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Scalar fields in Kaluza—Klein theories')

By S. Mallik

Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

(30. X. 1984)

Abstract. We consider Kaluza—Klein theories in (4 +d)-dimensions with internal space given by
the manifold of an arbitrary group G. The G-invariant metric allows a set of scalar fields in it. With an
additional Yang-Mills Lagrangian the Einstein and Yang-Mills equations are satisfied in (4+d)-
dimensions by the physical ground state with compactified internal space. We study the scalar fields
around the ground state. We find that the G-invariant metric contains no massless scalar fields, all
their masses being real and of the order of the Planck mass.

A major problem of realistic Kaluza—Klein theories [1] is to obtain massless
particles of right quantum numbers. Most of the results obtained so far in this
direction concern spin 1/2 particles [2-4]. Search for massless scalar particles in
such framework is also important, because it may lead, among other things, to an
understanding of symmetry breaking mechanisms.

For this purpose it is desirable to study the mass spectrum of the scalars in as
general a situation as possible. Here we obtain the mass spectrum of the scalar
particles contained in any G-invariant metric [5, 6], the internal space being the
group G. The Lagrangian is given by adding a Yang-Mills term with G as the
gauge group to the (4+ d)-dimensional gravity Lagrangian. Our result eliminates
all these scalar fields as possible candidates for zero mass particles: they all have
real masses but of the order of the Planck mass.

Introduce a set of coordinates y™, m=1,...,d (=dim G), on the group
manifold B of a compact nonabelian Lie group G. Then we define [7] a set of left
(right) invariant vector fields K, = K'9,, (K, = K" 3,,) on B which form bases for
the Lie algebra of group G,

[K.(y), Ky (y)] = CoK (y), (1)
[Ka(y)s Kb()’)] = _Cﬁch(Y)a (2)

<, being the structure constants®) of the group G. Here, and in the following,
quantities like K(y) with suffices m, n,... and a, b,... of the Latin alphabet
transform as vectors (tensors) at the point y and at the origin respectively.
With the group manifold as the internal space, the isometry group [8] of the
vacuum metric (eq. (7) below) is the product group G, X Gg of G, and Gg
generated by the left and right invariant vector fields K, and 6Ka (a=1,2,...,d)

') Work supported by Schweizerischer Nationalfonds

%) We take the Cartan-Killing metric to be diagonal. The upper and lower position of the indices
on the structure constants is merely for convenience.
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respectively, 1.e. they are the Killing vectors of the vacuum metric. The (4+d)-
dimensional G-invariant metric is obtained by requiring that the transformations
generated by only one of these (we take it to be G; in the following) be its
isometries. Then the full metric has K/'s as its Killing vectors. Its components
may be written as [5, 6],

2 (X) =Gy, + AL(X) b (x) AY(x),

Zum (X, ¥) = AL(X) e (0K, (), (3)

8o (X, ¥) = o (O K, (WK, ().
The Greek indices indicate physical space-time dimensions. G,,,(x) is the physical
4-dimensional metric. K7'(y) is considered as a matrix, the elements of its inverse
being denoted as K,,'“(y). Clearly all the fields in this metric are singlets of G;.
The gauge fields Aj ., belong to the adjoint representation, as usual, of Gg, while
the scalar fields ¢,,(x) transform as the product of adjoint representation of Gg

with itself.
The scalar curvature *) resulting from the above metric is

R = R+ 1, F*F3,
+2(¢ N bl NCLChH+ CiChy
+V,{(¢ "D bapt +i(d N (¢ ) UD b D ey + Dybuc D dpa}.  (4)
where
Fi,=0,At—3,AL+ CpALAS, (5)
Duqbab = ap.(bab - Aﬁ(cdac¢cb + Cape®ac)- (6)

Again (¢ ") denotes the matrix elements of inverse of the matrix ¢,. R is
the 4-dimensional curvature. V,, is the covariant derivative with the usual affine
connection.

Now the ground state of a Kaluza—Klein theory is assumed to be given by the
product M x G of 4-dimensional Minkowski space MY and a compact internal
space of group manifold G, corresponding to the metric

0
;EMN=(”“" . ) M,N=1,2,...,(4+d) (7)
0 gun
with
émn(y):ﬁﬁg‘“(y)fi;‘%y) Sab- (8)

As the internal coordinates are taken dimensionless, the constant M has the

dimension of mass, giving the scale of the compactified internal dimensions.
The physical spectrum of the theory is determined by studying the quadratic

terms around the ground state. Accordingly, we set for the scalar field matrix

1
¢:_A}5(1+B‘P)’ (9)

) Our sign conventions for R and the flat metric n are the same as of Weinberg [9], naturally
extended to (4+ d)-dimensions.
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where the constant B fixes the scale of the scalar fields. Since ¢ is given the
dimension of mass, B has the dimension of inverse mass.

The curvature scalar (4) up to quadratic terms is ¢ and excluding its interac-
tions with gauge fields is then

M? M?
R R(4) S Fu Fa;w dc(/\) e C(A)
4M2 4 B Caa
B* .
s 4 (du(Puu au(pbh =} ap.(Puh auwah M Clb( Culecpbd(p(( ) (10)

where CYV is the eigenvalue of the quadratic Casimir operator in the adjoint
representation. For later use, we note for any representation (R),

T(aR)T(aR) — _C(zR) -1 (1 1)

where T'® are the generators of the group in representation (R).

The compactified vacuum metric (7) does not actually satisfy the Einstein
equations obtained by varying the (4+d)-dimensional gravity Lagrangian. One
must incorporate a compactifying mechanism in the Lagrangian, before one can
read off properties of fields appearing in it. Various mechanisms have been
proposed [10, 11]. As mentioned earlier we shall consider here adding a Yang-
Mills Lagrangian in (4+ d)-dimensions to that for gravity, proposed originally in
ref. [12] and studied extensively by others [13, 14, 3].

The full (4+ d)-dimensional Lagrangian density is then

s 1 1
F=- ‘F(n’mG R+-— GG+ VO) (12)
Here g=—det gy G, € and V,, are the (4+d)-dimensional gravitational and
Yang-Mills coupling constants and the cosmological constant respectively. The
gauge fields B, in Yang-Mills Lagrangian belong to the same gauge group G as
the gauge fields Aj.

That the Lagrangian (12) leads to the desired compactification has been
shown by Luciani [14]. Assume that the ground state is given by the metric (7)
and the non-vanishing internal components of the elementary gauge fields,

B4 =0, Ba(y)=AK,.'"“(y) (13)

where A is a constant. For this ground state, the Einstein and Yang-Mills
equations are satisfied if

> 52 dCA)
e’ ’ v, e’ i 5
27G 87G): 4

K=y, M?*= (14)

We do not consider here the scalar fields arising from the internal components of
the elementary gauge fields. Retaining up to quadratic terms in the scalar fields
contained in the metric, we get

M4
G ?nnG(mm - ﬁ (dC(zA) o ZC(QA)B(Paa + 2C§A)Bz¢ia + Bzcabccade‘\obdcpce)~ ( 1 5)

Inserting (10) and (15) in (12) we get the total 4-dimensional Lagrangian density
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up to quadratic terms in scalar fields,

By= I dyP(x, y)

1 C o l apv;a Bz
" 167G .[d I}’\/E{RMU%W B F“""T"C&P} (16)
where ¢ =(M?det K) 2, and
g‘@ = _[au(paa a“‘Phh +au(pab au(\oub + MZ(QA)(ptzm - %Cabcqade‘Pbd(Pce).] (17)

Now define the 4-dimensional gravitational constant G, gauge coupling e and the
scale factor 8 by

1 o1
5 Jawi=g e
1 1
s | = (19)
and
B”_(gayvz = 20
647G IVE= S (20)
to get
e’ 2e
M? = =— 21
167G’ M S
The Lagrangian (16) becomes
1 1
Fix)= —-——16776 RM)—E Fwaa”'v +f£q, (22)

It is now simple to diagonalise £,,. Consider first the last term in £, (17),

CoatcCanePoaPee
= $ba (T(A) ® T(A))bd.ce(locc
= %‘Pbd (Tgp) Tgp))hd.ce(\oce — Ppe (T:;A )T{QA ))Cd¢db’ (23)

where T and T are the generators in the adjoint and in the product of two
adjoint representations, T"' =T ® 1+ 1 Q T . Decompose the scalar fields as

Ca = 2, e FHCH", (24)
(R).k
where the sum over (R) runs through all the symmetric irreducible representa-
tions contained in the product of the adjoint representation with itself and k
labels the fields in each of these representations. C'®* are the Clebsch-Gordon
coefficients. Then (23) reduces to

— L GCE0—CEV)(e . (25)

(R)k



1008 S. Mallik H.P.A.

So £, may be written in the diagonalised basis as

2

Q(gcp — _[au(P(s) au(P(s)+ Z {aucp(R)k 8“(P(R)k+MT (ECZR)+C2A))(¢(R)R)2}:| (26)
(R).k =

where the superscript (S) denotes singlet. The masses of all the scalar particles are

seen to be real and of the order of M(~eMpy k).

The above result holds for all G-invariant metrics on MY x G, given by the
parametrization (3). More general metrics constructed without imposing G-
invariance may contain additional scalar fields. Thus our result does not preclude
the existence of massless scalars in such theories. However, by restricting our
consideration to those scalars allowed by G-invariance of the metric, we could
easily obtain their mass spectrum of all Kaluza—Klein theories with internal space
taken as the group manifold.

A similar analysis can be done on any coset space GG/H, H being a subgroup
of G. However, there arises constraint on the scalar field matrix, which is difficult
to solve in a general way. Also the gauge group reduces to N(H)/H, where N(H)
is the normaliser of H in G [5, 8]. A simple deviation of this metric as well as the
mass spectrum of the scalars contained in such a metric will be reported
elsewhere.

A recent work [15] obtaining the mass spectrum of scalars for theories with
internal space as the coset space SO(d +1)/SO(d) also finds no massless scalars
except for d =4.
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