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Purification of KMS states™

By Bernard S. Kay

Enrico Fermi Institute? University of Chicago, 5630 S. Ellis Avenue, Chicago
I1l. 60637, U.S.A.

and

Institut fiir Theoretische Physik, 71T Universitat Zirich, Schonberggasse 9, CH-
8001 Ziurich, Switzerland

(25. 1. 1985)

Abstract. We present some basic facts about KMS states in a novel way suggested both by the
problem of purification and also by the Bisognano—Wichmann situation (and the related application to
quantum field theory on black holes.) We also use the resulting framework to continue a discussion of
linear Bose fields begun in a companion paper. The results here will be utilized in a subsequent
construction of such fields on black holes.

§1. Introduction

In the quantum mechanics of a finite system, there is a simple procedure by
which a statistical mixture may be regarded as the restriction to the system of a
pure state on a system twice as big: Take for definiteness an (assumed trace-class)
Gibbs density operator p = Z 'e ®" on some Hilbert space #. (We choose a basis
g, with Hy,=Ey;, so Z=Y,e ®5) Then, defining the vector state )=
Z7 'Y e PE2Y. @y, on X R HK, we have, for any observable A on ¥:

(tr pA)g = Q| (1R A) D)o

The adjoining of a duplicate system in this way may be regarded in general as just
an artificial trick. However, it has recently') acquired new interest in the descrip-
tion of thermal states on black holes, since there the duplicate system has an
interesting interpretation (as the system on the other side of the Schwarzschild
throat. Cf. also the Bisognano—Wichmann situation [2] which as Sewell [3] has
pointed out is a flat-space-time analogy.)

In this note, we explain how, for thermal equilibrium states, this doubling
procedure (sometimes called purification) extends to infinite systems (possibly, but
not necessarily black holes!) As is well known, on infinite systems, Gibbs states
typically cannot be described by density matrices in the vacuum sector, and it is
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1) Since the fundamental work of Hawking [1].
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more appropriate to adopt the algebraic approach to quantum mechanics?) [4, 5]
in which Gibbs states are characterized by the KMS condition [6]. Once we adopt
this language, we require little more than a re-organization of some known results
from a rather unusual point of view.

This ‘little more’ will be explained in §2. In §3, we illustrate our general
discussion by reconsidering and further developing earlier results on linear Bose
fields which were obtained in [7].

Our main reason for recording these things here is to lay suitable foundations
for the rigorous construction of linear quantum fields on black hole backgrounds
to be discussed separately ([8], see also [9]). It is also hoped that the language
developed here will be generally of use in discussing pure-state/mixed-state
aspects of the Hawking effect.

Finally, the discussion here is intended to be complementary to the existing
literature on purification ([10-13], see also [14]. See footnote 6 and Note (5) in
§2.)

§2. The general case

We assume we are given some quantum dynamical system in the form of a
*algebra®) U together with a one parameter group «(t) of automorphisms of 2
describing time-evolution. (In the quantum mechanical example of §1, one could
take for U the set of all bounded operators B(¥#) on ¥ and a(t)A =e™Ae™
for Ae?.)

Our first step is to construct a quantum dynamical system which is twice as
big as (U, a(t)) and which contains (2, «(t)) as a subsystem. Specifically, we seek a
double (quantum dynamical) system (N, @(t), ) where 9 consists of the tensor
product®) A-@AR of two commuting subalgebras A" and AR, a(t) is an au-
tomorphism of 9 which maps A" — A- and AR — AR, and . is an involutary
antiautomorphism®) («*=1) on 9 which commutes eith @(t) (&(t) e v=1 o a(t))
and which maps A" — AR and AR — A". We say that such a double system
(U, &(1), ) extends (A, «(t)) if we can (and do!) identity (2, a(t)) with
(AR, @(t) | yr).

We may always construct such a double system in the following way: Let ¢ be
any anti-linear involution on 2, and define®) A =A®A, so that A~ =AR®1 and

2) We assume a general familiarity with the algebraic approach to quantum theory [4, 5] (more in
these footnotes, less in the main text) especially with KMS states (see footnote 7 here and for
more information, see e.g. the article by Hugenholtz in [4]) and with the GNS construction and
the concepts of pure and mixed states (see footnotes 8 and 9 here and for more information, e.g.
the article by Simon in [4]).

%) We assume U contains an identity 1. Typically, we have in mind a C* algebra but with suitable
interpretations (for such constructions as tensor products, limits and commutants p(A) of
representations p of ) everything we say would also apply to more general *algebras. Recall
that a state on 2 means a positive linear functional on 2. We shall adopt the convention
throughout this paper that in addition, a state is required to be such that its GNS Hilbert space is
separable (see footnote 8).

4 In the C* case, take the C* tensor product as defined in Vol. I of [5].

%) By antiautomorphism, we mean (A +B)=c(A)+u(B), (AB)=(A)(B), (A¥)=[u(A)]*,
taA)=ai(A), o(1)=1.
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AR =1 @A (with the obvious identification 1@ A <> ). Then define &(t) and ¢ by
their action on elements of form AQB by a(t)(AQ®B)=/a(t)/AQa(t)B and
t(AQB)=¢{B®¢A. It is easy to see that all double systems extending (2, a(t))
are equivalent in a suitable sense®) so from now on, we shall talk about the double
system extending (2, a(t)). In practice, it would usually be convenient to work
with a particular concrete realization as above, choosing for ¢/ some preferred
symmetry operation which reverses the sense of time (such as PCT) so that
{a(t)=a(—t){and we then have a(t) = a(—t)@«(t). In our ‘finite system’ exam-
ple, we may choose VW=RB(H)QRB(H), (=B(HIJHK)) «a(t)(AKXB)=
(eM®e M) 1" (ARB)e"®e M) and (A®B)=CBC®CAC where C is the
antiunitarity involution C Y o,y = Y a; corresponding to out choice of basis .

We can now state the key facts’) about KMS states in the following way: Any
KMS state wg on (2, a(t)) (with inverse temperature @) extends to an a(t)- and
t-invariant state @z on U such that the corresponding GNS®) representation gz on
a (separable®) Hilbert space # with cyclic vector Q satisfying (Q | pa(A)Q)=
wg(A) satisfies

(A) Q is cyclic for ps(AR) alone (and hence also for pg(A") alone).
(B) There is a ‘Hamiltonian’ H which satisfies®)

ﬁﬁ(&(t)A) = eiﬁ(ﬁB(A)e*iﬁt

and e Q=0 (i.e. HQ=0) and also satisfies pa(AR) = B(e *H?) and
egBHm' (A)Q=ps(LA*)Q VA e AR

Bﬂ/z__)

(and in consequence the same statement with R— L and e
BHI2)

®)  Given two candidates (911, a, (), ¢,), (AU, dz(t), t,) extending (U, a(r)), there is an isomorphism
Boy: 9, = s st By My = id, Bay UL = AL, Byd@ (1) = @5(1)B3), Bty = t2B,,. (For the proof,
use the identification AR=AR and define B,, on elements of form AT® AR, to be
(L0, AD)® AR, extending by lmearny multiplicativity and contmunty ) In the case where ‘)Il is
u)n:.uuu(.d as in the text from some ¢, and °I from some ¢,, an is simply ¢, ¢,®id. Finally, to
make the link with [11, 12, 13] note that another realization is given by choosmg A =A'®@A
where " is the so-called opposite algebra, setting L(A°®@B)=(B"™*®A*) and &a(1}(A°®B) =
(x()A)’Qa(t)B (where A" etc. denotes A regarded as an element of A°).

7) A convenient statement of the KMS condition for our purposes is that w; should be an
a(t)-invariant state on ¥ whose GNS structure (cf. footnotes 8 and 9) (pg, ¥, U(t), Q) has ¥
separable and Ulr) strongly continuous (so we can write U(t) = e ""HY) and satisfies the property:
3 an antiunitary involution J on ¥ s.t. [J, e "*H]=0 and P (W=D (e BHIZ) with ¢ BH/2 pal(A )=
Jpg(A™)Q). Note that with this structure, it is a theorem that Jpg () < pg(A) [6] tactually
Jpa(‘?l )"J = pg(A)'. We shall prove this here as part (i) of Theorem 1 in §2. See also footnote 11).

) Recall that for any state (such as @) on an algebra (such as ) there is always such a GNS triple
(Pg. %, Q) characterized up to equivalence by
(1) @ is cyclic for pg (A)

(1) @(A)=(Q] pB(A WVYA e
Later we shall also need that a state is pure if and only if its GNS representation is irreducible [4,
5].

) The a(t)-invariance of @; guarantees there is a unique unitary group implementing &(t) in the pg
representation which maps Q+— Q. The assumption here is that it is also strongly continuous.
Note that the t-invariance of &g implies similarly a unique antiunitary J with Jp(A)J = p(tA)
and J = Q. Moreover, since a(t)et=coa(t), we have [J, e "' ]=0.
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In fact these properties are equivalent to the KMS condition. That is

Proposition 1. wp is KMS for (3, a(t)) if and only if it extends to an a(t)- and
u-invariant state & on % whose GNS triple (p, H, Q) satisfies (A) and (B) above.'?)

We shall call such an ® a double KMS state.

Notes

(1) In our ‘finite system’ example, w on RB(¥H) is tr(p-), ®(AXB) is
(1] A®BQ) where () is defined in §1. The GNS triple may be taken to
be (p, #®¥,Q) where p is the identity representation. H =
1QH-H®1. J (see footnote 9) is given by J(¢ ;) = ¢; Y.

(2) The essential innovation in the above discussion is that for any KMS state
on (A, a(t)) the ‘modular involution’ J (see footnote 9) always arises as
the implementor of the same involution ¢ which we regard as a fixed
attribute of our underlying dynamical system.

(3) In the Bisognano—-Wichmann situation [2], we may identify 9 with the
spacelike double wedge algebra of a quantum field on Minkowski space-
time (with A"“ the left wedge subalgebra, and AR the right wedge
subalgebra), a(t) with the action of the double-wedge-preserving Lorentz
boosts and ¢ with the P'CT operation (P'=wedge reflection). The
Minkowski vacuum - restricted to the double wedge —is then a double
KMS state on 9 with 8 =2m, and the properties (A) and (B) above
correspond respectively to the Reeh-Schlieder property for the right
wedge, and to the Bisognano—Wichmann Theorem (see Theorem 1 in the
first article of [2] or Theorem 3 in [15]). In a sense, what we are doing
here is to give an exposition of some basic facts about KMS states in
which the Bisognano—Wichmann situation may be seen as typical of a
generic KMS state.

Fmally for any double KMS state ® on any double dynamical system
(91, &(t), ¢) (whether or not we view it as the extension of an @ on an (%, alt)) we
have the following

Theorem 1.'') (i) The von-Neumann algebras generated by )X and " in the
pg-representation are commutants — i.e. pg(A")" = pg(AR)'. If, in addition Q is the

'Yy That (A) and (B) imply the KMS condition is immediate by footnote 7. To prove the converse,
start with the formulation of footnote 7 and define for A e AL, AR AR

pa(AT@AR) =Jpg (LAT) Jpg(AR)

= pa(A®)Jpg(LAT)J by the theorem mentioned in footnote 7). (Notice that Jpgz(tA"-)J and
pB(AR) may possibly have non-zero overlap.)

') This theorem holds in the C* algebra case (as proved here) or — with a suitable interpretation for
P (AR, pg(AR)" etc. for more general algebras. The proof of (i) given here is adapted from
Rigotti [15] (see especially Rigotti’s Theorems 4-7) which proved a special case of (i) (duality ~f
wedge algebras in the Bisognano-Wichmann situation — see Note 7 in text) for certain algebras of
unbounded operators. For other proofs of (i) alone which do not use Tomita Takesaki theory,
see [6] in the C* algebra case and e.g. the proof of Theorem 2 in the first article cited in [2] for
more general algebras. Rigotti’s method adapts nicely to proving (i), (ii), (iii) together.
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only eigenvector of H with eigenvalue zero - i.e. the condition
(@)V¥eD(H), HY=0>V=A0

holds, then we also have

(ii) pg(AR)", pg(UAT)" are factors —i.e. pg(AR) N pg(AR)" ={A1} (and similarly
for R—L). and

(iti) pg(A) is irreducible —i.e. @ is a pure state.

Further notes

(4) In the presence of (i), (ii) and (iii) are of course equivalent.

(5) We can now clarify the link between our discussion and the existing
literature on purification [10-13]. Woronowicz [12] defines a purification
map w —> & for arbitrary factor states on C* algebras. Our doubling map
w+— o for KMS states reduces to Woronowicz’ purification for KMS
factor states. (The “‘exactness’ of @z corresponds to (i) of Theorem 1.
For ‘j-positivity’ see footnote 6 and calculate

d)e(AU*®A) = d’ﬁ(h(ﬂ@A)][ﬂ@A])
=(ps(1® A)Q | e *2p,(1® A)Q)=0)

From this point of view, what we have done above is
(a) to explain how the KMS property for a state wg may be expressed in
terms of properties of its doubling ;.
(b) to give a simple sufficient condition (Condition («) in Theorem 1) for
when w; is a factor state, in which case the doubling map constitutes
a purification (Theorem 1 parts (ii) and (iii).)
(6) For the quasi-free Bose states to be discussed in §3, we shall see that
parts (i), (ii), (iii) of Theorem 1 hold without the need for Condition ().
(7) In the Bisognano—Wichmann situation (see note (3) above) (i), (ii), (iii)
correspond respectively to the duality of the left and right wedge alge-
bras, the factor property for single wedge algebras, and the irreducibility
of the double wedge algebra.

Proof of Theorem 1.'') It is straightforward to extend a(t) to e - e ™"

which maps gz ()" — pg(A)” with §g(AR)" — ps(AR)” and (R — L). Similarly, ¢ is
extended by J-J (see footnote 9) with pg(AR)" — pg(A")” and R« L). Since
[AR, A-]= 0, we easily have pg (AR)" < pg(AX)’ and so since  is cyclic for pg (A-)
(or for pg (A™)") it is also separating for pg(AR)” and hence by L <> R it is cyclic
and separating for each of %(%IR)”, pe(AT)". The next step is to_show (B) that
property (B) extends to p(AX)”, p(AX)" —i.e. that p(AR)" < D (e #*'?) and

e PH2X () = JIX*Q VX e p(AR) (B)

and (y) that moreover p(A®)"Q is a core for e #™2 (and similarly for R — L and
o—BF2 _, BHI2)
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First note that by Rigotti’s lemma (§A2), p(AR)Q is a core for e *¥2 (B)
then follows by a simple calculation showing (XQle BRI — (JX*() | U) V¥ e
p (AR, (use X commutes eith JY*J for yEe p(AR).) and () is then immediate.
We may now conclude by (B) that Je #H/2 I piryo may be identified with the
operator S associated by Tomita’s theorem (§A1) to the pair (p(A®)", Q), and by
(y) that Je ®72=§. Therefore, by the uniqueness of the polar decomposition, J
may be identified with the J of Tomita’s theorem, and e #"'* with A" By part
(iii) of Tomita’s theorem, we then have Jp(?IR)"J= p(AR) which gives part (i) of
our theorem since, as we have already observed, Jp(A®)"J = p(A")".

Now, assume Condition (a) and let Xep(A®)YNpA*®)”. Then, by (i)
Xep(‘)IL)”ﬂp(QIR)” so that using (B) above, XQe @ (e )N D (*™?) and

e PHR2X () = P2 X () whereupon XQe P (e®H) and e?FXQ=XQ-ie. XQis an
eigenvector of H with eigenvalue 0 and hence by Condition (a) XQ=AQ,

whereupon, since () is separating (say for p(AR)") X = . This proves (ii). Finally,
for (iii), let X € p(2)". Then, X € p(AR) Np(AL) = p(‘)IR) Np(AR)Y" ={A1}.

§3. The quasi-free Bose case

In this section, we explain how the ideas of §2 work out in detail for a class of
KMS states on linear Bose systems. We assume familiarity with [7] (which we
shall refer to from now on as I) and §A3, §A4 which review some further
properties of second quantization not mentioned in I. Note that we shall reserve
the symbol £ here to denote one particle Hilbert spaces (denoted by # in I).

In I, we discussed a class of quantum dynamical systems (2, a(t)) where 2
arose as the Weyl algebra (equation 2.2 of I) W(D, o) over some linear symplec-
tic space (D, o) and «a(t) was defined by a(t) W(®) = W(TJ (t)®) where T (t) was a
given one parameter group of linear symplectic transformations on (D, o). In the
remainder of this chapter, we shall assume we are given an (U, a(t)) of this form.
In this case, a double system (I, @(t), ¢) extending (U, a(t)) may be obtained from
a double (classncal) linear dynamical system_ (D, &, J (t), #) (see Definition 2 of
§5.1 in I) extending (D, o, 7 (1)) by setting % = W(D, &), a(t) W(®d) = W(T (1)D),
(W(P)= W(SP). A standard candidate for such an extension —depending on a
choice of preferred antisymplectic (i.e. (TP, T¥)=—o(d, ¥)) involution T re-
versing the sense of time (i.e. T (t)=J(—1)T) on (D, o) —may be inferred from
the construction of §5.1 of I: It amounts to setting (cf §2) A=ARA, a(t)=
a(—t)Q@a(t) and (AKX B)=¢B&{(A where { W(®)= W(TD).

Now fix B and assume the existence of a double KMS one-particle structure
(K®, 4, e“"‘, j) defined (up to equivalence—see Theorem 2 of I) over
(D, &, (1), #) by Definition 3 of I Then &g —defined by ag(W(P)) =
exp (— ||KBCDH ) is a double KMS state over (2, a(t) ¢) in the sense of §2. We
shall sometimes call this @z the standard double KMS state over (1, &(t), ). For
this state, we may identify pB(W(CD)) on # with (see §2.3 of I and §A2, §A3)
W"F(KBCD) on %(#), H with dI'(h), and Q with Q¥. In particular, conditions (1),
(3), (5) of Definition 3 of I imply &g is an &(t)- and c-invariant state, condition (2)
implies property (A), and condition (6) property (B).

In the case we begin with an (%, «a(t)) arising from a (D, o, 9(t)) which
admits a ground one particle structure (see §2 of I) (K, £, e ™) satisfying in
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addition the ‘regularity’ condition KD < @(h '?), then we showed in I that we
can always construct a double KMS one particle structure (K, £, e ™. j) over any
(1? a, 7 (1), #) extending (D, o, 7 (t)) and hence as described above an @z on any
(U, a(t), o) extending (2, a(t)). Moreover, the details of that construction imply a
simple relationship between @z and the ground state w, on (U, a(t)) (defined by
wo( W(D)) = exp (-3 || Ko ®@[I3)) which we now explain: Take for simplicity'?) a
standard candidate for (2, &(t), ) as mentioned earlier arising from a T which is
implemented at the one-particle level by a complex conjugation C (i.e. KT = CK)
so that [C, h]=0. Define @, on A=ARA by wu(A®B = wy(A)wy(B). (The
corresponding GNS representation is po( W(P)® W(d)) = WH(KP)Q@ W¥(KWV)
on F(AR)QF(#), with cyclic vector Q=07®07%; d(t) is implemented by
exp(itdr(h))®exp(—itdl‘(h)) and J which implements ¢ is given by J(x®y)=
[(=C)y®T(-C)x.) Extend @, by wi=(Q|.Q) to the von-Neumann algebra
pPo(R)" (= B(F(A)QF(£))) generated by 60(2). Also extend a(t) to a(1)'=
exp (—itd'(h))®exp (itdT'(h)) - exp (itd'(h))@exp (—itdl'(h)) and ¢ to J/'=J-J.
Then, the discussion in §5 of I tells us that the state &, arises as @jo7z on I
where 75 1s the isomorphism N — po(N)” defined by (recalling the isomorphism
WEFRQWF(h)=W(h@Bh)) 1(W@R)QW(W) =W (Ts(~KPDKY)) where
T s is the possibly unbounded Bogolubov transformation from KD@® KD to AD/
(writing —K®@ KWV as a column vector)

:(chZ“" CshZB)
¢ \CshZ? chz®

where tan hZ" = exp (—Bh/2)

(The condition KD c @ (h~"?) guarantees KD@ KD < B(T ;) -see §A2 of L)
Note that 7got=1("075 and 'rBoa(t) =a(t)'o7s so that for any 0<p <=, the
1mplementors of @(t) and ¢ in pg are the same as those quoted above for (the
B = case) p,. That is, we always have H=—-dl'(h)®1B1®dI'(h) and J(x®vy)=
[=C)y®r(-0C)x.

Much of the above discussion can be pieced together in one way or another
from the literature on quasi-free states of the late '60’s and early '70’s. However,
the present discussion contains a number of improvements. One is the weakness
of our condition KD < % (h~'?) (which is weaker than demanding that h has a
mass gap). Another is the need (in the case T, : KD@® KD — KD @ KD to view 74
as an isomorphism )] po(‘)l)" (see §A4) and not as an automorphism A — A (cf
[11]). Another improvement is that we do not require KD to be complex linear.
See I for further discussion. These technical improvements are essential for the
constructions in [8].

Finally, we explain how for the class of states introduced here, Theorem 1
may be strengthened by proving an analogous result at the one-particle level and

ar

12 It is straightforward to generalize this discussion to any (N, &(t), ) which arises from some

(D, 6, 3(t), #) st. (DR, a, T (1)) (with o =1 pr, T(t)=T (1) px) admits a ground one-particle
structure (K, £, e ™) satlsfying KD < %(h "?). Simply choose for C any complex conjugation
s.t. [C, h]=0, modify the definition of @, to read @, (A"@AR) =w (FA ) w,(AR), AT e AL,
AR AR and modify the definition of 74 to read

15 (W(D)) = WF(T8(~CK$ D" P KDR))
where & = dL@PR, dL e DL, dDRe DR, ete
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then second quantizing. Again assume we are given a double KMS one-particle
structure (K®, £,e ™ j) over a double classical linear dynamical system
(D, &, J(1), %) as in I Then, defining the (not necessarily closed) real linear
subspaces R = K?DR, L = K°D" of £, and denoting, for any real linear subspace
M of £ the symplectic complement by M’ (see §A4) we have

Theogemz B

by =R R=1

(i) RAR ={0}, LNL'={0} _
(iii) R+L (= KP®D) is dense in 4.

Notes

(1) In the presence of (i), (i1) and (iii) are, of course, equivalent

(2) We immediately obtain the Corollary to Theorem 2: The resulting
standard double KMS state @z always possesses properties (i), (ii), (iii) of
Theorem 1. (For the proof, use (iv), (vi) and (v) of Theorem in §A4
respectively.) Note that this is a stronger result for these quasi-free Bose
states than could have been obtained by application of Theorem 1, since
Condition (a) of Theorem 1 is not implied by the condition ((4) of
Definition 3 of I) that h has no zero eigenvalues.

Proof. We mimic the proof given above for Theorem 1, substituting the
Tomita theorem of §A1 with the pre-Tomita theorem of §AS. First note some
immediate consequences of Definition 3 of I:

(a) e ™ R>R L—L
(b) [e” ,]]—()on K®D=R+L
(c) jJR=L, ]L R
(d) R +iR is dense in £, L +iL is dense in 4 (pre-cyclicity, cf. §A4)
() LcR',RcL )
f) R ﬂtR {0}, (LNiL)={0}
(pre-separating property, cf. §A4)

((f) follows from (d) and (e) on taking symplectic complements in (d).)

The next step 1s to show that Property (6) of Definition 3 of I holds with R
replaced by R and L replaced by L. This follows on usmg Rigotti’s Lemma (§A2)
to conclude that R+iR is a core for e ®¥2 and L +iL is a core for e*"2 Now,
take R (L is similar). From (d) and (f) above, we know that R satisfies the
hypotheses of the pre-Tomita theorem (§AS5). Moreover, from our strengthened
Property (6) we see that je ®"2 =, where s is as in the pre-Tomita Theorem
(8A5). By the uniqueness of the polar decomposition, we may therefore identity j
with the j of pre-Tomita, and e ®" with 8. By part (iii) of the pre-Tomita theorem,
we may then obtain L =jR =R’ (and similarly, or by taking symplectic comple-
ments R =L') which is part (i) of our theorem. Now, let xe RN R/, then by (1),
it e R N L so again by our strengthened Property (6), we must have x € @(e®") and
e®"x = x whereupon x is an eigenvector with eigenvalue zero of h and hence by
Property (4), x = 0. This gives (ii) of our theorem. (iii) now follows from (i) and (ii)
on taking symplectic complements.
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Appendix

We recall some background material needed to make the proofs of Theorems
1 and 2 self-contained. §§A3, A4 will also be generally helpful for §3.

§A1. Tomita’s theorem

Let A be a von-Neumann algebra and Q a cyclic and separating vector for A.
Define the real-linear operator

S:AQ— A*Q
Then S is closable and in the polar decomposition S =JA'? of S, we have

(1) J is an antiunitary involution
(i) AY? is complex-linear (positive)
(i) JAT =’

(iv) A" A" A > A, A —> A’

§A2. Rigotti’s Lemma [15]

Let K be a self-adjoint operator on a Hilbert space ¥. Let f be a real Borel
function bounded on the compacts. If A< D(f(K)) is a dense subspace invariant for
the group e "X, then A is a core for f(K).

More About Second Quantization [16, 17, 18]

The next two sections continue the discussion begun in §§2-3 of I (ref. [7])
concerning the Fock representation triple (W — W% F(4), Q%) of Weyl
operators over a complex (‘one-particle’) Hilbert space # (characterized by
(QF | W#(x)Q%)g4 =exp (—3|x]|Z) and the second quantization map I' from
operators on /% to operators on %(#) which satisfies, for unitaries and an-
tiunitaries, WZ(Ux)=T(U)WZ(x)['(U)"' and dI'(A)=0 for A>0 where
F(e*)=exp (idT(A)).

§A3

Given two one-particle Hilbert spaces #, and /-, there is a natural isomorph-
ism F(4,D4,)=F(#4,)Q F(%,) in such a way that W(x,Dx,) corresponds to
Wi(x,)® W(x,). In the special case where %4, =%,, we can write operators on #®D /4
as 2X2 matrices of operators on h. Then under this isomorphism, we have

F(? g)zI’(A)@F(B) and F((l) (1))=E where Z(a®B)=BRa for a,Be
F(4k).
§A4

We quote some results from the very nice discussion of Leyland, Roberts,
Testard [18] on the von-Neumann algebra W¥(#4)" generated by the W¥(x) for
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x’s in an arbitrary one-particle Hilbert space #. These results concern subalge-
bras W¥(M)" of W¥ ()" generated by real subspaces M of £. We use the notation
(as usual) &' to denote the commutant when & is an algebra of operators, and
(without risk of confusion) M’ to denote the symplectic complement when M is a
real subspace of 4. So xe M'© Im(x|y)=0VyeM. Considering # as a real
Hilbert space with inner product Re (- |-), M’ is of course just iM". Note that
M"=M and (M+iM) =M NiM'. More generally, we have (M+N)=M'NN’
for arbitrary real subspaces M, N.

Theorem (= Theorem 1.3.2 of [18]). Let 4 be a complex Hilbert space, M, N
real subspaces of # and M the closure of M etc. Then

(i) W*M)' = W*(M)
(i) Q is cyclic for W#(M)" if and only if M +iM is dense in /.
(iii) Q is separating for W¥(M)" if and only if M N iM ={0}.
(iv) W*M)'=Ww*(M'Y
v) (W (M)'U W (N)')'= W¥(M+N)"
(vi) W@(M)"ﬂ WF(NY' = W#(MNN)" and consequently WZ(M)" is a factor
if and only if MNM' ={0}.

Note that (iv) is the so-called abstract duality property originally isolated and
proved by Araki [19]. (See end of §AS5.)

§AS5. Pre-Tomita theorem

Let M be a closed real subspace of a complex Hilbert space # s.t. M+ iM is
dense and M NiM ={0}. Define

o M+iM—-> M+ iM
a+if —>—a+ip

Then s is closable and in the polar decomposition 3= j8"* of 3 (on (4, Re (-|-))
we have

(1) j is an antiunitary involution

(i) 8'* is complex linear, (positive)

(i) M=M'

(iv) 8" M— M, M'—> M.
For the proof see {18] or [20]. Note that for the Fock representation of the Weyl
algebra over a complex Hilbert space #, the results in §A4 link together the
pre-Tomita theorem with the full Tomita theorem. (Thus consider (W% (M)", Q%)
for an M as in Pre-Tomita. Then by § A4, QF is cyclic and separating and we may
identify: S=T(s), J=T(j) A*=T(8").) (In fact, in [18] one uses the Tomita and
pre-Tomita theorems to prove the theorem in §A4.)
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