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and

Institut fir Theoretische Physikt Universitat Ziirich, Schonberggasse 9,
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(25. 1. 1985)

Abstract. We introduce the concept of ‘KMS one-particle structure’, in terms of which the
construction of a class of thermal states for linear Bose systems may be reduced to second
quantization. For such structures, we prove a uniqueness result which strengthens earlier work of
Rocca, Sirugue and Testard. We elucidate these structures further by introducing a certain doubling
procedure. The results here together with those in a companion paper on the purification of KMS
states are preparatory for a third paper about constructing linear quantum fields on black holes.

§1. Introduction

This paper settles some mathematical questions concerning thermal equilib-
rium (i.e. KMS [1-4)) states on linear (i.e. ‘quasi-free’) Bose systems. While such
matters were much studied in the early '70’s ([5-7], see also the early paper [8]),
it seems that some important things were left unsaid and the purpose of the
present work is to fill some of the gaps.

Our discussion centres around the concept, which we introduce, of ‘KMS
one-particle structure’ in terms of which the construction of a class of KMS states
for a large family of linear Bose systems may essentially be reduced to second
quantization. Our main result is a uniqueness result for these structures. This
strengthens (at the technical level) a part of some earlier work of Rocca, Sirugue
and Testard [7]). Finally, we explain how the structure of our quasi-free KMS
states 1s more fully revealed by a certain doubling procedure. This doubling
procedure will be discussed further in a more general context in a companion
paper [9]. Essential use will be made of both these papers in a third paper [10]
which concerns some aspects of quantum field theory in curved space-time related
to the Hawking effect, and which constituted the immediate motivation for the
present work.

Research supported by the Schweizerischer Nationalfonds and by the Italian CNR-Gnafa
T Permanent address
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§2. Preliminaries

In this section, we establish our notation and also recall some basic facts
about the quantization of linear systems, emphasizing the structure of the ground
state representation. We also review some basic facts about the second quantiza-
tion process.

§2.1

A general linear dynamical system (D, o, 7 (t)) consists of a linear phase-
space D equipped with a linear symplectic form o —together with a one-
parameter group 7 (t) of linear symplectic transformations on (D, o) describing
time evolution:

o(T ()P, T()P,) =0 (P,,P,) VP, DeD (2.1)

In the algebraic approach to quantum field theory on such linear systems (see e.g.
[11]), one constructs the Weyl algebra W over (D,o) generated by Weyl
operators W(®) satisfying

W(D,) W(®D,) = exp (—io (P, )/2) W(P, + D)) (2.2)

(for further details, which we shall not however require here, see e.g. [12]) and
describes the quantum time-evolution by an automorphism group af(t) fixed by

a(t)W(P)= W(T (1)®) (2.3)

Recall that to define a state on the Weyl algebra, it suffices to specify its
expectation values on the W(®)’s.

§2.2.

We now discuss the construction of a ground state for such systems:

In the case that D were given as a complex Hilbert space ¥, o(, ) arose as
2Tm (- |+), and J(t) arose as e " for some strictly positive') one-particle Hamilto-
nian h, a ground state would be defined by

wo(W(®)) = exp (=3 | ®]3) (2.4)

and the corresponding ground state representation by the Fock representation.
(see §2.3 below). One may extend this procedure to systems which admit a
‘eround one-particle structure’ (K, ¥, e ).

Definition 1a. A ground one-particle structure (K, ¥, e ") over (D, o, 7 (t))
consists of a complex Hilbert space %, a map K: D — # and a strongly continu-
ous unitary group e ™ on ¥ s.t.

(1) K is real-linear and symplectic, i.e. satisfies
2Im (K®, | K®,)= o (Py, »)
(i) KD is dense in &

1 i.e. positive, self-adjoint and with no zero eigenvalue.
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(iii) KT (t)=e " K where h is strictly positive.
One then obtains a ground state?) via:
wo( W(P)) =exp (—3 NK(D”;‘@) (2.5)

(corresponding to the representation W(®)— W#(K®)-see §2.3 below).
Moreover, it is known that when such a ground one-particle structure exists, it is
unique up to unitary equivalence in the following sense ([14], re-proved here in

§4).

Theorem 1la. Given two ground one-particle structures (K, ¥, exp (—ith;))
i =1, 2, over a given linear dynamical system (D, 7 (t)), then there exists a unique
unitary U : 3, — ¥, s.t.

(1) UK,=K, on D

(i) U exp (—ith,) =exp (—ith,) U on #,.

As we shall explain in the next chapter, one of our main aims here will be to
prove an analogue theorem to Theorem la (Theorem 1b of §3) for the concept
(which we shall introduce) of KMS one-particle structure.

§2.3. Second quantization

We briefly recall for completeness some basic facts about the Fock represen-
tation W(x)— W¥(x) (In the discussion above, x = K®) of the Weyl algebra over
(#,2 Im (- | -)) for some one-particle Hilbert space #. (i.e. about Segal’s ‘abstract
free Bose field’ [15, 16]) The representation space (%) may be realized as
COHBD(HQSQ,H)D: -+ W(x)=expla“(x)—a (x)*] with a*(x), xe ¥ the usual
creation operators satisfying [a " (x)*, a*(x)]={(x | y), a*(x)*Q =0, etc. Here  is
the cyclic vector 1P0DO0D- - - and we have

(@ W7 (x)Q) = exp (=3 [x[|3)

justifying the remarks after equations (2.4) (2.5) above. Corresponding to 7 (t)
and e "™ in the discussion above, the second quantized time-evolution is given by
I'(e ™) where for an arbitrary operator A on %, I'(A) on F(¥) is 1HAD
(A®A)D:--. We have

WEJF (e~irhx) - I‘(e"""‘)Wg(x)I‘(e‘"")*‘

(and such a formula holds more generally for unitary or anti-unitary operators U
on #). We may also write I'(e ™) =exp (—itdI'(h)) and dT'(h) is then the second
quantized Hamiltonian. More properties of the Fock representation will be taken
up in [9].

§3. KMS one-particle structures

Our main aim is to give an account of the structure of Gibbs states on linear
systems in the same spirit as the account we gave in §2.2 for the structure of

%) not necessarily unique because of the possibility of replacing w, by w/ with wj(W(®)) =
wo(W(D))e™® where x is a linear functional on D satisfying

x(T()P) = x(P) (see [13])
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ground states. We shall also make precise the relationship between these two
types of state.

§3.1

As our starting point, we take the standard heuristic expression (in the
notation of §2) for a Gibbs state with inverse temperature g8 =(kT)™":

ws(W(®)) = Z " tr (e *HW(®)) (3.1)

Here Z=tre ®" and, if we assume a ground one-particle structure exists, we
may set H=dTI'(h) and W(®) = W#(K®). As is well-known, we cannot expect to
give this expression any rigorous mathematical sense as a trace in the vacuum
sector. Nevertheless, one can argue convincingly for it being assigned the value

(see §A1)
coth (%h)Kd))}(] (3.2)

If we now assume that a ground one-particle structure exists satisfying the
‘regularity condition’ KD < %(h '?), then the formula (3.2) makes good
mathematical sense, with coth (8h/2) interpreted in the sense of quadratic forms
[17] (see §A2 for details) and defines a well-defined state on the Weyl algebra.
(One may also easily check that it satisfied the KMS condition [1-4].) The
question arises as to what extent wj is unique.®) As in the case of the ground state
w,, we shall establish a uniqueness result at the one-particle level, and our first
task is to isolate a suitable version of the one-particle structure concept in the case
of finite temperature. To motivate our definition, let us continue to assume the
condition KD <% (h "?) and let us also assume the existence of a preferred
complex conjugation C on # satisfying

wg (W(D)) =exp [—%(Kd)

Ce th =e™"C (3.3)
Then, observe that the wg of (3.2) may be written as

wg (W(P)) = exp (-3 |[K* D7) (3.4)
where we define ¥ = #@ ¥ and K® by

K;P:D>XDX

® > CshZ’K®PD chZPKP

where Z* is defined implicitly through

tanh Z® =exp (—Bh/2) (3.5)

) It is clearly not always unique amongst the set of all KMS states with the same B because of the

possibility (related to Bose condensation) of replacing w; by w; with wi(W(P) =

wB(W((IJ))e"‘"‘" where x is a linear functional on D satisfying x (7 (£)®)= x(®) (cf. footnote 2).
See also [7].
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The formula (3.4) generalizes a construction used by Araki and Woods [8] in their
treatment of the non-relativistic free Bose gas (cf. their case of ‘No macroscopic
occupation of the ground state’). Now, define exp (—ith) on ¥ = D ¥ to be

((exp (ith) 0 )
0 exp (—ith)

We shall call the triple (K®, %, exp (—ith)) the standard KMS one-particle structure
over (D, o, 7 (t)) (with inverse temperature 8). We now isolate what we claim are
the essential features (see §A2) in the following definition.

Definition 1b. A KMS one-particle structure (K®, 976, exp (—ith)) over a linear
dynamical system (D, o, 7(t)) consists of a complex Hilbert space #, a map
K®?:D — H and a strongly continuous unitary group exp (—ith) on ¥ s.t.

(i) K® is real-linear and symplectic—i.e. 2 Im(K®?®, | K°P®,) = a(d,, D,)

(i) K°D+iK"D isdense in #

(iii) (a) KPJT(t)=exp (—ith)K® on D

(b) h has no zero eigenvalues
(c) exp (—ith) satisfies the ‘one-particle KMS condition’ namely Vx, y €
K®D,VteR:

(exp (—ith)x | y)s = {exp (—BA/2)y | exp (—ith) exp (—BA/2)x )y

Note that the concept of KMS one-particle structure differs essentially from that
of ground one-particle structure in that the Hilbert space # is ‘twice as big’ as .
This is reflected both in condition (ii) where —in the KMS case - K*D +iK*®D is
dense, while in the ground case, KD alone is dense, and in condition (iii) where,
in the KMS case, h has symmetric spectrum, in contrast to the positive spectrum
of the ground case. We shall return to this point in §4. At the second quantized
level, it is of course related to the fact that GNS representations of KMS states
are only cyclic, while those of ground states are (often) irreducible (see [9]).

That this is a suitable definition is justified by the uniqueness theorem (which
we prove in §4):

Theorem 1b. Given two KMS one particle structures (K, %, exp (—ith;))
i =1, 2 (for the same B) for some given linear dynamical system, then there exists a
unique unitary U :3, — ¥, s.t.

(i) UK¢=KS% on D ) )

(1) U exp (—ith,)=-exp (—ith,)U on ¥,

Theorem 1b corresponds to a result which is already known for quasi-free
Fermion fields (where in fact there is the stronger result of uniqueness of KMS
states —see Rocca, Sirugue and Testard [18] and Araki [19]). For Bosons, a
similar result to ours may be extracted from the work of Rocca, Sirugue and
Testard [7] who essentially prove uniqueness of KMS states over linear systems
up to the freedom mentioned in footnote 3. (See also Araki and Shiraishi [5] and
Araki [6] which are closely related although they do not appear to consider the
uniqueness question.) However, rather strong technical conditions are required in
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[7] and our approach appears capable of settling uniqueness problems which arise
in applications (such as [10]), which cannot be settled with the methods and
results of [7].%)

§4. Uniqueness of ground and KMS one-particle structures

The aim of this section is to prove Theorem 1b. Since it appears to require
almost no extra space, we begin by recalling the proof of Theorem la ([14], see
also [13]) in a form suitable for generalization.

Proof of Theorem 1la. Consider the map T=K,oK,' between the (dense)
subspaces K;D and K,D in #, and #, respectively. Since K, and K, are each
symplectic, we have

Im(Tx | Ty)se,=Im(x | y)%, Vx,yeK,D (4.1)
Now, for fixed x, y € KD, consider the function
fry i t>{exp (—ithy) Tx | Ty)se, —(exp (—ith)x | y)s,

Since h,, h, are positive, this extends by a standard argument (see e.g. [2]) to a
function of complex ¢t which is bounded and continuous in the region Im ¢t <0 and
holomorphic in Im t <0. Furthermore, for t real, we calculate

Im f, () =Im [{TK,T () K7 x | Ty)3e,— (K; T (K "x | y)se,]
=0 (by (4.1) above)

Hence, by the Schwarz reflection principle, f, (t) extends to a bounded
holomorphic function in the entire complex plane and it thus has a constant value
by Liouville’s theorem. Finally, the fact that h;, h, have no zero eigenvalues
guarantees that this constant value is zero. A proof of this which will generalize to
the KMS case is to look at lim,_,.. 1/t § {exp (—it'h,)x | y) dt’' (and similarly for h,)
for real t, and notice that by von-Neumann’s ergodic theorem [17] this tends to
zero. In particular we get for t=0

(Tx | Ty)se,=(x | y)s, Vx,yeK,D

It results by the following lemma that T extends to a unique unitary U.

Lemma S5.1. Given two complex Hilbert spaces #,, #, with real-linear
subspaces M, M, s.t. M, +iM, is dense in 3,, M,+ iM, is dense in ¥, and given a
(one-one) onto real-linear map T: M, — M, s.t. {Tx | Ty)s,={x | y)s, VX, y € M.
Then T extends to a unique unitary.

Proof. Define U on the dense complex-linear set M, +iM, by U(x +iy)=
Tx +iTy. With this definition, U is complex-linear. We must still check it is

%) One difficulty with [7] is its assumption ‘E3’. For the problem in [10], it is difficult to check this
assumption and in fact it is presumably false. (The connection between the present paper and [7]
may be made only in a restricted class of cases for which the exponent (K® | coth (8h/2)K®) in
expressions such as (3.2) may be written as o(®, X®) for some X (in the notation of [7],
X 1= D®) which maps D — D. This appears for example to be untrue in our application in [10].
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well-defined. We clearly need to show Tx +iTy =0 = x =y =0. This follows since
IT(x + iy)||*=||(x + iy)|[>. In fact: Given x,, y., X», Y, € M,;, we have

(Tx, +iTy, | Tx, +iTy,) =(Tx, | Tx,)+(iTy, | Txy)
+(Txa l ITYb>+(lTY¢1 l ITYP))
= (xa 1xb>_ i<ya l xb)+ i<xa ' yb>+(Ya I yb)
= (xa * iYG | Xb + le)
which also shows U is inner-product preserving. Finally, since it has dense range,

it must extend to a unitary. For uniqueness note that any U’ which extends T
must have Vx, ye M,,

Ulx+iy)=U'x+iU'y=Tx+iTy
and so coincides with U on a dense set. []

Note that this lemma does not require KD to be dense and that we have
nowhere used this assumption in the proof of Theorem 1a. The above proof is

thus easily adaptable to the proof of Theorem 1b. (See definitions and statements
in §2.)

Proof of Theorem 1b. We proceed exactly as in Theorem _1la, defining
T =K,°K;"' (we drop the superscript 8) between K,D and K,D in %, and H, (of
course K;D are not assumed dense now). Again we have

Im(Tx | Ty)z,=Im{(x | y)s, Vx,yeK,D
As before, define a function

fry 11> (exp (=ithy) Tx | Ty)s, = (exp (=ithy)x | y)s,

Now, by the one-particle KMS condition, f, ,(t) extends by a standard argument
(see e.g. [2]) to a function of complex t which is bounded and continuous on the
strip —iB <Im ¢t<0 and holomorphic in —iB <Im t <(0. Furthermore,

fey(t—iB)=(Ty |exp (—itﬁz)Tx)g@z—(y | exp (-itftl)x)z;fI
= fey (1):

Again, for t real, we find Im f, ,(t) = 0 so that we actually have f, ,(t—iB)=f,,(t)
and also by the Schwarz reflection principle, we can extend f,, to the region
—iB<Imt=<iB (bounded, continuous in the full region and analytic in the
interior). It will also clearly satisfy f, ,(t+iB)=f,,(t)=f.,(t—iB) and have zero
imaginary part on Im t=+iB. We can thus extend it again etc. getting finally a
bounded holomorphic function (periodic in i) in the entire complex plane.
Again, by Liouville’s theorem, this will be a constant function, and again, since h,,
h, have no zero eigenvalues we conclude by von-Neumann’s ergodic theorem that
fey(t)=0. Taking t =0, we see that

(Tx | Ty)se,={x | y)%, Vx,yeD
The theorem then follows by Lemma 4.1. [
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§5. Double dynamical systems and double KMS one-particle structures

As mentioned in §3, the one-particle Hilbert space # is ‘twice as big’ in the
KMS case as in the ground case. This suggests that the structure of K® would be
more fully revealed if we extended its domain by ‘doubling things up’ at the
classical level. This is indeed the case as we now show:

§5.1. Standard example of a double linear dynamical system

Let (D, o, 9(t)) be a linear dynamical system as in §§2, 3 and suppose it
admits an antisymplectic involution T which reverses the sense of time-evolution:

T:D — D, T>=1

o(TP, TYV)=—o(d,¥) VI, VYeD (5.1)

TT(t)=9(—nT
Let DR, D' each be a copy of D and let D be the vector sum D-*@D~®. D
inherits a symplectic form ¢ according to

G(®,DV,, ®,BV,)=0c(®,, )+ (¥V,,¥,) VP, d,cD"; ¥, ¥,e DR
Define the doubled time-evolution 7 (t) by

T((@BY) = (T (-PB T ()Y)
and define the doubled involution

F(PRV)=(TYDTP)

Before continuing, we summarize the essential features in the

Definition 2. A double (classical) linear dynamical system (D, G, 9(t), %)
consists of a linear dynamical system (D, &, 9 (t)) and an antisymplectic involution
$ s.t.

(@) [T(), #]=0

(b) D consists of the sum of two independent subspaces:

D=D"+DR s.t.

(i) o(®" dR)=0 Vd'eD", dR e DR

(i) 9(t): D" — D*F, DR — DR

(iii) D" =DR® (and $D® = D")

We shall say such a double system extends a (D, o, 9 (1)), whenever we can
(and do!) identify (D®, & | pr, T(t) | ) with (D, o, T (1)).

§5.2. Standard example of a double KMS one-particle structure

Suppose that the (D, o, g(t)) of §5.1 admits a regular ground one-particle
structure (K, %, e ™) (i.e. one satisfying KD < % (h~"?)) and suppose further that
the classical symmetry T is implemented at the one-particle level by a complex
conjugation C s.t. CK=KT on D. We then automatically have Ce " = e""C.
Writing @@V e D as a column vector, and defining H= #® % we may now fill
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out the definition of K® as promised by defining
KB((D) (ChZ6 shZBC)(—K(I))
v shZPC chZP /\ KV¥
(cf. definition after equation (3.4), see §3 and 8A2 for definition of Z® and

well-definedness.)
If we now recall from §3 the definition

” eihl 0
sxp (~iht)= ( 0 e"”")

and define the anti-unitary involution j on # by

‘_( 0 -C)

e

then one may easily check (see again §A2 for property 2 below) that
(K®, H, exp (—iht), j) satisfies the

Definition 3. Given some B>0 a double KMS one-particle structure
(K", %, , exp (—ith), 1) over _some (D, &, 7 (1), $) consists of a complex Hilbert
space #, a map K®:D — %, a strongly continuous unitary group exp (—ith) on %

and a complex conjugation j. s.t.

(1) K®?:D — %, is real-linear, symplectic

(2) KPDR +iKPDR®R is dense in #
(and similarly for L < R)

(3) K®J (t) =exp (—ith) K"

(4) h has no zero eigenvalues

(5) KB = 1K‘3

(6) KPDR + tK‘aDR < P (exp (— Bh/2)), KBDL +iKPD" c D (exp (+Bh/2)) and
exp (—Bh/2)x = —jx Vx € K®DR, exp (Bh/2)y = —jy Vy € KD"

Note that the (KB, %, exp (~uh)) of such a definition —when restricted to

(DR, o, (1)) is a KMS one-particle structure in the sense of §3. To check the

‘one-particle KMS condition’, we note that it easily follows from our definitions
that [exp (—ith), j]=0 on K"D and calculate Vx, y e KPDR®

(exp (—ith)x | y) =iy | j exp —jth)x>
= (jy lexp (—ith)| jx)
= (exp (—Bh/2) y | exp (—ith) exp (—Bh/2)x)

§5.3.

Finally, our uniqueness theorem extends to give

Theorem 2. Given a double linear dynamical system (D, 6,9 (1), .9) for which
are given two double KMS one-particle structures (K®, %, _exp (— ith,), j) i=1,2, for
some given B >0, then there exists a unique unitary U : H,— K, s.t.

A) UK =K% on D ) )

B) Uexp (— uh ) =exp (—ith,)U on ¥,

C) Uj,=j,Uon #,.



1026 Berard S. Kay H P A.

Proof. By Theorem 1b, we conclude the existence of some UR:%,— %,
which satisfies A) restricted to D® and B) on all of ?E’l. (Similarly, we could
conclude the existence of a U™ with corresponding properties for D*. We shall
see below that U™ = U¥.) From B), we conclude

UR : @ (exp (—Bh,/2)) > D(exp (—Bh/2))
and

R exp (—Bh,/2) = exp (—Bh,/2) UR
on _
%D (exp (—Bh,/2))

In particular, this is true on K#D® which, by construction, is map%ed by U® onto
KSDR. Applying Property (6), we recover U%j,=j,U" on K{D® and hence on
the dense set K#D® +iK?DR® and hence on all of #, since UR, j,, j, are bounded.
This gives C). It remains to show that A) holds on D" For this, we use the
following argument: URj,K$=j,URK®? on DR => URK$$=j,KE=KE% on
DR le. URK®% =K% on D' since $DR=D". O

One can show quite generally a number of properties which justify the
naturalness of the above developments. For example, it follows from Definitions 2
and 3 that K®D is necessarily dense in_% (and thus that U in Theorem 2 is
actually the closure of K&o(K%)™' on K#D.) Rather than prove these things here,
we postpone discussion of such things to the companion paper [9] where we shall
emphasize the meaning of doubling in the wider context of KMS states on general
(i.e. not necessarily linear) quantum systems.

Appendices

§ Al. Heuristic derivation of a class of KMS states for linear systems®)

We sketch a heuristic derivation for the formula (3.2). We proceed as if the

one-particle Hamiltonian h has discrete spectrum hys; = h;s, and write (adopting
Dirac notation)

hzzhi |¢) {¢s| on %:@%i

(with each #,; =C).

It is convenient to realize our representation space for the second quantized
theory (Fock s ace) in infinite tensor product form adapted to the spectrum of
h:F(¥,)=Q&;F(#;) where each F(#,)=¢,). Here, one may think of the in-
complete tensor product [20] associated with the vacuum vector Q=& Q,. The
Weyl operator is represented by W#(K®) (see §2) which in this version of Fock
space clearly becomes

exp (T (il kv — (k@ | wpa)

%) This appendix is a mild generalization of Appendix 1 in [8]. We include it here for the sake of
completeness.
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where a;, a;, are the creation and annihilation operators on %(¥,), so that

[a;, a;]=1, a;Q; = 0. Finally, the second quantized Hamiltonian is clearly given by
dI'(h) =%, ha{ a,
By the usual Gibbs prescription

ws(W(®D)) = Z ' tr (e T ™ W¥ (K D))

=Z 'tr (exp [—B Z hia?ai] exp [Z “ia:_zi &‘a‘])

where
ai:(‘l’i|K(I)>v &i:<K(DI'-£’i>

and

Z=tre P W=y (exp [—B Y h,—a,»*ai]).

Here the trace is to be taken over all vectors &); |n;) in Fock space. Ignoring
mathematical rigour, we may rearrange this formula to give an infinite product of
terms — each of which corresponds to a Gibbs state on a single degree of freedom:

w0s(W(®) =]] Zi tr (exp [-Bhia; a;]exp [wia] — aia;])

with Z, =tr (exp [Bhia; a;]). Z; is of course just Y. e ™h=(1—e *"%)"! The
other trace (using the cyclicity of the trace and the Baker-Hausdorff formula) is
equal to

exp (—|a;|?/2) Z exp (—nBh,){n|exp (a;a™) exp (—a;a) |n)

n=0

which, on using a; |n)=n"?|n—1) and a straightforward calculation

|2m oo
i

=exp (—|oy|?/2 i (—)kla— Z nn=1)-+(n—m+1)e "

m=0 (m|)2 n=m

The sum over k is evaluated by

oo

d\m &
Z n(n—l)~~(n—m+1)x"=(a) Zx"

n=m

=x"m!(l—-x) "'

So our trace becomes

_ - o™ (_exp (~Bh)
1 e |2 -\
[1—exp (—Bh;)] " exp (—|e|*/2) mE:O( ) m! (I—GXD (—Bhi))

Cancelling the first term with Z;', summing the series over m and taking the
infinite product, we get finally

12 h.
wg(W(P)) =exp [—Z o " coth (E——')]
T2 2
On recalling hy; = hy;, and |o; | =(K® | ), | KP) we see this is equal to (3.2)
which we now take to be the correct formula even in the case of non-discrete
spectrum.
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§A2. Some details omitted from §8§3, 5

In §3, the operators
shZ® =exp (—Bh/2)(1—exp (—Bh)) "> and chZ® =(1—exp (-Bh))™"?

are each defined by the spectral theorem and, using the simple estimates on
positive numbers x

exp (—Bx/2)(1 —exp (—Bx)) 12 < C(max (1, x~112)
(1—exp (—Bx))~"?> < C(max (1, x '3

we see that @(h Y?) < D(shZ®), D(chZ®).

Similarly, one can check, regarding equation (3.2) that @ (h ') is contained
in the quadratic form domain 2 (coth (8h/2)) (use coth (Bh/2) = ch*Z"? + sh*Z"®).
The regularity condition KD < % (h '?) thus suffices as claimed in the text.

In checking that the standard KMS one-particle structure (K®, %, exp (— nh))
satisfies Definition 1b, (i) and (iii) are easily checked by stralghtforward calcula-
tions. We now check (u) that KD +iK®D is dense in # @ %. Using the relation
shZ® =exp (—Bh/2)chZ® it suffices by the following argument to prove chZPK*D
is a (real-linear) dense set in #. For, given a B in the sense set & (exp (Bh/2))€B
#, we may then find sequences ®;, ¥;€ D s.t.

chZPK®®, — i(exp (Bh/2)Ca + B)
and .
chZPK®W, — %(exp (BR/2)Ca — B),
so that
(shZBCKP®, chZPKP®,)+i(shZ®CKP V¥, chZPKPV¥,) > a fB.

To prove that chZPK®D is dense, note that ran (chZ®) on its full domain is dense
since chZ® clearly has no zero eigenvalues. The result now follows on showing
that K®D is a core for chZ®. For this, one may use the convenient

Lemma (Rigotti [21]). Let K be a self-adjoint operator on a Hilbert space ¥.
Let f be a real Borel function bounded on the compacts. If A< D(f(K)) is a dense
subspace invariant for the group e "X, then A is a core for f(K).

(We shall need this lemma again in [9]. For the proof, see Theorem 4 of
[21].) In applying this lemma here to A=K®D, take f(x)=(1-¢ ®)"? and
K = h; and use the fact that K®D is invariant for exp (—ith).
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