicht
gut wiedergibt. Der Einfluss der Kopplung zwischen den Bahndrehimpulsen L =1
und L'=3 unter 5 MeV Laborenergie kann anhand der in Abschn. 2 definierten
ER-Funktionen nachgewiesen werden.

2. Effective Range-Theorie

2.1. Bezeichnungen und Einheiten

h =c=1

Y =0.577215. ... Eulersche Zahl

M, =4.754797 fm~' Protonenmasse

k = Wellenzahl der Relativbewegung in fm ™"

K =kM, .

X = Abstand der Protonen voneinander in fm

r = xM,

v = Laborgeschwindigkeit des einfallenden Protons
ez

n .N

v
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« = 2kmn Feinstrukturkonstante
X = Gesamtdrehimpuls-Quantenzahl
L = Bahndrehimpuls-Quantenzahl
) = ©-Matrix zum Gesamtdrehimpuls J, definiert beziiglich
Coulombfunktionen
= B (cos g5 —sin ej) (ez‘af‘—’ 0 )( cos ey sin e})
sin €§  cos €5 0 e*™s/\—sine§ cos &S
in Blatt-Biedenharn-Parametrisierung [15]
= ~ (ei% 0 )(cos 25 isin 253)(e‘5h 0 )
= 0 e®/\isin285 cos2&5/\ 0 P
in Stapp-Ypsilantis-Metropolis-Parametrisierung [16]
(mit L=J-1,L'=J+1)
1, €5 Kern-Eigenphasen und Mischungsparameter definiert in
B [15], beziiglich Coulombfunktionen
in €5 Kern-Barphasen und Mischungsparameter def. in [16],

bezuglich Coulombfunktionen
Im ungekoppelten Fall (€;=¢e5=0) sind Eigen- und Bar-
B phasen gleich.
S EF. O BT Definitionen wie oben, aber beziiglich elektrischer Funk-
tionen [17]; wenn kein oberer Index an den Phasen steht,
ist die betreffende Aussage immer fur beide Fille giiltig.

f1=i(E+1)
X(©-1)"" reelle, symmetrische Matrix
(JM | LM, , SM.,) Clebsch-Gordan-Koeffizient

Falls nicht ausdriicklich anders bezeichnet, benutzen wir fiir numerische Angaben
folgende Einheiten:

— Winkel im Schwerpunktssystem in Grad

— Energien als Laborenergien in MeV

— ER-Parameter in Potenzen von fm

In unseren numerischen Ergebnissen geben wir nur signifikante Stellen an.

Spezielle Funktionen (def. wie in [18]):
F; (n, kr) regulare Coulombfunktion
G, (m, kr)  irregulire Coulombfunktion
I (r), K, (r) modifizierte Besselfunktionen

L(r):=n!'a 'L 2(ar)"?)

% fme 2 n/2 1/2 1/2
K, (r): (n—l)!a r'’“K,(2(ar)"?)
Ci(m) =2mn(e*™—1)""
_(L2+T|2)1/2
Cr(m) = L(2L+1-) Cr1(n)

Y¥(z) = logarithmische Ableitung der I'-Funktion
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2.2. Herleitung fiir die & '-Matrixelemente

Im folgenden wird die ER-Entwicklung fir gekoppelte Kanale unter
Einschluss des Coulombpotentials in heuristischer Weise hergeleitet. Eine
mathematisch befriedigendere Herleitung bestiinde z.B. in der Erweiterung der
Methoden von [19] auf den Fall gekoppelter Kanile.

Der Einfachheit halber nehmen wir im folgenden immer an, dass ein lokales
kurzreichweitiges Kernpotential V(%) vorliegt (siche jedoch Anhang A2), welches
fur r>r, verschwindet.

Wir gehen aus von der zeitunabhdngigen Schrodingergleichung fir die Re-
lativbewegung zweier Protonen in der Ortsdarstellung

(A+ k2= M, (V(%)+ Veour (x)¥ =0

Die Triplett-Wellenfunktion S = 1 entwickeln wir wie iiblich in Drehimpulseigen-
funktionen ¥ a5

(M,=M): W = o (2)x )

! 112;L uJ’Ll(x)
=—): ): (47w (2L+ 1) 2229 o (IM | LO, 1M)

Gehen wir mit diesem Ansatz in die Schrodingergleichung ein (bzgl. Einzelheiten
siehe [20]), erhalten wir unter Ausnutzung der Orthogonalititsrelationen fiir die
Yimis im Falle L = J die uibliche ungekoppelte Radialgleichung fir @(x) (wie auch
im Singlett-Fall). Der Tensoroperator im Kernpotential V(x) ist jedoch im
Unterraum der Drehimpulseigenfunktionen zu festem J und L=J-1, J, J+1
nicht diagonal, sondern koppelt die beiden Differentialgleichungen fur @ ; und
iy (wobei L=J-1,L"=J+1). Mit den neuen Radialfunktionen

Uy (x):=QRL+1)"(IM | LO, 1M)ii . (x)

und nach Einfiihrung dimensionsloser Koordinaten (u(r):= u(rM;‘)) erhalten wir
dann fiir festes J und S=1 (die Indices J und S werden im folgenden
unterdrickt):

u (r)\
D“(u,,(r)) =0 (1)

mit: D, :=(3?+ )1+ P

p._ _%(L(L+l) 0 )_QH( Vi(r) vu,(r))

0 <1 r Vidr) Vidr)
P=:PO+ V(r)
L=J-1
=J+1

V(r) ist die Matrix des effektiven Kernpotentials (explizite Form fiur das Paris-
Potential siche Anhang A2). Je 2 linear unabhingige Spaltenlosungen u‘" und
u® von (1) fassen wir zu einer Losungsmatrix

0) W20

= (u‘ﬂ"(r) Ui (r)
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zusammen. Solche Losungsmatrizen haben offensichtlich folgende Eigenschaft:
Multipliziert man sie von rechts mit einer beliebigen nichtsingularen Matrix,
ergibt sich wieder eine Losungsmatrix von (1).

Von nun ab sei U(r) diejenige reguliare Losungsmatrix von (1), fir welche
gilt:

U(r)= X(r) falls r>r,

mit X(r):=(F(nN{ '+ G(r)IMN

Die reelle symmetrische Matrix & ' hiangt in der angegebenen Weise

(Abschn. 2.1) mit der unitiren symmetrischen Matrix © zusammen (beide

hangen natiirlich von k ab).

, QL+1)C,(n)k" 0 )
Die Wahl :=( .

1€ ahl I 0 (2L’+ 1)CL'(T|)KL
bedeutet eine bequeme Normierung der Losung.

F; (m, kr) 0 )

F(r):= (

D000 P

Gp(m, kr) 0 )

G(r):= (

& 0 G (m, r)

B(r) sei diejenige reguliare Losungsmatrix von (1) fur « =0, fiir welche gilt:

B(r)=Y(r) falls r>r,
mit Y(r):=I(r)A+ K(r)
A ist eine konstante Matrix; es gilt:

li_r_pn X=Y
L i2L+1(r) 0
gl = ( 0 iZL'+1(r))
. Kzz-ﬂ(") 0
Kir):= ( 0 Iﬂ(zr,'ﬂ(r))
Es gilt

lim {F(r)(c’“' M o o5t 2-(L-+n)}= 1(r)

lim (G (r)2e) = K(r)

Wir betrachten nun zwei Losungen 1(r), B(r) von (1) zu verschiedenen «,, k»
(vorerst nicht notwendig x, =0):

D . U0=0

D . 8=0

>8"™D, UN-(D, B)N=0

=BT+ k2 +PU)— (V") "+ 3BT +BPHU

oder, weil P symmetrisch ist:

BT - (BTN =(k3—-xDBVTU
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integriert:

(BT~ (BTYUL = (3 k) j "R dr 2

Wir subtrahieren von (2) eine zu (2) analoge Gleichung fiir Y und X; mit:

r, —>® HZX} f =
Iy Ry ur r>r,
k,=0 0)=B0)=0
K=K
folgt dann:
li_rg (Y™X' - (Y'Y X)—«k? j (Y™X-8B"1) dr')=0 (3)

Aus (3) kann man direkt die ER-Entwicklung fur die & '-Matrix gewinnen: Auf
das Integral lasst sich Bethes Argument [8] anwenden: Innerhalb der Reichweite
des Potentials (nur dort ist der Integrand von Null verschieden) hiangen die
Wellenfunktionen nur schwach von der Stossenergie ab, da hier «” viel kleiner als
V(r) ist. Wir kdnnen das Integral also als rasch konvergierende Potenzreihe in ?
mit konstantem erstem Term schreiben. Die Wronski-Determinante
lim,_, (Y™X'—(YT)X) haben wir mit L =1, L' = 3 durch Einsetzen der Entwick-
lungen fir Coulomb- und Besselfunktionen [18] explizit ausgerechnet. Die
asymptotischen Funktionen Y, X sind zwar bei r=0 nicht reguldar, aber die
divergenten Terme in (3) heben sich in allen Fallen weg. Nach langerer Rechnung
erhalten wir dann fir (3)

323 CH) (KT +21Co2(m)hy(m)) — 3,

-a’ 3
4 7 logo.:+ou<2(2y~z)=.tc?‘B1 (3a)
- . a’
7k’ C3(n) (K3 +2nC52(n)h3(11))—7913—(6,)2 log a
+a’k’n,+a’k*n,+ak®ny;=k’B;  (3b)
3-7k>Cy(n)Cs(n)R713 — 3,3 = k*Bj, (3¢)
3 7KSC1(11)C3(7])@T3} —7Usy = KzBu (3d)

mit den Bezeichnungen:
L (8 @;L) :(m QIU,»)
L P ) M e ey
_. Be BLL')._- (r T GETTY ot B )
B_.(BL'L B,. —El_l’)l;l) r (Y'X-8"1) dr' - B(r)
};L(r) BﬁLL'(r))
B (r) BpAr)
313(r)=f)’31(r)=0

B(r)=:(
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B,(r)=BC,(m)k) '(r ' +alogr)
By(r)=(1Cs(m)kd) '(r *k L+ r 4 —in]

—3..1Lril .2 ; 1 =2..21rL..3 74
+rokislom 2]k slm T+
-1 . 3117 _.4,31_2 1
+r kel 1sm +30m 7 + 4l

+(log r)x*s3slen’ +1gn” + 21 )

8 & 4
n,= (7[27— Z S']—ﬁ)m—z.() -107¢
1

(6!)2 £ 5!
112 & .. I7d L
n2=(6!)2(7[2y—les ]+—7_5!)=—1.5-10
128( [ g ] 453) B
= 18| 2v — 14 =)=12-103
= e B2 25 g
FL(T”

hi(n):=Re (Y(1+in))+log (2) +

pr(m)

fi (n), pr. (m) endliche Polynome in m (siehe unter Kap. Coulombfunk-
tionen in [18]; 7 (n) dort r. (1))

Mit li_n30 (L +1)*k?2"120C73C%) = a2 ((2L)) 2
lim A, (n) =log «
~r|—>oc

folgt aus (3a) bis (3d):

l]_nl) (3K3C%ﬁ;1) - 911’ }cl—»(m) (3 ’ 7K5C1C3‘@;31) = 39{13: 79131

lim (7K7C§§E§1) = 913

k—0

Dieses letzte Ergebnis ist eine Folge der Forderung lim,_, X =Y. Die Existenz
der Matrix 2 ist aequivalent zur Existenz der Streulinge in der ungekoppelten
Theorie.

Da & ' symmetrisch ist, muss gelten A, 5: A5, =7:3, und daher gilt mit (3c),
(3d) B,3=B;,. Die nichtdiagonalen Elemente von 2 verschwinden im all-
gemeinen nicht, wie wir in Abschnitt 3 noch explizit sehen werden.

Schreiben wir B als Potenzreihe in «” und fassen die Terme geeignet
zusammen, so ist (3a) bis (3d) schon die gewiinschte ER-Entwicklung fir & ' mit
phanomenologischen Koeffizienten. Die Definition samtlicher Funktionen und
Hilfsfunktionen ist so gewéahlt, dass der Uebergang a — 0 direkt gemacht werden
kann und die iibliche ER-Entwicklung fiir den neutralen Fall liefert [11]. Fur die
ER-Funktion im ungekoppelten geladenen Fall ist aber eine etwas andere Defini-
tion als die durch (3a), (3b) gegebene (cot 85 ;<> 8, ") iiblich. Um daran Anschluss
zu gewinnen, ziechen wir in (3a), (3b) zusitzlich alles, was sich als rasch konver-
gierende Potenzreihe in x* entwickeln lasst, auf die rechte Seite. Durch Entwik-
keln von (2L +1)*k?**"120C; Co%7.(m)pL'(n) verlieren wir allerdings dabei die
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Moglichkeit, den Limes a — 0 in den diagonalen Gleichungen zu machen. Wir
erhalten dann schliesslich (in Potenzen von fm), geschrieben fir allgemeine L:

Qu(RT):= (RL + 1)1 DU CEHm)QT + 20 (n)h(n))
Lo

R R o N
ai ' 2 b=l

Q. analog
Q. (R ):=QL+1)'QL'+ DN k""" 1'C () C (MR

1 p(Ll 2
= o . (D)
Bir 2

fur festes J (als Index uberall unterdriickt), wobei
L=J-1,L'=J+1

h(n) = Re (¥(1 +in))—log n, lim h(n)=0,

mit phanomenologischen Koeffizienten aj, ri, Bi., pi.- (4a) reproduziert das
Ergebnis von [12] und gleicht formal der in der Literatur tiblichen ungekoppelten
Entwicklung ([21], [22]), wenn man §' durch cot 81 ersetzt.— Fiir den numeri-
schen Gebrauch im Energiebereich <3 MeV sind die durch (3a) bis (3d) und (4)
gegebenen Entwicklungen gleichwertig; im folgenden beziehen wir uns immer auf

(4).

3. Bornsche Naherung und Parametrisierungen

3.1. Bornsche Naherung im Kernpotential fiir die verallgemeinerten Streuldingen

Wir gehen aus von dem bekannten Ausdruck fiir die §£-Matrix in Bornscher
Niherung (siche Anhang Al):

K, =k I Fi(kr)Vi(r)dr=:x"'f,
(§]

fiir die diagonalen Elemente und:

e}

K, =x"" j F, (kn)F (k) V (r)dr=:k""f

0
fiir die nichtdiagonalen. Es folgt:

o U )

Aus (4) lassen sich jetzt im Limes k« — 0 die “‘Streuldngen” berechnen. Wir
erhalten nach einigen trivialen Zwischenschritten:
1 N,

- = 2L+1 || 2M(2L+I)
ay ( i ’ Nl_N[.'_Nil,'

a1
K=

(5a)
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1 N

——=(@L'+ D! )2 MP-*P - 5b
a (( ) DEMG NN, —N°.. (5b)

- =QRL+1!1 QL'+ 1)! ! ME+L+D —New (5¢)
BE.L' ’ NL.NL’_N%L’

oc

mit: N; := J' (IZLirl(r))zvl_(r) dr

(0]

N, := J Ly (Do (Vi Ar) dr
(0]

i_o,(r) =r’(1+iar+5ar?+- )

L(n=r(1+0(a))

3.2 Phasen und Mischungsparameter

Es ist uiblich, ©- und -Matrixelemente (und damit Wirkungsquerschnitte)
durch die reellen Streuphasen und Mischungsparameter auszudriicken. Eine
gebrauchliche Parametrisierung ist die durch Eigenphasen 8;; und Mi-
schungsparameter £§[15]. Im folgenden wollen wir einige Bemerkungen tiber das
niederenergetische Verhalten dieser Parameter machen. Die & '-Matrix wird:

Q-1 (COSZ e$cot 85,+sin e5cot 85, Lsin 2e5(cot 85, cot 85 .)) )
3sin 2e§(cot 87, —cot 875)  cos® g5 cot 87, +sin> g5 cot 8f
L=J-1, L'=J+1
Es folgt mit (4):

cot 85 .,= 2, + 2. —21Co%(n)h(n)
5

L

+((z-2)+(2))" ®

iy D= ;((IZ— §)2+ (E’)z)m

mit den Abkurzungen:

Z:: (._i(__*_r_L k2_|_ % i@ )(2((2L+ 1)1 !)2k21.+1C2d(n))—-“|

L ap 2

Z analog

L'

Y = (— . +@ k?+- - -)((2L+1)! QL'+ DN K1 C () Crm) 7!

c
L e 2
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Im Limes k — 0 fiihrt (6) (bis auf hohere Ordnungen in «) zu:

1 aj-
i 21, 2L+1 c — "-2 o L
ll_r’(n) (C%k cot 85,)=(2L+1)'") ( af_+(Bf,L')2) (7a)
, 1
fim (C2k2*"cot 85.5) = (2L + 1)1 ) (- v
2,
a’M; af.
5 c_ _ Tt 5 i
Jim, €5 24 BS,. e

(Der Index J ist an den ER-Parametern immer unterdruckt.) Mit den aus dem
Paris-Potential [6] berechneten Werten (siehe Abschn. 4): a{=3.35fm?>, a5=
19.6 fm’, B$3=2.31 fm® ergibt sich

lim £5=—0.0244" (8)
k—0
Zum Vergleich sei hier erwiahnt, dass fiir J =2 das Ein-Pion-Austausch (OPE)-
Potential zu einer denkbar schlechten Bornschen Naherung fiur die
Streulangenfiihrt. Es gilt namlich:

e

Ny= J r*v,(r) dr+% j r’V,(r) dr+ O(a?)

(8} 0

Ni3= J réVis(r) dr+ O(a)
4]

wobei [ r*VPPE(r) dr=0. Es folgt damit in Bornscher Naherung nach (5) und

(7¢) z.B. fiir £5:

31 NOPE

lim eSOPE ==

k—0 7 NPEE
1/2
6 M,. . . c
=g o in niedrigster Ordnung in «

~0.89° mit m,, = 0.684 fm

Gleichung (7¢) zeigt,') dass die Forderung in [15] lim,_,, e5=0, die erst die
Zuordnung der Eigenphasen zu Bahndrehimpulsen eindeutig macht, im
Coulomb-Fall nicht erfiillt ist. Die Gleichungen (7) sind ein weiteres Argument
fur die verbreitete Verwendung der Barphasen-Parametrisierung [16] der ©-
Matrix in der Nukleon-Nukleon-Streuphysik (vgl. auch [16] und [24]): Wahrend
die 8¢, fiir k=0 exponentiell gegen Null gehen (Ci proportional (e*™—1)""),
geht £ gegen eine Konstante, obwohl das nichtdiagonale ©-Matrixelement auch
exponentiell verschwindet. &5 ist also ein schlechtes Mass fiir die Mischung der
Zustande. Ausserdem ist die Naherung fiur das diagonale Matrixelement &, =
2i87,;+ 1 wegen der Zumischung der anderen Eigenphase auch bei kleiner Ener-
gie relativ schlecht. Anders dagegen in der Barphasen-Parametrisierung: Aus den

Y Schon der Arbeit [23] kann man entnehmen, dass lim, , €5=const. (ohne Angabe der
Grossenordnung).
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Umrechnungsformeln
tan 25 . = Ze
< =sin (87,81 y)
tan 2¢e5
sin2gj; . .
¢~ SiD (87,— 81
SIN L&

gt or= O+ 01

und (7) sehen wir sofort, dass hier sowohl 85, wie &5 exponentiell gegen Null
gehen fur k — 0. Damit ist &, = 2id7,+ 1 eine gute Ndherung bei kleiner Ener-
gie. Wir geben ein numerisches Beispiel mit dem Paris-Potential: E; zp=
3.037 MeV

S, =cos” e5e*®+sin’ e
~0.965¢%%:+0.035¢%%%

S, =cos 285e7%12=(.9999¢%?:

C

- 2085,
2€ ¥

4. Numerische Ergebnisse mit dem Paris-Potential

4.1. Allgemeines

Alle unsere Rechnungen wurden mit dem Isospintriplett-Anteil des Paris-
Potentials in der parametrisierten Form [6] durchgefithrt. Wir berechneten
bezuglich Coulombfunktionen die Streuphasen fir die ungekoppelten Zustande
'So, 'Ds, *P,, *P; und die beiden Phasen und den Mischungsparameter fiir das
erste gekoppelte Zustandspaar *P,->F,. Aus dem Niederenergieverhalten der
Phasen bzw. des Mischungsparameters wurden dann die durch (4) definierten
ER-Parameter bestimmt (im ungekoppelten Fall ist Q; (cot 8} ;) identisch mit der
in der Literatur [22] liblichen Definition der ER-Funktion). Fiir saimtliche Rech-
nungen verwendeten wir wie die Paris-Gruppe ([6], [25]) das Coulombpotential
fur punktformige Protonen und rechneten ohne relativistische Korrekturen. Wir
konnen deshalb unsere Rechnungen direkt mit den Ergebnissen der Paris-Gruppe
vergleichen.

Der zentrale Anteil des Paris-Potentials enthdlt das Quadrat des Impuls-
operators. Durch eine einfache Transformation der radialen Wellenfunktion [26]
gelangt man aber zu einem effektiven lokalen Potentialoperator (explizit in
Anhang A2 fiir gekoppelte Radialgleichungen durchgefiihrt). Als Integrations-
routine fiir die resultierenden effektiven radialen Schrodingergleichungen kann
man dann die Numerov-Methode verwenden, ein spezielles Verfahren fiir
Differentialgleichungen der Form U"(r)=w(r)U(r) mit einem Fehler der
Grossenordnung (Schrittlinge)®. Mit dieser Routine war es moglich, die Streupha-
sen bis zu sehr kleiner Energie auf mindestens drei signifikante Stellen zu
berechnen. So konnten alle in den Tabellen I und II angegebenen Parameter in
einem Energiebereich ermittelt werden, in dem hdhere als lineare Terme in k?
numerisch keine Rolle spielen. Als typisches Beispiel fiir unser Vorgehen und die
Zweckmassigkeit der ER-Naherung einige Ergebnisse fur das nichtdiagonale



1060 G. Piepke H.P. A.

Tabelle I
Mit dem Paris-Potential gerechnete ER-Parameter fiir die gekoppelten Zustinde *P,-*F, des Proton-
Proton-Systems (in Potenzen von fm). Definitionen siehe Gleichungen (4).

:
a;

c

s o o C
r as T3 13 Pi3

335 -7.60 19.6 -3.04 231 -11.8

Matrixelement 8713: Im Energieintervall 0.5 10 *MeV = E, .z =0.5 MeV wurde
an 10 Stellen mit der Numerov-Methode &5 bestimmt. Die Phasen und 8,3
variieren dabei um mehrere Grossenordnungen, die durch (4b) definierte ER-
Funktion Q.;(§73) ist aber in sehr guter Naherung (Betrag des
Korrelationskoeffizienten = 0.99998) eine Gerade (Fig. I) mit den in Tabelle I
angegebenen Parametern. Dies ist eine wirksame Kontrolle der Integrations-
routine bei niedriger Energie. Einen Test bei hoher Energie liefert der Vergleich
mit den Ergebnissen der Paris-Gruppe selber: Hier erhalten wir in allen Fallen fiir
25=E; . =330 MeV Uebereinstimmung mit den Phasen aus Table III in [6].

4.2. s-Welle

Aus differentiellen Wirkungsquerschnitten fur Proton-Proton-Streuung bei
Eiag<3MeV kann man im wesentlichen neben der zentralen Triplett-
Phasenkombination A, =§(8,,+38,, +58,,) nur die dominierende s-Wellenphase
entnehmen. Ueber die s-Welle besitzt man auch schon lange genaue experimen-
telle Informationen: Die ersten Messungen untersuchen die engere Nachbarschaft
des Interferenzminimums (IM) [1] und den Energiebereich 1.4=E; \z =3 MeV
[2]. Im IM fiihrt eine destruktive Interferenz bei 90°C Schwerpunktswinkel zwi-
schen Coulomb- und Kernamplitude zu einer fast vollstandigen Ausloschung des

Wirkungsquerschnitts ¢. Der grosse Differentialquotient an dieser Stelle

00
erlaubt eine besonders genaue Festlegung der s-Wellenphase §,,. So bestimmen

Gursky und Heller [27] aus den Daten [1] die Lage des IM zu E;,=
0.38243 1 0.00020 McV und gecben fiir diese Energie dic clektrische [17] s-
Wellenphase 85, mit 85,(0.38243)=14.611°+0.01° an. Noyes et al. ([28] bis
[30]) analysieren mit der Wisconsin-Gruppe deren Daten [2] fiir 1.4=FE, \g=
3 MeV (die Ergebnisse fur 8¢, siche Tabelle III). Gestutzt auf diese Daten, die
Messung [1] und ein weiteres Experiment bei 9.918 MeV werden in [29] fir die

Tabelle 11
Mit dem Paris-Potential gerechnete ER-Parameter fir ungekoppelte Partialwellen des Proton-Proton-
Systems (in Potenzen von fm). Die Definition der Parameter ist durch (4a) gegeben, wenn man dort
K7! durch cot 87 ersetzt.

1S() IDZ 3P() 3P'l

a —7.887 ~-2.15 -3.32 2.04

re 2.805 11.7 359 -7.61
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ELas [Mev]
04 1 2 3 4 5. 5
T I 1
-0AE E
e 433
Q, (cot Bfa) 432 Tw

3.4 1@

Q, (cot

Figur I

Energieabhingigkeit der durch (4) definierten ER-Funktionen (man beachte die verschiedenen
Einheiten der linken Ordinate fiir die gekoppelten Funktionen: Q, in fm >, Q5 in fm >, Qs in fm 7;
die rechte Ordinate ist der Massstab fiir die ungekoppelte ER-Funktion Q (cot &$,) in fm ). Die
durchgezogenen Kurven sind durch Losen der Schrodingergleichung mit dem Paris-Potential berech-
net. Die gestrichelten Geraden sind die ER-Geraden mit den Parametern aus Tabelle I, die durch
Anpassung von (4) bei sehr kleiner Energie an die Losung der Schrodingergleichung gewonnen
wurden. Q,(®,") folgt im Gegensatz zu Q ,(cot &5,) bis 5 MeV sehr gut der linearen Naherung.

ER-Parameter folgende Werte angegeben: ag§= —7.8146+0.0054, Fo =
2.7950+0.0080 (auf Vakuumpolarlsatlon korrigierte ER- Naherung fiir 85, nach
[17] die Fehler sind rein statistisch), a5 =—7.823+0.01, r§=2.794+0.015 (850
ist in [29] durch Anwendung einer modellabhéngigen Korrektur [31] aus 55,
berechnet worden; die Fehler schliessen neben den statistischen Fehlern noch die

Tabelle III
Unsere Ergebnisse fur die elektrische s-Wellenphase gerechnet mit dem Paris-Potential im Vergleich
mit dem Experiment (Phasenanalysen [29] und [5]). Verwendet sind die experimentellen Daten aus
-[4], B)-[3] und ¥)-[2]. Wir zitieren aus [5] die multi energy fits der drei Datengruppen; die
Fehler, die wir in dieser Spalte angeben, stammen jedoch aus den single energy fits in [5].

Sﬁ)[Grad]
Experiment
E ag[MeV] [29] [5] Paris-Potential
a)
0.35009 13.2984+0.056 13.42
0.42006 16.074+0.025 16.22
0.49923 18.995+0.006 19.17
0.74996 26.783+0.011 27.00
0.99183 32.521+£0.014 32.76
B)
0.49925 18.9714+0.025 19.17
0.99190 32.482+0.014 32.76
1.88060 44.617+0.016 44 .86
Y) v)
1.397 39.32134+0.028 39.307+£0.018 39.60
1.855 44.3292+0.023 44.35340.017 44.64
2.425 48.3553+0.026 48.3494+0.018 48.61
3.037 51.0233+0.040 51.029+0.025 51.27




1062 G. Piepke H P A.

Unsicherheiten aus dieser Modellabhangigkeit und zusatzlich die Unsicherheiten
in der Pion-Nukleon-Kopplungskonstante (Shape-Korrektur) mit ein).— Naisse
[10] benutzt zusidtzlich Messungen bis 30 MeV und kommt in Uebereinstimmung
mit [29] zu: af=—-7.828+0.008, r5=2.80+0.02. Dabei beriicksichtigt er aller-
dings explizit in seinem Modell die endliche Ausdehnung des Protons ([32], Dipol-
Formfaktoren).— Inzwischen haben die sehr prazisen Querschnittsmessungen aus
Basel [3] und Ziirich [4] zusétzliche Daten unter 2 MeV geliefert. Diese neuen
Messungen und die Daten [2] untersucht die Nijmegen-Gruppe in ihrer
Phasenanalyse [5] (Tabelle III). Sie kommt zum Schluss, dass insbesondere die
Daten [4] eine leichte Aenderung der alten, hauptsidchlich durch die Daten
[2] zustandegekommenen Niederenergieparameter nahelegen. Die Ergebnisse
sind: ag=-7.8016+0.0029, r5=2.773+0.014, Ep,=0.38254+0.00005,

65(0.38254) = 14.608°+£0.001". Die Ergebnisse am IM stimmen sehr gut mit
den alteren Werten aus [27] liberein.

Diese experimentellen Werte einerseits und unsere Ergebnisse mit dem Paris-
Potential auf der anderen Seite haben wir nun zu vergleichen. Wir erhalten:

= —7.887 fiir die Streulinge und r5=2.805 fiir den Effective Range. Das

Ergebms fiir die Streulange liegt weit ausserhalb der experimentellen Grenzen
und ist auch im Widerspruch zu dem von der Paris-Gruppe selbst fiir ihr Potential
angegebenen Wert (aj=—7.810, r§=2.797 [6]). Bei den Phasen 8, stimmen die
Ergebnisse der Paris-Gruppe aber auch bei kleiner Energie bis hinunter zum IM
mit unseren iiberein ([25]; unsere Rechnungen und diejenigen der Paris-Gruppe
basieren auf der gleichen Fassung des Paris-Potentials [6]). Moglicherweise hat
die Paris-Gruppe bei der Bestimmung der ER-Parameter in [6] aus ihrem
Potential Phasen bei zu grosser Energie verwendet, wo hohere Terme in k2 in der
ER-Entwicklung nicht mehr vernachlassigt werden konnen.— Die Diskrepanz zu
den experimentellen Werten zeigt sich auch, wenn wir unsere mit dem Paris-
Potential errechneten Phasen 6§, mit den Standardmethoden aus [31] und [33]
niherungsweise auf die Phasen 8§, umrechnen (Tabelle III, bei E; \p=
0.38254 MeV erhalten wir 85, = 14.74°). Bei der Umrechnung &5, — 85, haben
wir allerdings die vom verwendeten Potentialmodell abhiangige Foldy-Korrektur
[31] A, nicht selber mit dem Paris-Potential gerechnet (860+ 70 =850+ A, mit den
Bezeichnungen 7, und A, aus [17]) A, ist fur vier Potentialmodelle schon
berechnet worden (0.01=E; ,5g=9.918 MeV, [31] und [29]). Die vier Werte fiir
A, zu einer festen Energie weichen jeweils nur um maximal 6% von ihrem
Mittelwert ab. Diese Mittelwerte haben wir (zum Teil musste interpoliert werden)
in unserer Umrechnung benutzt. Die 6% Abweichung fiihren zu einer maximalen
Unsicherheit in 8§, von+0.01°. Nach Angaben der Paris-Gruppe [25] aber weicht
A,, mit dem Paris-Potential berechnet, um 60% bis 150% (0.38243=FE, .gz=
3.037 MeV) von den Mittelwerten der schon bekannten Potentialrechnungen ab
(die Werte des nicht modellabhéngigen 7, sind in keiner Weise strittig). Das fiihrt
dazu, dass die Paris-Gruppe mit den 8§, aus denen sich eine von den experimen-
tellen Zahlen stark verschiedene Streulinge ag ergibt, durch die
Vakuumpolarisations-Korrektur zu Phasen 8§, kommt, die mit dem Experiment
(Erap=3 MeV) ausgezeichnet ibereinstimmen [34].— Eine andere Situation bei
9.85 MeV: Hier geben Barker et al. [35] einen neuen experimentellen Wert
86,=55.24°+0.15°. Gleichzeitig rechnen sie die Phasen auch mit dem Paris-
Potential [6]: 8§ =55.19° in volliger Uebereinstimmung mit unserem eigenen
Ergebnis. Die Paris-Gruppe selber aber erhilt mit ihrem Potential 85, = 55.05°
[25], und zwar mit genau den gleichen Rechenmethoden wie in [34].
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Tabelle 1V
Differentielle Wirkungsquerschnitte fiir Proton-Proton-Streuung in der Nahe des Interferenzminimums.

a[mb] bei E, ;s = 400.04 keV

Paris-Potential
mit korrigierter

0, aplGrad]  Paris-Potential Experiment [4] s-Welle
29.200 228 228.9+0.7 229
42.512 4.76 4.468 +0.08 4.56
45.012 1.76 1.564+0.01 1.55
47.512 4.83 4.655+0.08 4.64

Wie schon erwahnt, erscheinen in der Nahe des IM kleine Aenderungen der
s-Phase vergrossert im Wirkungsquerschnitt. Ein Beispiel dafiir gibt Tabelle 1V:
Hier wird eine differentielle Querschnittsmessung aus [4] bei E;rp=
0.40004 MeV mit der Vorhersage unserer Rechnung mit dem Paris-Potential
verglichen (in den Streuamplituden sind alle oben erwihnten Partialwellen
beriicksichtigt worden; unsere Formeln fir die Amplituden haben wir an [36]
kontrolliert; die Korrekturen auf Vakuum-Polarisation wurden wieder nach [31]
und [33] vorgenommen). In der letzten Spalte stehen die Querschnitte, die wir
erhalten, wenn wir in den Amplituden die s-Phase des Paris-Potentials durch eine
der Phasenanalyse [5] angepasste s-Phase ersetzen, die hoheren Phasen aber nach
wie vor mit dem Paris-Potential berechnen. Wie man sieht, fuhrt die s-
Wellenphase des Paris-Potentials zu Abweichungen vom Experiment in der
Grossenordnung von maximal 10 % .-

Offensichtlich ([6],[25]) rechnet die Paris-Gruppe alle ihre Phasen mit dem
gewoOhnlichen Coulombpotential fiir punktformige Protonen und verfuhr bei der
Anpassung der Potential-Parameter ebenso. Die oben erwidhnten Phasen-
analysen verwenden aber in ihren Modellen von Fall zu Fall unterschiedliche
Korrekturen zum gewohnlichen Coulombpotential. Bei der Reduktion einer
relativistischen 1-Photonaustausch-Amplitude mit Proton-Formfaktoren auf
ein nichtrelativistisches Potential, das man in einer Schrodingergleichung ver-
wenden kann, ergeben sich neben dem Coulombpotential eine Reihe von Kor-
rekturtermen, welche wir in zwei Gruppen einteilen konnen: Die erste enthalt
impulsabhdngige Terme. Diese beriicksichtigt man ndherungsweise [32], indem
man in der nichtrelativistischen Schrodingergleichung und in der gewohnlichen
Coulombamplitude das nichtrelativistische n durch das relativistische (n™"" =
e’/v, wobei v die relativistisch aus der Laborenergie berechnete Geschwindigkeit
des einfallenden Protons im Laborsystem ist) ersetzt. Diese Korrektur wenden
alle oben zitierten Phasenanalysen an ([10] und [5] behandeln dieses Problem
noch ausfithrlicher). In [27] wird jedoch anhand der Daten [1] gezeigt, dass der
Einfluss auf die Phasen bei kleiner Energie gering bleibt: Der oben zitierte Wert
860(0.38243)=14.611°+£0.01° ist mit relativistischem mn bestimmt; mit
nichtrelativistischem 7 erhalten die Autoren 8, = 14.606". Trotzdem haben wir
zur Kontrolle die radiale Schrodingergleichung fiir die s-Welle mit dem Paris-
Potential fur einige Energien auch mit relativistischem n gelost. Bei 1 MeV ergibt
sich z.B. &{,=33.04" mit relativistischem m, dagegen &;,=33.05" mit nicht-
relativistischem 7. Mit dieser Korrektur ldsst sich also die hier diskutierte Dis-
krepanz zwischen den Experimenten und unserer Rechnung mit dem Paris-
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Potential nicht erklaren.— Die zweite Gruppe der oben erwahnten Korrektur-
terme ist lokal. Sie bewirkt (aufgrund der Formfaktoren) die Regularisierung des
Coulombpotentials bei r=0 und seine Modifizierung im Bereich sehr kleiner
Nukleonenabstiande (r<2 fm). Wegen dieser Kurzreichweitigkeit und wohl um
zu vermeiden, modellabhdangige Grossen wie Formfaktoren in die Rechnungen
einfithren zu missen, haben alle oben erwahnten Phasenanalysen (ausser [10]) die
endliche Ausdehnung des Protons nicht explizit beriicksichtigt. Damit wird quasi
der kurzreichweitige Teil der elektromagnetischen Wechselwirkung per
definitionem in die hadronische s-Welle gesteckt. Da die Paris-Gruppe bei der
Anpassung ihres Potentials (d.h. des soft core) offensichtlich ebenfalls keine
Formfaktoren beriicksichtigt, ‘“‘enthalten” die an experimentelle Phasen ange-
passten Kern-Parameter diesen elektromagnetischen Anteil. Korrektur der Phasen-
rechnungen mit dem Paris-Potential auf endliche Ausdehnung des Protons hiesse
also, diesen Effekt doppelt zu zahlen. Es ist aber trotzdem von Interesse zu
wissen, wieviel etwa von den ER-Parametern ag, r;, die man aus dem Paris-
Potential errechnet, “auf das Konto der elektromagnetischen Formfaktoren
geht”. Um dies zu testen, verfuhren wir folgendermassen: In [32] werden fiir
verschiedene experimentell gefundene Formfaktoren explizit die Korrekturterme

zum gewOhnlichen Coulombpotential angegeben, genahert durch eine Funktion
2

S(r). Das korrigierte elektromagnetische Potential lautet dann e—(1+S(r)). Fiir
r

zwei der in [32] vorgeschlagenen S(r), namlich derjenigen fir Dipol-
Formfaktoren und der fur Formfaktoren nach Fried und Gaisser (siehe

Literaturangaben in [32]) haben wir die Schrodingergleichung fiir die s-Welle mit
2 2

e ) )
dem Paris-Potential und = (14 S(r)) statt mit — gelost. Wir geben aber hier nicht
r r

die Absolutwerte der so errechneten Phasen oder ER-Parameter an, weil diese ja
aus oben erlauterten Grunden die Strukturkorrektur zweimal “‘enthalten’, son-
dern nur prozentuale Abweichungen von unseren Standard-Ergebnissen mit dem
gewohnlichen Coulombpotential: Die Streulinge ag = —7.887 veranderte sich mit
den Dipol-Formfaktoren um 0.27%, mit den Formfaktoren nach Fried/Gaisser
um 0.55% (d.h. a§ wurde kleiner); ri,=2.805 anderte sich mit den Dipol-
Formfaktoren um —0.1% . mit den Formf. nach Fried/Gaisser um —0.18%. Diese
Prozentzahlen sind also (in guter Ndherung) die ‘““Anteile” der elektromagneti-
schen Formfaktoren des Protons an Streulinge und Effective Range des Paris-
Potentials (Isospintriplett).—

Zusammenfassend lasst sich folgendes sagen: Es gelingt nicht, mit dem
Paris-Potential die Ergebnisse der heute vorliegenden Proton-Proton-
Streuexperimente unter 3 MeV befriedigend zu reproduzieren (z.B. ist die Dis-
krepanz zu den Ergebnissen der Experimente aus Basel [3] und Ziirich [4] weit
grosser als die kleine Differenz zwischen diesen beiden Messungen). Dieser
Mangel des Paris-Potentials zeigt sich am einfachsten im hochsignifikanten Ab-
weichen der Streulange um ca. 1% von den experimentellen Werten, was zu
Abweichungen im differentiellen Wirkungsquerschnitt bis zu 10% fiihrt. Aller-
dings lassen sich die niederenergetischen Experimente mit dem Paris-Potential gut
reproduzieren, wenn man nur die Ein-Pion-Austausch-Kopplungskonstante des
Paris-Potentials um einen Faktor 0.9936 verandert. Es ist jedoch klar, dass dieses
Vorgehen nicht ohne eine gleichzeitige Anpassung aller Parameter des Paris-
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Potentials erlaubt ist. Die vorliegende Fassung des Paris-Potentials ist jedenfalls
unverkennbart fiir den mittelenergetischen Bereich der Proton-Proton-Streuung
angepasst worden [6].

4.3. Hohere Partialwellen

Tabelle II zeigt alle ungekoppelten ER-Parameter, die wir mit dem Paris-
Potential erhielten (siehe auch Tabelle V). Fiir die p-Wellen ist die experimentelle
Unsicherheit in den ER-Parametern noch recht gross [22]. Fiir die ' D,-Parameter
gibt es bis jetzt noch keine experimentellen Daten.— In [35] werden ebenfalls mit
dem Paris-Potential fiir die *P,-Zustinde Phasen (bei 5.05 und 9.85 MeV) und
ER-Parameter gerechnet. Diese Ergebnisse unterscheiden sich zum Teil
betrachtlich von unseren (im Gegensatz dazu stimmen wir bei allen Streuphasen
fur L >0 einschliesslich Mischungsparameter, die wir mit dem Paris-Potential
gerechnet haben, mit der Paris-Gruppe selber ([6] und [34]; 6.141 = E; A5 = 330)
uberein). Die mit dem Paris-Potential gerechneten Ergebnisse bei 5.05 MeV in
[35] scheinen jedoch fiir die p-Wellen nicht zuverlassig zu sein. Zum Beispiel liegt
die Phasenrechnung fiir P, bei 9.85 MeV gut auf der ER-Geraden, die durch die
Parameter in [35] definiert wird, bei 5.05 MeV aber nicht. Auch in [37] werden in
den Tabellen diese p-Phasen-Ergebnisse aus [35] bei 5.05 MeV nicht benutzt,
wohl aber die bei 9.85 MeV, mit denen wir gut iibereinstimmen.—

Der heutige Stand der experimentellen Technik fiir Proton-Proton-Streuung
erlaubt es leider nicht, bei E; .z <3 MeV Informationen uiber die Partialwellen
L >1 aus den Messungen zu entnehmen. Nach unseren Berechnungen mit dem
Paris-Potential betragt der Beitrag von *F,-Phase und &, Mischungsparameter
zum Wirkungsquerschnitt etwa bei E;,,=0.383 MeV und 90° nur ca. 0.01%., bei
3 MeV liegt dieser Beitrag uiber alle Winkel bei maximal 0.1%.. Die experimentel-
len Fehler im Wirkungsquerschnitt liegen jedoch bei den neueren Messungen in

Tabelle V
Proton-Proton-Streuphasen fiir die niedrigsten ungekoppelten Zustiande. Unter “exakt’ stehen die
Werte, welche wir durch Losung der Schrodingergleichung mit dem Paris-Potential erhalten, unter
“ER" die Werte, die sich aus Gleichung (4a) (' ersetzt durch cot 8¢ ,) mit den ER-Parametern aus
Tabelle 11 ergeben (hdhere Terme in k2 werden vernachlassigt). Diese Parameter sind ihrerseits
wieder durch Anpassung von (4a) an die Losung der Schrodingergleichung bei sehr kleiner Energie
gewonnen worden.

860 [Grad] 85, [Grad] 890 [Grad] 89, [Grad]
E| »p exakt ER exakt ER cxakt ER exakt ER
[MeV]
0.1 2437 2437 0.115-5 0.115-5 0.140-2  0.140-2 —-0.860-3 —-0.860-3
0.5 19.31 1930 0.156-3 0.157-3  0.0412 0.0412 -0.0250 -0.0250
1 33.05 33.02 0.102-2 0.103-2  0.141 0.141 —0.0846 —0.0846
2 4594 4581 0.588-2 0.597-2 0.435 0.436 -0.257  -0.257
5.05 54.95 54.52 0.0477 0.0510 1.68 1.69 -0.945  -0.946
9.85 55.21 5443 0.173 0.205 3.82 3.95 -2.09 -2.10
T Inzwischen ist ein Grossteil der hier vorliegenden numerischen Resultate von einem Gutachter

der Zeitschrift Journal of Physics auf unabhaengige Weise nachgerechnet und vollumfaenglich
bestaetigt worden.
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diesem Bereich ([3],[4]) zwischen 1%. und 2%. Deshalb ist es zur Zeit nicht
moglich, mit experimentellen Ergebnissen fiir die in Abschn. 2 definierten gekop-
pelten ER-Parameter zu vergleichen. Es besteht jedoch die berechtigte Hoffnung,
dass Nukleon-Nukleon-Wechselwirkungsmodelle, die den mittel- und langreich-
weitigen Teil der Wechselwirkung durch die Boson-Austauschtheorie beschreiben
(das Paris-Potential beriicksichtigt Ein-Pion-, Zwei-Pion- und w-Austausch), eine
realistische Vorhersage der hoheren Partialwellen liefern. Umgekehrt konnen die
so gewonnenen Ergebnisse dann z.B. als Input-Daten fiir eine genauere Anpassung
der s-Welle an das Experiment dienen.

In der Literatur ist seit [9] fir die *P,-Phase eine ungekoppelte ER-
Niaherung gebrauchlich. Diese Autoren machen nach dem Muster der ublichen
ungekoppelten ER-Naherung fir Q,(cot 89,) einen linearen Ansatz, zeigen aber
anhand numerischer Rechnungen mit mehreren Wechselwirkungsmodellen, dass
‘... the ’P, effective range function exhibits large curvature below 10 MeV.” Erst
nach Subtraktion der Ein-Pion-Austausch-Phase von 89, konstatieren sie fiir
Q,(cot 85,): *“... that by using this difference, the *P, effective range function is
well described below 30 MeV by a straight line.” Dagegen kommt [10] nach
Rechnungen mit seinem Potentialmodell fiir Q,(cot 87,) zum Schluss: ““. .. for the
3P, state, none of the choices for 8%, (gemeint ist 8|, mit oder ohne Subtraktion
der Ein-Pion-Austausch-Phase) is compatible with a linear dependence on k” in
any reasonable range of energies....”

. 1 852)%\ 1
Nun ist cot 69, ==— (1 —('72))27 fir kleine Phasen. Ebenfalls fur kleine
92 3 612

Phasen gilt in guter Naherung:

Q' ==

5 A, wobel = 5
12 12232

C

1 (1 (53)2)“‘__ 1 (83)°

12 12032

nicht klein gegen 1 ist. Es besteht daher die Hoffnung, dass der Faktor A, der die
Kopplung zwischen den Zustinden L =1 und L’=3 beriicksichtigt, das Kon-
vergenzverhalten von Q,(§;') gegeniiber dem ungekoppelten Q,(cot §$,) ent-
scheidend verbessert. Figur I zeight auch, dass das tatsiachlich der Fall ist: Die
schon in [9] und [10] beobachtete Kriimmung von Q,(cot 8%,), hier mit dem
Paris-Potential gerechnet, findet sich unterhalb 5MeV in Q,(®,") nicht mehr.
Oberhalb 5 MeV beginnt auch Q,(®,") von der Geraden abzuweichen. Fiir die
anderen Matrixelemente Q;(R3') und Q,53(%,3) wird die lineare Niaherung
allerdings schon ab ca. 1 MeV schlechter (es sei angefiigt. dass wir in allen drei
Fillen versucht haben, hohere als lineare Terme in k? anzupassen; die ent-
sprechenden Koeffizienten sind aber nicht mehr signifikant). Das beschrankt
aber die praktische Anwendbarkeit der gekoppelten ER-Naherung in dieser
Form. Im Experiment sind namlich nur ©-Matrixelemente (bzw. Phasen und
Mischungsparameter) direkt beobachtbar und jedes ©-Matrixelement (bzw. jede
Phase und der Mischungsparameter) ist eine Funktion aller drei & '-Matrix-
elemente. Dadurch ist fur praktische Zwecke die Anwendbarkeit der linearen
Naherung durch jenes Matrixelement von &' bestimmt, welches am starksten
von der linearen Naherung abweicht. Dies zeigt Tabelle VI: Hier werden die aus
der gekoppelten ER-Niherung (mit den Parametern aus Tabelle I) gerechneten
Barphasen mit den durch Integration der Schrodingergleichung direkt gewonne-
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Tabelle VI
Proton-Proton-Barphasen und Mischungsparameter fiir J = 2. Unter “‘exakt” stehen die Werte, welche
wir durch Losung der Schrodingergleichung mit dem Paris-Potential erhalten, unter “ER” die Werte,
die sich aus den Gleichungen (6) mit den ER-Parametern aus Tabelle I (nach Umrechnung auf die
Bar-Grossen) ergeben (hohere Terme in k2 werden vernachlissigt). Diese Parameter sind ihrerseits
wieder durch Anpassung von (4) an die Losung der Schrodingergleichung bei sehr kleiner Energie
gewonnen worden.

87, [Grad] £5[Grad] 65,/ Grad]

EI.AH
[MeV] exakt ER exakt ER exakt ER
0.1 0.127-3 0.127-3 -0.133-5 -0.133-5 0.115-8 0.115-8
0.5 0.387-2 0.387-2 -0.183-3 —-0.183-3 0.761-6 0.763-6
1 0.0138 0.0137 -0.120-2  —-0.120-2 0.990-5 0.996-5
2 0.0465 0.0443 -0.694-2 -0.701-2 0.112-3 0.115-3
5.05 0.219 0.179 -0.0567 —-0.0602 0.215-2 0.247-2
9.85 0.634 0.417 -0.206 -0.242 0.0137 0.0193
Tabelle VII

Proton-Proton Streuphasen und Mischungsparameter (in Grad), gerechnet mit dem Paris-Potential [6].
El AR - -
[(MeV] &, 8% 840 8%, 8%, €5 85, 84, £3 85,
0.35009 13.51 0.567-4 0.0210 —0.0128 0.194-2 -0.661-4 0.193-6 0.195-2 —-1.95 -0.205-5
0.42006 16.32 0.957-4 0.0297 -0.0181 0.277-2 -0.112-3 0.393-6 0.278-2 -2.30 -0.410-5
0.49923 19.28 0.156-3 0.0411 -0.0250 0.386-2 -0.182-3 0.757-6 0.387-2 -2.69 -0.781-5
0.74996 27.13 0.476-3 0.0856 —0.0517 0.823-2 —0.558-3 0.347-5 0.827-2 —-3.86 —0.342-4
0.99183 32.88 0.100-2 0.139 —0.0834 0.0136 -0.117-2 0.963-5 0.0137 —4.89 —0.909-4
1.397 39.72  0.242-2 0.246 -0.146 0.0250 —0.285-2 0.328-4 0.0253 —-6.43 —0.288-3
1.855 44.74 0.490-2 0.387 -0.229 0.0408 -0.577-2 0.870-4 0.0416 -791 -0.715-3
2.425 4870 0.932-2 0.586 —0.343 0.0645 -0.0110 0.214-3 0.0664 —-9.45 -0.162-2
3.037 51.34 0.0157 0.820 —-0.475 0.0944 -0.0186 0.444-3 0.0979 -10.8 -0.310-2

nen verglichen. Es zeigt sich, dass 85, bei 5 MeV nur noch mit einem Fehler von
ca. 20% durch die lineare ER-Niherung wiedergegeben wird, wiahrend Q,(R,")
bei dieser Energie (siehe Fig. I) noch sehr gut der linearen Niaherung folgt.

Man kann vermuten, dass erst eine Berucksichtigung der Ein-Pion-Austausch-
Wechselwirkung in der Definition der ER-Theorie diesen Mangel der gekoppel-
ten Theorie beheben kann. Die numerischen Ergebnisse fiir Q,(cot 89,) bzw.
Q,(8,") mit dem Paris-Potential zeigen jedoch, dass die koppelnde Wirkung des
Tensorpotentials auch bei sehr kleiner Energie deutlich in der ER-Naherung
nachweisbar ist.
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Anhang

A1l. Bornsche Ndaherung fur die &-Matrix
Wir gehen aus von:
(@7 + K>+ P 1+ V(r)W(r)=0
Als asymptotische Randbedingung fur die reguliare Losung 28 geben wir vor?®)
(festes J, L=J—1,L"'=J+1):

FL 0 ) + ( GL‘\S“L_ GLS‘ [_L')

B(r)=F(r+G(ns = (0 F../ \G & G 8

fur r>r,.
Die ungestorte Losung mit V(r)=0 sei
WO(r):= F(r)

Die Greensfunktion, passend zu den vorgegebenen Randbedingungen ist:

_K](FI_(K?‘)GL(KF) '0 ) fir  poey

Sy, ¥ = 0 F, (kr')G (kr)
‘ B _I(F,,(Kr)GL(Kr') 0 ) G

5 0 F; (kr)Gy (k1)

Sie erfillt: (07 + k2+ P G(r, r)=8(r—7r)
Es gilt dann:

W(r) = W (r)+ Jx G(r, r')Y(—V(r))B(r') dr’

(8]

und in Bornscher Naherung:

TR — RO _ jx GVIR® 4r'

0

Durch Vergleich mit der asymptotischen Randbedingung

G(n{=— ‘r &(r, YV B¢ dr’

0

fur r - «

) Es gilt F(N+GE{ =X '] mit X(r) ist also auch F(r)+G(r){ eine Losung der
Schrodingergleichung fiir r>r,, da (MM 'K) eine nichtsingulare Matrix ist.
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erhalten wir
. =g j Fi(kr)V, (r') dr
(0]

K, analog

KR, =k"! J F, (kr')F; (kr" )V, (r") dr’

0O

A?2. Explizite Form der radialen Schrodinger-Gleichung mit dem Paris-Potential
im gekoppelten Fall

Die zeitunabhiangige Schrodingergleichung fur die Relativbewegung zweier
Protonen lautet:

(A+k>=M,(V(Z)+ V ou(x))¥ =0

Das Paris-Potential ist jedoch nichtlokal, es gilt fiir den Spin- und Isospin-
Triplettfall (S=1, T=1) mit den Bezeichnungen aus [6]:

3+ ¥
_%!__] +V, G(X)L

V(| X022 D) g 52]

V(% p?) = Vy(x pz)[

+ Voa(x)3[(61 - L)@, - L)+ (&5 - L)(&, - L)] wobei:

. 1 Vix) Vix)[1 [?
Vitx ) = Vi) - | x5 | - L |

4] P
Mit den in Abschnitt 2.2 beschriebenen Standardmethoden fithrt das fiir die

Radialfunktionen w; (r), wu,(r) (L=J-1,L'=J+1) zum gekoppelten
Gleichungssystem:

(a2+ , LIL+1) «

i r)ul+giuL+g[Lul =0

L'(L'"+1) ©
o
((‘)3 + Kz_—F_—?)uL'JT‘ gLrqu+ gl_L'uL — 0

LV—LS—-Lz VS()2+ 2L V, V”+

ST M, M, 2L+3 M, M,
L(L+1)
2—( Vi+ V82 +92(VE )
r
UV
BT TT5 41 M

P

1% L'+1 8
gl_,::(L'+1)XL~—S—(L,'+1)2 soz | A d, 8 Xl

M, M, 2L-1 M, M,
L'(L"+1
2(——)V*’+ ViaZ+ a2 (VD)

l’
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Um zu einer effektiven (lokalen) Schrodingergleichung zu kommen, machen wir
den Ansatz [26]:

a;(r):=u(r)- (1+2V4(rn'? i=L, L
und gelangen so durch Einsetzen in (9) zur Gleichung (1) aus Abschnitt 2.2
DK(?L)z() (10)
Up:

fur die neuen Radialfunktionen mit dem lokalen Potentialoperator:

Vi (r)= 1 (—LV’S—LZVS"% o Yy ¥,
T (1+2vh) M, M, 2L+3 M, M,
b\2
. 2_g)zvh+ (arvl) )
(" P)S T 1 2vh
6(J(J +1))"2 Vi
Vi) =— ’ b
27 +1 M,(1+2V?)
Vis Vsor 2(L'+1) Vi V¢
Vi =———(L'+1——L'+12 B2, Pl SENEE W
T TV A v VA YR R vy Ve
, o\, (arV’l’)z)
—(2—=l2vi+ L _
(K r) L (+2vh

Da V%(0) endlich ist und wir annehmen, dass V§=0 fiir r > r,, erfiillt mit jeder
Losungsmatrix 11(r) auch die Matrix Q(r):=U(r)(1+2V")'? die in Abschnitt 2.2
definierten Randbedingungen (analog ®B(r)). Insbesondere stimmen die Losungen
U(r) von (9) und U(r) von (10) asymptotisch iiberein. Es macht also keinen
Unterschied, ob man die &- (bzw. ©-)Matrix beziiglich der asymptotischen
Losungen von (9) oder (10) definiert. In diesem Sinne ist das Paris-Potential
einem effektiven lokalen Potentialoperator aequivalent, und alles in den vor-
hergehenden Abschnitten unter der Voraussetzung eines lokalen Kernpotentials
Gesagte bleibt auch fur das Paris-Potential gltig.
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