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Purification of KMS states^

By Bernard S. Kay

Enrico Fermi Institutet University of Chicago, 5630 S. Ellis Avenue, Chicago
111. 60637, U.S.A.

and

Institut für Theoretische Physik,tt Universität Zürich, Schönberggasse 9, CH-
8001 Zürich, Switzerland

(25. I. 1985)

Abstract. We present some basic facts about KMS states in a novel way suggested both by the
problem of purification and also by the Bisognano-Wichmann situation (and the related application to
quantum field theory on black holes.) We also use the resulting framework to continue a discussion of
linear Bose fields begun in a companion paper. The results here will be utilized in a subsequent
construction of such fields on black holes.

§1. Introduction

In the quantum mechanics of a finite system, there is a simple procedure by
which a statistical mixture may be regarded as the restriction to the system of a

pure state on a system twice as big: Take for definiteness an (assumed trace-class)
Gibbs density operator p Z_1e~3H on some Hilbert space Dt. (We choose a basis
ipi with Hipi Eiijji so Z Xi e~ßE\) Then, defining the vector state fl
Z-V2T,ie-0E',%<S)ir'i on Dt®Dt, we have, for any observable A on Dt:

(tr pA)*, (fi | (I® A)Q,)z*&%r

The adjoining of a duplicate system in this way may be regarded in general as just
an artificial trick. However, it has recently1) acquired new interest in the description

of thermal states on black holes, since there the duplicate system has an
interesting interpretation (as the system on the other side of the Schwarzschild
throat. Cf. also the Bisognano-Wichmann situation [2] which as Sewell [3] has

pointed out is a flat-space-time analogy.)
In this note, we explain how, for thermal equilibrium states, this doubling

procedure (sometimes called purification) extends to infinite systems (possibly, but
not necessarily black holes!) As is well known, on infinite systems, Gibbs states
typically cannot be described by density matrices in the vacuum sector, and it is

* Research supported by the Schweizerischer Nationalfonds, the U.S. National Science
Foundation under grant number PHY 80-26403 and the McCormick Foundation.

t McCormick fellow.
tt Permanent address.
') Since the fundamental work of Hawking [1].
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more appropriate to adopt the algebraic approach to quantum mechanics2) [4, 5]
in which Gibbs states are characterized by the KMS condition [6]. Once we adopt
this language, we require little more than a re-organization of some known results
from a rather unusual point of view.

This 'little more' will be explained in §2. In §3, we illustrate our general
discussion by reconsidering and further developing earlier results on linear Bose
fields which were obtained in [7].

Our main reason for recording these things here is to lay suitable foundations
for the rigorous construction of linear quantum fields on black hole backgrounds
to be discussed separately ([8], see also [9]). It is also hoped that the language
developed here will be generally of use in discussing pure-state/mixed-state
aspects of the Hawking effect.

Finally, the discussion here is intended to be complementary to the existing
literature on purification ([10-13], see also [14]. See footnote 6 and Note (5) in
§2.)

§2. The general case

We assume we are given some quantum dynamical system in the form of a

*algebra3) 91 together with a one parameter group a(t) of automorphisms of 51

describing time-evolution. (In the quantum mechanical example of §1, one could
take for 51 the set of all bounded operators ®(Dt) on Dt and a(t)A eiH'Ae~'H'
for A g 91.)

Our first step is to construct a quantum dynamical system which is twice as

big as (91, a(t)) and which contains (91, a_(t)) as a subsystem. Specifically, we seek a

double (quantum dynamical) system (5J,â(t), t) where 51 consists of the tensor
product4) 51L<8>9(R of two commuting subalgebras 5lL and 5lR, â(t) is an
automorphism of 51 which maps 5IL -» 51L and 5lR —» 91R, and t is an involutary
antiautomorphism5) (i2= 1) on 51 which commutes eith â(t) (â(t) ° l l ° ä(t))
and which maps 5tL -» 5IR and 5XR -» 5lL. We say that such a double system
(5Ì,d(t), t) extends (%a(t)) if we can (and do!) identity (51, a(t)) with
(5lR,d(f) U«).

We may always construct such a double system in the following way: Let / be

any anti-linear involution on 51, and define4) 5I 51<8>51, so that 51L 5I(g>l and

2) We assume a general familiarity with the algebraic approach to quantum theory [4, 5] (more in
these footnotes, less in the main text) especially with KMS states (see footnote 7 here and for
more information, see e.g. the article by Hugenholtz in [4]) and with the GNS construction and
the concepts of pure and mixed states (see footnotes 8 and 9 here and for more information, e.g.
the article by Simon in [4]).

3) We assume 91 contains an identity 1. Typically, we have in mind a C* algebra but with suitable
interpretations (for such constructions as tensor products, limits and commutants p(?l)' of
representations p of 91) everything we say would also apply to more general *algebras. Recall
that a state on 91 means a positive linear functional on 91. We shall adopt the convention
throughout this paper that in addition, a state is required to be such that its GNS Hilbert space is

separable (see footnote 8).
4) In the C* case, take the C* tensor product as defined in Vol. I of [5].
s) By antiautomorphism, we mean i(A + S) i(A) + i(B), i(AB) i(A)c(B), i(A*) ]i(A)]*,

i(aA) ät(A), .(-:) ;.
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5lR K8>51 (with the obvious identification 18)51 «-> 51). Then define ä(t) and i by
their action on elements of form A<g)B by a(t)(A®B) /a(t)/A®a(t)B and
i(A<8>B) /B<8>/A. It is easy to see that all double systems extending (51, a(t))
are equivalent in a suitable sense6) so from now on, we shall talk about the double
system extending (51, a(t)). In practice, it would usually be convenient to work
with a particular concrete realization as above, choosing for / some preferred
symmetry operation which reverses the sense of time (such as PCT) so that
ta(t) a(-t)t and we then have ä(t) - a(-t)®a(t). In our 'finite system' example,

we may choose 91 ®(Dt)®9S(Dt), (~®(Dt®Dt)) ä(t)(A®B)
(e'"'®e mr) ' (A<g>B)(elH'®e '"') and l(A®B) CBC®CAC where C is the
antiunitarity involution C Y. «.</'. X â.1/'. corresponding to out choice of basis ip,.

We can now state the key facts7) about KMS states in the following way: Any
KMS state o.3 on (51, a(t)) (with inverse temperature ß) extends to an a(t)- and
t-invariant state ô>3 on 91 such that the corresponding GNS8) representation p0 on
a (separable3)) Hilbert space ft with cyclic vector ii satisfying (fi | p3(A)f.t)
w3(A) satisfies

(A) fi is cyclic for pß(5lR) alone (and hence also for p0(5l' alone).
(B) There is a 'Hamiltonian' H which satisfies9)

pß(6t(t)A) e'f"pß(A)e',fi'

and e ,f"Cl ü, (i.e. Hû 0) and also satisfies p0(9tR)c: 3(e-ß"12) and

e^3"/2pß(A)n=pß((A*)n VAe9tR

(and in consequence the same statement with R^> L and e
e3Ö/2).

-ßH/2

Given two candidates (91,, <5,((), ix), (%.2, &-,(.), i-,) extending (91, a(t)), there is an isomorphism
ß2,:91,^9l2 s.t. ß2i\,nK id, ß2,:9l', -» 3t|, ß21ay(t) ä2(t)ß2l, ß21ii t2ß21. (For the proof,
use the identification 9If ?l* and define ß2, on elements of form A'®Afs9l, to be
(i2i,A')®A^, extending by linearity, multiplicativity and continuity.) In the case where 91, is
constructed as in the text fioni some I,, and 9I2 from some /,, /32, is simply /,/i®id. Finally, to
make the link with [11, 12, 13] note that another realization is given by choosing 9l 9l"®9l
where 91" is the so-called opposite algebra, setting i(A"®B) (B"*®A*) and c.(f)(A°<g>B)
(a(f)A)"®o.(t)B (where A" etc. denotes A regarded as an element of 91°).

A convenient statement of the KMS condition for our purposes is that üj^, should be an
a(t)-invariant state on 91 whose GNS structure (cf. footnotes 8 and 9) (pB, X, U(t), ii) has X
separable and U(t) strongly continuous (so we can write U(t) - e and satisfies the property:
3 an antiunitary involution J on È s.t. [J, e ""] and p^Uii^SHe 0"n) with e~3"/2p3(A)n
./pgIA*)!!. Note that with this structure, it is a theorem that /p0(91).f E pB(9l)' [6] .actually
JpgCìlY'J pB(9l)'. We shall prove this here as part (i) of Theorem 1 in §2. See also footnote 11).
Recall that for any state (such as m) on an algebra (such as 90 there is always such a GNS triple
(Pg, "X, fl) characterized up to equivalence by
(i) fl is cyclic for p3(91)

(ii) (ò(A) <n|p3(A)n>VAe9I
Later we shall also need that a state is pure if and only if its GNS representation is irreducible [4,
5].
The a(t)-invariance of û>a guarantees there is a unique unitary group implementing â(t) in the p3
representation which maps fi >-> lì. The assumption here is that it is also strongly continuous.
Note that the .-invariance of <5B implies similarly a unique antiunitary J with Jp(AU p(.A)
and Jfi 0. Moreover, since ä(t)°i i°ä(t), we have [J, e '"']
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In fact these properties are equivalent to the KMS condition. That is

Proposition 1. <o0 is KMS for (51, a(t)) if and only if it extends to an a(t)- and
i-invariant state co on 91 whose GNS triple (p, H, fl) satisfies (A) and (B) above.10)

We shall call such an to a double KMS state.

Notes

(1) In our 'finite system' example, w on 2S(Dt) is tr(p-), co(A®B) is

(fl | A®Bfl) where fl is defined in §1. The GNS triple may be taken to
be (p, Dt®Dt, fl) where p is the identity representation. H
K8>H-H<8>1. J (see footnote 9) is given by J(ilti®ip-i) ilti®ip-i.

(2) The essential innovation in the above discussion is that for any KMS state
on (9l,a(t)) the 'modular involution' / (see footnote 9) always arises as
the implementor of the same involution t. which we regard as a fixed
attribute of our underlying dynamical system.

(3) In the Bisognano-Wichmann situation [2], we may identify 91 with the
spacelike double wedge algebra of a quantum field on Minkowski space-
time (with 91L the left wedge subalgebra, and 91R the right wedge
subalgebra), â(t) with the action of the double-wedge-preserving Lorentz
boosts and t with the P'CT operation (P' wedge reflection). The
Minkowski vacuum - restricted to the double wedge - is then a double
KMS state on 91 with ß 2tt, and the properties (A) and (B) above
correspond respectively to the Reeh-Schlieder property for the right
wedge, and to the Bisognano-Wichmann Theorem (see Theorem 1 in the
first article of [2] or Theorem 3 in [15]). In a sense, what we are doing
here is to give an exposition of some basic facts about KMS states in
which the Bisognano-Wichmann situation may be seen as typical of a

generic KMS state.

Finally, for any double KMS state w on any double dynamical system
(91, à(t), t) (whether or not we view it as the extension of an w on an (51, a(t)) we
have the following

Theorem 1.") (i) The von-Neumann algebras generated by 9IR and 5lL in the

^-representation are commutants - i.e. p0(5lL)" p0(51R)'. If, in addition fi is the

") That (A) and (B) imply the KMS condition is immediate by footnote 7. To prove the converse,
start with the formulation of footnote 7 and define for ALe9lL, AR€9(R

pa(A' ®AR) Jpß(.AL)Jp0(AR

pB(AR)JpB(iA' )J by the theorem mentioned in footnote 7). (Notice that JpB(.AL)J and
pB(AR) may possibly have non-zero overlap.)

'l This theorem holds in the C* algebra case (as proved here) or-with a suitable interpretation for
PB(91R)'. PB(91R)" etc. for more general algebras. The proof of (i) given here is adapted from
Rigotti [15] (see especially Rigotti's Theorems 4-7) which proved a special case of (i) (duality if
wedge algebras in the Bisognano-Wichmann situation - see Note 7 in text) for certain algebras of
unbounded operators. For other proofs of (i) alone which do not use Tomita Takesaki theory,
see [6] in the C* algebra case and e.g. the proof of Theorem 2 in the first article cited in [2] for
more general algebras. Rigotti's method adapts nicely to proving (i), (ii), (iii) together.
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only eigenvector of H with eigenvalue zero - i.e. the condition

(a)V*eS(H), H^ 0^>^ ku

holds, then we also have
(ii) p0(91R)", p0(5lL)" are factors - i.e. p0(5lR)Tip0(5lR)" {Al} (and similarly

for R —» L). and
(iii) p0(51) is irreducible - i.e. co is a pure state.

Further notes

(4) In the presence of (i), (ii) and (iii) are of course equivalent.
(5) We can now clarify the link between our discussion and the existing

literature on purification [10-13]. Woronowicz [12] defines a purification
map co >-> û for arbitrary factor states on C* algebras. Our doubling map
co i—> co for KMS states reduces to Woronowicz' purification for KMS
factor states. (The "exactness" of coß corresponds to (i) of Theorem 1.
For '/-positivity' see footnote 6 and calculate

w0(A(,*<g)A) w0([(,(l<g>A)][l<g>A])

(p0 (1 ® A)fl | e-ßf"2Pß (1 ® A )n> 3» 0)

From this point of view, what we have done above is

(a) to explain how the KMS property for a state w0 may be expressed in
terms of properties of its doubling coß.

(b) to give a simple sufficient condition (Condition (a) in Theorem 1) for
when coß is a factor state, in which case the doubling map constitutes
a purification (Theorem 1 parts (ii) and (iii).)

(6) For the quasi-free Bose states to be discussed in §3, we shall see that
parts (i), (ii), (iii) of Theorem 1 hold without the need for Condition (a).

(7) In the Bisognano-Wichmann situation (see note (3) above) (i), (ii), (iii)
correspond respectively to the duality of the left and right wedge
algebras, the factor property for single wedge algebras, and the irreducibility
of the double wedge algebra.

Proof of Theorem l.n) It is straightforward to extend â(f) to e'Hl • e~'H'
which maps p0(5I)"-» p0(5I)" with p0(5IR)"^ p0(5tR)" and (R -> L). Similarly, i is
extended by / • / (see footnote 9) with p0(51R)"^ p0(5lL)" and R++L). Since
[5lR, 51L] 0, we easily have p0(5lR)"c p0(51L)' and so since Ü is cyclic for p0(9IL)
(or for p0(9(L)") it is also separating for p0(9(R)" and hence by L<->-.R it is cyclic
and separating for each of p0(51R)", p0(51L)". The next step is to show (ß) that
property (B) extends to p(5('r)", p(51L)"-i.e. that p(%R)"^3(e'ßfil2) and

e-3"/2Xfl JX*flVXep(51R)" (0)

and (y) that moreover p(5lR)"fl is a core for e"3H/2 (and similarly for R -» L and
e-ßHI2^ gßH/2)
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First note that by Rigotti's lemma (§A2), p(5lR)fi is a core for e"3"/2. (ß)
then follows by a simple calculation showing <Xfi | e ~m'2^) (JX*Cl | ^) V* e
p(5IR)fl, (use X commutes eith JY*J for yep(5IR).) and (7) is then immediate.
We may now conclude by (0) that Je~ßHJ2 \ ,&p°m may be identified with the
operator S associated by Tomita's theorem (§A1) to the pair (p(5lR)", fl), and by
(y) that JeßH/2=S. Therefore, by the uniqueness of the polar decomposition, J
may be identified with the J of Tomita's theorem, and e~3H/2 with A1/2. By part
(iii) of Tomita's theorem, we then have /p(9lR)"J p(51R)' which gives part (i) of
our theorem since, as we have already observed, Jp(9lR)"J p(91L)".

Now, assume Condition (a) and let Xep(91R)'Dp(91K)". Then, by (i)
Xep(9lL)"np(9tR)" so that using (0) above, XileS) (e_3"/2)nS (eßfV2) and
e~3"/2Xfl=e3"/2Xfl whereupon Xile3(eßfl) and e3"Xfl= Xfl-i.e. Xfl is an
eigenvector of H with eigenvalue 0 and hence by Condition (a) Xil kCl,
whereupon, since Q, is separating (say for p(91R)") X À This proves (ii). Finally,
for (iii), let Xep(91)". Then, Xe p(9lR)'np(9l')' p(9lR)'nP(91R)" {Al}.

§3. The quasi-free Bose case

In this section, we explain how the ideas of §2 work out in detail for a class of
KMS states on linear Bose systems. We assume familiarity with [7] (which we
shall refer to from now on as I) and §A3, §A4 which review some further
properties of second quantization not mentioned in I. Note that we shall reserve
the symbol A here to denote one particle Hilbert spaces (denoted by Dt in 7).

In I, we discussed a class of quantum dynamical systems (91, a (t)) where 91

arose as the Weyl algebra (equation 2.2 of I) W(D, a) over some linear symplectic

space (D,a) and a(t) was defined by a(t)W(<i>)= W(9~(t)<-]>)where 3~(t) was a
given one parameter group of linear symplectic transformations on (D, a). In the
remainder of this chapter, we shall assume we are given an (91, a(t)) of this form.
In this case, a double system (91, a(t), 1) extending (91, a(t)) may be obtained from
a double (classical) linear dynamical system (D, â, 3t(t), 3) (see Definition 2 of
§5.1_in /) extending (D,a,ST(t)) by setting 91= W(D,â), â(t)W(<l))= W(Sf(t)<b),
iW(<Ì>)= W(3Q>). A standard candidate for such an extension - depending on a
choice of preferred antisymplectic (i.e. (T<I>, T^P) -<r(<I>, ^P)) involution T
reversing the sense of time (i.e. TST(t) 9~(-t)T) on (D, cr)-may be inferred from
the construction of §5.1 of I: It amounts to setting (cf §2) 51 91(8)51, â(t)
a(-t)®a(t) and l(A®B)=/B®/A where /W(<I>)= VV(TO).

Now fix ß and assume the existence of a double KMS one-particle structure
(Kß, A, e~lth, j) defined (up to equivalence - see Theorem 2 of I) over
(D, â, 3~(t), 3) by Definition 3 of I. Then w0-defined by w0(W(4>))
exp(-i\\Kß<i>\\l) is a double KMS state over (9Ì, â(t), 1) in the sense of §2. We
shall sometimes call this ä>ß the standard double KMS state over (91, a(t), t). For
this state, we may identify p0(W(<î>)) on ft with (see §2.3 of I and §A2, §A3)
W*(K3<I>) on &(Ä), H with dV(h), and fi with fF. In particular, conditions (1),
(3), (5) of Definition 3 of 7 imply w0 is an a(t)- and i-invariant state, condition (2)
implies property (A), and condition (6) property (B).

In the case we begin with an (91, a (t)) arising from a (D, a, 5"(f)) which
admits a ground one particle structure (see §2 of I) (K, A, e~'h') satisfying in
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addition the 'regularity' condition KD<^3(h~v2), then we showed in I that we
can always construct a double KMS one particle structure (K, A, e~'ht, j) over any
(D, a, ?f(t), 3) extending (D, a, 9~(t)) and hence as described above an coB on any
(51, ä(t), l) extending (51, a(t)). Moreover, the details of that construction imply a

simple relationship between coß and the ground state w{) on (51, a(t)) (defined by
co0(W(<$>)) exp (-2||K0<I>||J)) which we now explain: Take for simplicity12) a

standard candidate for (51, â(t), i) as mentioned earlier arising from a T which is

implemented at the one-particle level by a complex conjugation C (i.e. KT CK)
so that [C,h] 0. Define co0 on 51 5(<g>5( by cott(A®B) w0(A)co0(B). (The
corresponding GNS representation is p0(W($>)® W(<ï>)) W*(K<Î>)® W*(KV)
on 3^(A)®^(A), with cyclic vector fì fl*®fìy; ä(t) is implemented by
exp (itdT(h))®exp (-itdT(h)) and / which implements t is given by J(x®y)
r(-C)y®r(-C)x.) Extend <ü0 by w", (fl |. fl) to the von-Neumann algebra
p0(5i)" (=<%(&(A)®9(A))) generated by p0(5i). Also extend a(t) to â(t)"
exp(-itdr(ri))(g)exp(itdr(h))-exp(itdr(h))(tag)exp(-if<ir(ri)) and i to l" JJ.
Then, the discussion in §5 of I tells us that the state w0 arises as <-3ö°t0 on 51

where t0 is the isomorphism 91 —* p0(9l)" defined by (recalling the isomorphism
W^(h)®W9(h)sW(h®h)) Tp(W(<D)®W(*))= Wy(J0(-K<t>©K^)) where
3~0 is the possibly unbounded Bogolubov transformation from KD®KD to A©/»-

(writing -K^®K^ as a column vector)

/ chZß CshZß
Jß \CshZß chZß

where tan hZß exp (—ßh/2)
(The condition KD^3(h~112) guarantees KD®KD<r3(9~ß)-see §A2 of I.)
Note that t0°i i"°t0 and rß°a(t) a(t)"°rß so that for any O<0<°°, the
implementors of ä(t) and t in p0 are the same as those quoted above for (the
(3 =œ case) p0. That is, we always have H -dT(h)®t®l®dV(h) and J(x®y)
Y(-C)y®T(-C)x.

Much of the above discussion can be pieced together in one way or another
from the literature on quasi-free states of the late '60's and early '70's. However,
the present discussion contains a number of improvements. One is the weakness
of our condition KD cz&(h~x'2) (which is weaker than demanding that h has a

mass gap). Another is the need (in the case 9"0 : KD®KD >-> KD®KD to view t0
as an isomorphism 91 —» p0(91)" (see §A4) and not as an automorphism 91 —» 91 (cf
[11]). Another improvement is that we do not require KD to be complex linear.
See I for further discussion. These technical improvements are essential for the
constructions in [8].

Finally, we explain how for the class of states introduced here, Theorem 1

may be strengthened by proving an analogous result at the one-particle level and

It is straightforward to generalize this discussion to any (91,c.(t), i.) which arises from some
(D, <t, #(t), #) s.t. (DR, cr, taf(t)) (with o- cr\Drx, 3~(t) J(t)\0n) admits a ground one-particle
structure (K.A.e ,hl) satisfying KD <= Qi(h ~"2). Simply choose for C any complex conjugation
s.t. [C,h] 0, modify the definition of ci„ to read <50(AL® AR) û>0(.?Al)û)0(Ar), A' e 9tL,
ARe9lR and modify the definition of tb to read

TB(W(<J>)) W"(5-0(-CIC^<t)'-©K<DR))

where * O' ©<t>R, <t>' e DL, <!>ReDR, etc.
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then second quantizing. Again assume we are given a double KMS one-particle
structure (Kß,A,e,j) over a double classical linear dynamical system
(D, ä, ST(t), 3) as in I. Then, defining the (not necessarily closed) real linear
subspaces R kßDR, L kßDL of A, and denoting, for any real linear subspace
M of A the symplectic complement by M' (see §A4) we have

Theorem 2
(i) L R', R L'
(ii) RDR' {()}, LfiL' {0}
(iii) R + L KßD) is dense in A.

Notes

(1) In the presence of (i), (ii) and (iii) are, of course, equivalent
(2) We immediately obtain the Corollary to Theorem 2: The resulting

standard double KMS state w0 always possesses properties (i), (ii), (iii) of
Theorem 1. (For the proof, use (iv), (vi) and (v) of Theorem in §A4
respectively.) Note that this is a stronger result for these quasi-free Bose
states than could have been obtained by application of Theorem 1, since
Condition (a) of Theorem 1 is not implied by the condition ((4) of
Definition 3 of I) that h has no zero eigenvalues.

Proof. We mimic the proof given above for Theorem 1, substituting the
Tornita theorem of §A1 with the pre-Tomita theorem of §A5. First note some
immediate consequences of Definition 3 of T.

(a) e i,fi: R^R, L^L
(b) [ei,h, j] 0 on KßD R + L
(c) jR L, jL R
(d) R + iR is dense in A, L + iL is dense in A (pre-cyclicity, cf. §A4)
(e) LcR', JRcL'
(f) r n ìr {o}, (I n iL) {0}

(pre-separating property, cf. §A4)

((f) follows from (d) and (e) on taking symplectic complements in (d).)
The next step is to show that Property (6) of Definition 3 of I holds with R

replaced by R and L replaced by L. This follows on using Rigotti's Lemma (§A2)
to conclude that R + iR is a core for e~3h/2 and L + iL is a core for eßixl2. Now,
take JR (L is similar). From (d) and (f) above, we know that R satisfies the
hypotheses of the pre-Tomita theorem (§A5). Moreover, from our strengthened
Property (6) we see that je~ßhl2 i where o is as in the pre-Tomita Theorem
(§A5). By the uniqueness of the polar decomposition, we may therefore identity /
with the /' of pre-Tomita, and e~3h with 8. By part (iii) of the pre-Tomita theorem,
we maythen obtain L /JR R' (and similarly, or by taking symplectic complements

JR_=L') which is part (i) of our theorem. Now, let xeRdR', then by (i),
x 6 JR HL so again by our strengthened Property (6), we must have* e 3(eßh) and
eßhx x whereupon x is an eigenvector with eigenvalue zero of h and hence by
Property (4), x 0. This gives (ii) of our theorem, (iii) now follows from (i) and (ii)
on taking symplectic complements.
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Appendix

We recall some background material needed to make the proofs of Theorems
1 and 2 self-contained. §§A3, A4 will also be generally helpful for §3.

§A1. Tomita's theorem

Let si be a von-Neumann algebra and fi a cyclic and separating vector for sd.

Define the real-linear operator

S:AQ.^A*n
Then S is closable and in the polar decomposition S JA"2 of S, we have

(i) J is an antiunitary involution
(ii) A"2 is complex-linear ipositive)
(iii) JsiJ si'
(iv) A" ¦ X'-.sH^-si, d'^si'

§A2. Rigotti's Lemma [15]

Let K be a self-adjoint operator on a Hilbert space Dt. Let f be a real Borel
function bounded on the compacts. If At DifiK)) is a dense subspace invariant for
the group e~"K, then A is a core for /(K).
More About Second Quantization [16,17, 18]

The next two sections continue the discussion begun in §§2-3 of I (ref. [7])
concerning the Fock representation triple (W—» W9,9'(/>),L~i9:) of Weyl
operators over a complex ('one-particle') Hilbert space f. (characterized by
(fl^ | W3f(x)fi3f)3;W) exp (—2 ||x||I) and the second quantization map T from
operators on â to operators on &(&) which satisfies, for unitaries and an-
tiunitaries, W*(Ux) T(U)Ws'(x)T(U)-'[ and dT(A)^0 for A>0 where
T(eiA) exp (id T(A)).

§A3

Given two one-particle Hilbert spaces /?, and //2, there is a natural isomorphism

3F(Ay®â2) &(Ây)®&(Â2) in such a way that W(x1©x2) corresponds to
vV(xy)®W(x2). In the special case where Ay =A2, we can write operators on fi®fi

as 2x2 matrices of operators on h. Then under this isomorphism, we have

r(^ °)~r(A)(g)r(B) and r(° Jj E where B(a®ß) ß®a for a, ß e

9(A).

§A4

We quote some results from the very nice discussion of Leyland, Roberts,
Testard [18] on the von-Neumann algebra W3P(â)" generated by the W9(x) for
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x's in an arbitrary one-particle Hilbert space A. These results concern subalge-
bras WSi(M)" of WSi(A)" generated by real subspaces M of A. We use the notation
(as usual) sì' to denote the commutant when si is an algebra of operators, and
(without risk of confusion) M' to denote the symplectic complement when M is a
real subspace of A. So xeM'Olm(x|y) 0VyeM. Considering // as a real
Hilbert space with inner product Re (• | •), M' is of course just iMx. Note that
M" M and (M+iM)' M'OiM'. More generally, we have (M + N)'= M'PiN'
for arbitrary real subspaces M, N.

Theorem Theorem 1.3.2 of [18]). Let A be a complex Hilbert space, M, N
real subspaces of Dt and M the closure of M etc. Then

(i) Wif(M)"=W9(M)
(ii) fl is cyclic for W®(M)" if and only if M+iM is dense in A.

(iii) fl is separating for WSi(M)" if and only if MDiM {0}.
(iv) W!f(M)"=WSi(M')'
(v) (W9(M)"[JW^(N)")" W*(M+N)"

(vi) W3i(M)"f)W9(N)" W*(MDN)" and consequently W*(M)" is a factor
if and only if MOM'' {0}.

Note that (iv) is the so-called abstract duality property originally isolated and
proved by Araki [19]. (See end of §A5.)

§A5. Pre-Tomita theorem

Let M be a closed real subspace of a complex Hilbert space A s.t. M+iM is
dense and MC\iM {0}. Define

û -.M+iM^-M+iM
a + iß^>-a + iß

Then a is closable and in the polar decomposition 3 jS1'2 of 3 (on (A, Re (• | •)))
we have

(i) ; is an antiunitary involution
(ii) <5U2 is complex linear, (positive)
(iii) jM=M'
(iv) 8h:M^M, M'-*M'.

For the proof see [18] or [20]. Note that for the Fock representation of the Weyl
algebra over a complex Hilbert space A, the results in §A4 link together the
pre-Tomita theorem with the full Tornita theorem. (Thus consider (W9(M)", H,3")

for an M as in Pre-Tomita. Then by §A4, fl3* is cyclic and separating and we may
identify: S T(ó), J Tij) A" T(8U).) (In fact, in [18] one uses the Tornita and
pre-Tomita theorems to prove the theorem in §A4.)
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