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Superpositions of physical states:
a metric viewpoint

By Vittorio Cantoni
Dipartimento di Matematica, Universita di Milano, via Saldini 50, 20133 Milano, Italy.

(16. IV. 1985)

Abstract. Superpositions of states are defined in terms of a natural metric possessed by the state
space of any physical system. The new concept does not presuppose a linear structure connected with
the state space, and proves to be useful in a characterization of the complex separable projective
Hilbert space.

1. Introduction

In setting about promoting to the rank of fundamental principle the occur-
rence, in quantum physics, of that special relation of a state to others ever since
referred to as superposition, Dirac (1930) gave (among other clarifications) the
following qualitative description of the new concept ([1] p. 13):

“When a state is formed by the superposition of two states, it will have
properties that are in some vague way intermediate between those of the
original states and that approach more or less closely to those of either of
them according to the greater or less ‘weight’ attached to the state in the
superposition process. The new state is completely defined by the two
original states when their relative weights in the superposition process are
known, together with a certain phase difference, the general meaning of
weights and phases being provided in the general case by the mathematical
theory.”

In later pages of his book, Dirac indicated the existence of superpositions as a
suggestion for the introduction of a linear space connected with the physical states

(1], p. 15):

“The superposition process is a kind of additive process and implies that
states can in some way be added to give new states. The states must therefore
be connected with mathematical quantities of a kind which can be added
together to give quantities of the same kind.”

Next came the development of the full mathematical scheme, which provided
a precise, quantitative specification of the admittedly ‘vague’ original notion.

Thus, in Dirac’s classic approach to quantum physics the qualitative aspects
of superpositions suggest the plausibility of an underlying linear structure, which,
in turn (together with an inner product) appears indispensable for establishing
precisely in what sense, and to what extent, a state 1S a superposition of others.
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Owing to its central role in the conceptual framework, as well as in the
implementation of quantum theories, considerable attention has been devoted to
the notion of superposition in the various axiomatic approaches to Quantum
Mechanics and its modifications and generalizations [3 to 13]. While all definitions
of superposition so far proposed seem to take into due account the qualitative a
priori requirement that for any superposition o of a set of states {«;} and for every
observable the values occurring on o should also occur on some state «; of the
set, quantitative relations involving the statistical distributions of the observed
values usually appear only after the introduction of an underlying linear structure,
postulated or derived in some way from the axioms. The only exception known to
the author is the approach due to Dehyannis (8], where such quantitative relations
are indeed assumed beforehand, though designed to reconstruct the projective
Hilbert space model for the set of pure states, so that by assuming them (together
with a suitable set of other axioms) the underlying linear strucure is also, in fact,
implicitly assumed.

We propose a definition of the concept of superposition of states that makes
sense in any model of a physical system, provided that the model involves a set &
representing the states, a set O representing the observables, a function p(A, «, E)
interpretable as the probability that a measurement of the observable A on the
state a will give a result in the Borel set E of the real numbers R, and therefore
satisfies the very natural and unrestrictive axioms of Mackey [14]:

I. p(A,a, E)e[0,1], p(A,a,R)=1, pA,a J)=0, plA o U, E)=
Yi_i1p(A, a, E;), where & denotes the empty set, [0, 1] the closed unit
interval, and the last equations must hold for any countable family {E;} of
pairwise disjoint elements of % (R) (the Borel sets of R);

II. p(A,a, E)=p(A’, a, E) for all « and all E implies A=A', p(A,a, E)=
p(A,a', E) for all A and E implies a =a’'.

Our definition is based on a metric structure which can always be derived in
& from the probability function p. It is quantitative, because it rests on equalities
involving the distance function. When applied to classical systems it characterizes
the mixtures of pure states, and produces the relative weights. When applied to
the pure states of a quantum mechanical system, it agrees with the usual definition
and produces the relative weights and phases. In full generality, it neither
presupposes nor implies the existence of a linear space related to the states;
however, a purely metric characterization of the projective complex separable
Hilbert space is possible on special assumptions on the subsets of the state space
that are “‘closed under superposition” in a well-defined sense. This, in principle,
provides a criterion by which to establish, by direct inspection of the statistical
distributions of its observables, whether any given physical system may admit a
quantum-mechanical description.

In Section 2 we summarize some preliminary concepts from Distance
Geometry to be used later on, following Menger, Birkhoff, Blumenthal,
Busemann and Wang [15 to 19]. In Section 3 the metric on which our considera-
tions rely is derived from the generalized transition probability function T, intro-
duced in ref. [20] (see also [21 to 24]). In Section 4 the proposed definition of
superposition is given, and some of its features are briefly analyzed in the most
general context. Sections 5 and 6 examine the concept within the frameworks of
classical systems and of Quantum Mechanics, where it is found to possess the
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properties one should expect. Section 7 notes that a purely metric characterization
of finite-dimensional complex projective spaces is directly provided by a remarka-
ble theorem of Wang [19], on a suitable additional assumption concerning the
superpositions of two states. By modifying some of Wang’s hypotheses a similar
characterization is obtained for the infinite-dimensional separable complex pro-
jective Hilbert space.

2. Basic concepts and results from Distance Geometry

Let M be a metric space, and let us denote by xy the distance between two of
its points x and y (so that xy=0, xy=0 if and only if x=y, xy=yx and
xz=<xy+tyz).

The point y is said to lie between x and z if and only if x, y and z are distinct
and the relation xz = xy + yz is satisfied (so that for the three points, in a suitable
order, the triangle inequality holds, in fact, as an equality). Such an occurrence is
denoted by the symbol xyz. We shall also introduce the symbol [xyz] to denote a
situation in which one of the distinct points x, y and z (no matter which) lies
between the other two. If [xyz] is verified, we shall say that the three points are
aligned.

A subset of M is said to be convex (in Menger’s sense) if it contains, together
with any two distinct points x and z, a point y between them (so that xyz, and
therefore [xyz ], are true).

A segment is a subset of M which is isometric with a segment of the real line.
It can be proved that if a subset of M is complete (in the usual sense of
convergence of Cauchy sequences) and convex, with any two distinct points it
contains a segment which joins them (Blumenthal [17] p. 41).

A metric space is said to be two-point homogeneous if, given any two pairs
(x4, y1) and (x5, y,) of its points such that x,y, = x,y,, there is an isometry of the
space carrying x, into x, and y, into y,. Wang [19] has proved that if a metric
space is convex, two-point homogeneous and compact, it can only be spherical,
elliptic, complex elliptic, quaternion elliptic or the Cayley elliptic plane. (See
Busemann [18] for an alternative proof and a detailed description of the spaces
involved).

We shall also use the following additional concepts: a subset U of the metric
space M will be called closed under alignment (briefly, a-closed) if and only if,
together with any two distinct points x and y it contains every point of M aligned
with them (so that x, ye U and [xyz] imply z € U). The subsets consisting of a
single point will also be regarded as a-closed.

Let 3 be any nonempty subset of M. Since the whole space M is a-closed,
there exist a-closed subsets of M containing 3, and it is clear that their
intersection is a-closed and contains X. Thus to every subset X of M there is
associated a smallest a-closed subset containing it, which will be called the
envelope of 3, and denoted by 3. Notice that 3 is in general distinct from the

“‘convex extension”’, or ‘‘convex hull”’, of 3 (Blumenthal [17] p. 51).

3. The metric

Consider any system {<, O, p} consisting of a state space &, a set 0 of
observables, a probability function p, and satisfying the axioms I and II of Section
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1. In [20] we have equipped &¥ with a two-point function T(a, B), (a, B €F),
defined by

T(a, B)= ;nf(? Tala, B), (1)
where
2
Tala, B)= J dvasBal - (2)

In (2) a, is the probability measure on R defined by [ da,=p(A, o, E), Ba is
defined analogously and va,B4 denotes the measure on R defined by

j d\/aABAEJ \/d—aégéédo, (3)
E e do do

where o is any finite measure on R with respect to which a«, and B, are
absolutely continuous, and da/do, d./do are Radon-Nikodym derivatives. The
definition of T and the axioms imply:

0=T(a,B)=1, (4)
T(a, B)=T(B, a), (5)
T(e,B)=1 ifandonlyif a=8. (6)

We now define the distance a3 between two states « and B of & by setting
af =2 Arccos VT(a, B). (7)

The two-point function af is non-negative on account of (4), symmetric on
account of (6) and (4) one has af =0 if and only if « = 3. (4) also implies that af3
is bounded by 7:

O=saB=m (8)

We now show that the distance defined by (7) is indeed a metric by proving
the triangle inequality

ay<af+ By (a, B, ye¥) (9)

Proof of the triangle inequality
Given any observable A € 0, define the two-point function (af3) 4, by setting

(aB)a =2 Arccos VT, (a, B) (10)

(see (2)). Since VT (a, B) is the (positive definite) scalar product of the functions
Vda/ao and vdB/do in the real Hilbert space associated with the measure o of
R (see (3)), for any triple of states a,f3,y its restriction to the (at most
three-dimensional) subspace generated by Vda,/da, VdBs/do and vdys/do is
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positive definite, and this implies
VTala,a) VTala,B) Ta

(o, y
\/TA(B, a) ‘/TA(Bs B) \/TA(B’ Y)
VTa(v, @) ~NTa(y,8) VTaly, v

1 cos aB) c:os((w)A
2 2
= os(&% 1 cos(B;’)A = ()
cOSs (ya)a cOS ¥B)A 1
2 2

(The diagonal elements are equal to 1 on account of (2), (3) and of the fact that
a4, Ba and y, are probability measures).

By developing the determinant and factorizing it conveniently the last
inequality can be rewritten as follows

[cos (ag)A o (B"Y)A 5 YQ)A] [COS (BY)a — (yo )A_ (CYB)A] >0

3 COs )

Since the two-point function (af3) 4 is always non-negative and not greater than 7,
the arguments of the cosines in the first bracket fall in the interval [0, 7], where
the function cos is decreasing, so that

(QB)A<(B'Y)A +(ya)a
2 2
provided that the second bracket is non-negative. Indeed the second bracket
cannot be negative, for this would imply

aB)A (B'Y)A ('Ya)A
2 2
and a fortiori

(GB)A< (BY)a + (ya)a
2 2 ’

(11)

while on account of (11) the first bracket would have to be non-positive, implying
(QB)A;_ (BY)a t+(ya)a
2 4 ’
a contradiction.

Thus for every observable A the function (af83), satisfies the triangle
inequality

(aB)a<(ay)at+(yB)a- (12)
(So that (aB) 4 is a pseudo-metric.) Consequently

sup (aB)a <sup (By)a +sup (yB)a,
Ae0 Ae0

Ae0
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and since
aB =2 Arccos VT(a, B) =2 Arccos inf VT, (a, B)
Ae0
=sup 2 Arccos VT, (a, B)=sup (a¢fB)a,
Ae0 AeO

the triangle inequality is established for our distance.

4. Superpositions

Since the state space &, with the metric defined in the previous section, is a
metric space, we can apply to it the terminology and notations introduced in
Section 2.

We shall say that a state y is a strong superposition (or, briefly, a superposi-
tion) of two states a and B if and only if y lies between a and f.

We shall also say that a state y is a weak superposition of two states a and 3
if and only if it belongs to their envelope {a, B}. Thus every (strong) superposition
is also a weak superposition, but the converse is not necessarily true.

More generally, y will be called a weak superposition of the states of a given
subset 2 of & if and only if it belongs to the a-closure 2 of X. The subsets of &
which are a-closed will also be qualified as closed under superposition.

We start by illustrating the relation between these notions on a simple
example, which will turn out to be particularly relevant in relation with Quantum
Mechanics.

Assume that & is isometric with the 2-sphere of curvature 1, with the usual
metric given by the shortest arclength between two points.

Suppose, first, that @ and B are distinct and not diametral (i.e. 0 <af <m).
The strong superpositions of & and B are the points of the smallest arc of great
circle with endpoints « and B. Their weak superpositions are the whole sphere,
since the point a™ diametral to « (i.e. such that aa™ = 7) satisfies the relation
[aBa*], so that a* e {a, B}, and together with a and a* the envelope of a and B
must obviously contain every point of &,

Suppose next that a and B are already diametral (a8 = 7). The set of their
strong superpositions itself, together with « and 3, is now the whole sphere.

For aB <m a superposition y of a and B is uniquely determined by its
distances from the component states @ and (3. For a3 = 7 the superpositions with
given distances from the components constitute a circle, and an additional
parameter (phase) is necessary for their identification.

Let us come back to the general case. The structure of the set obtained by
forming the superpositions of two given states with given distances from the
components, depends of course on the structure of the whole system, and may
also depend, as the above example shows, on the choice of the component states.

Let us now examine the betweenness relation ayB from a more physical
point of view. As already noted in Section 3, one has

aB =sup (a, B)a, (13)

Ae0

where the function (afB), defined by (10) and (2) expresses to what extent the



962 Vittorio Cantoni H.P A.

states « and 3 can be ‘resolved’ by performing on them measurements of the
observable A only (complete resolution being attained if and only if (), = m, in
which case the intersection of the ranges') of A on the states @ and (B has
measure zero with respect to the measure class of o). Thus the distance «f
represents the best resolution which can be reached, or approached as closely as
one wishes, by a convenient choice (dependent on « and B) of the observable A.
In order to simplify our phrasing we shall express ourselves as if the ‘sup’ in (13)
was actually attained for some observable A_; (but this is by no means essential,
and everything could easily be recast in rigorous form with slight adaptations and
by interpreting the equalities ‘up to arbitraily small €’).
Since for every A € O the inequality (12) holds, in particular one has

(@B)a,, <(@y)a, +(¥B)a. (14)
On the other hand, by (13), one has

(@y)a, <@y, (vB)a, <VB, (15)
so that

(@Y)a, +(¥B)a, Say+vB. (16)

If v is a superposition of « and B, (14) and (16) imply

aB=(aB)a, =(ay)a, +(¥B)a., = ya +vB,

which is compatible with (15) only if (ay). , =ay and (yB)a,, = VB

Thus whenever +y is a superposition of a and B, an observable Az providing
the best resolution for the pair of states {«, B8} also provides the best resolution for
each of the two pairs {a, v} and {y, B8}. Conversely, it is obvious that if there exists
an observable A* providing the best resolution for the three pairs, and if
(aB)ax= (ay)ax+(yB) s then vy is a superposition of a and B. The statistical
distributions of any of the observables with the properties of A* (or A,g) are
sufficient for an estimate of the distance between a and 8, and of their distances
from any of their superpositions. Notice, however, that the A,z’s need not
provide the best resolution for the pairs {a, v} and {vy, B8} if v is not between a and
B, (even when it is aligned with them).

5. Superpositions and mixtures in classical systems

As usual a state y will be called a mixture if there exist two distinct states «
and B and two positive numbers t, and t; such that 1, +1; =1 and

p(A, v, E)=1,p(A, o, E)+ 15p(A, B, E). (17)

for all A’s in 0 and all E’s in B(R). A state is pure if it is not a mixture.

Let {¥, O, p} be the model of a classical system. By classical is meant that: (a)
with every observable A €0 there is associated a real-valued function a(a)
defined on the subset S, <= S of all pure states, such that p(A, a, a(a))=1 (and
therefore p(A, a, E) =0 whenever a(a) # E); (b) given any pair of observables A

'Y The range of an observable A on a state a is defined as the smallest of the closed subsets C of R
such that p(A,a,.C)=1.
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and B and any real-valued function f(x, y) of two real variables defined on the
cartesian product of the ranges of a(a) and b(a) (the functions representing A
and B on ¥,), there exists in O an observable, denoted f(A, B), which is
represented by f(a(a), b(a)) on &,, with the further property that its possible
values on any given (not necessarily pure) state vy are contained in the set
{f(x,, y,)}, where x, and y, run through the possible values of A and B on v.

It is easy to see that assumption (a) and the definition of T, imply, for any
state y and any pure state a:

Tala,vy)=p(A, v, ala)) (vyed, aed). (18)

In particular, if vy is itself a pure state distinct from «, since by xiom II (Section 1)
there must exist an observable A such that a(y) # a(«a), (18) implies T(«, y) = 0.

Let now a and B be pure states, and y one of their mixtures (so that
T(a,B)=0, and (17) holds for some relative weights t, and t;). For every
observable A such that a(a)# a(B) equations (17) and (18) imply Th(«, )
Ta (v, B) = tz. Since, on the other hand, for observables A such that a(a)= (B)
one has T, (a, y)= Ta(y, B) =1, by taking the inf’s as required by Definition (1),
and from Definition (7), one gets

> Y8

T(«a, y)=cos ?Y:t“; T("y,B)=C082-—-2—=tB (19)

while, as we already know, T(a,B)=0. Consequently, «af=m and
cos a2—y+ cosz%ﬁ= 1, so that ay+yB = m. Thus y is a superposition of a« and f3,

and its relative weights as a mixture are related by (19) to the distances ay and
YB.

Conversely, let us show that if & and B are distinct pure states and vy is one of
their superpositions, then vy is a mixture of @ and B with weights given by (19).

In fact, the remarks at the end of Section 4 now imply that for any observable
A such that a(a) # a(B) one has (ay). = ay and (yB). = yB, which is equivalent
to Tala,y)=T(a,y) and Tu(y,B)=T(y,B). Since, by (18), Tsla,y)=
p(A, v,ala)) and TA(y, B)=p(A, v, a(B)), one gets:

p(A, v, ala))=T(a,y)

(21)
p(A, v, a(B)) =T(y, B),
which can be rewritten in the form
P(A, v, ala)) =t,p(A, a, ala)) +tgp(A, B, ala)) (22)

P(A, v, a(B)) = t.p(A, a, a(B)) +tgp(A, B, a(B))

by setting t, =T(a,7y), tg=T(y,B3) and remembering that p(A, a,a(a))=
p(A, B, a(B))=1 and p(A a,a(B))=p(A,B,ala))=0. Since we are assuming
that ay+vyB =«af, and since aff =7 because T(a, B)=0, we have

T(a, y) = cos’ %f: cos’ (gﬁ-%&) = sin” %B

= 1—c052%3= 1-T(vy, B).
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This shows that t, +t3 =1, i.e. by (21)
p(A,y,ala))+p(A, yv,aB)) =1, (23)

From this it follows, by the additivity of the probability measure p(A, v, -), that
p(A, v, E)=0 whenever a(a)¢ E and a()¢ E. This remark and eqgs. (22) show
that (17) is verified except, perhaps, if a(a)=a(B).

In order to show that (17) is verified in all cases we note, first, that equation
(23) means that whenever the values of an observable on a and on B are distinct,
the only values that the same observable can take on vy are the ones it takes on «
and B. Now suppose that a(a) and a(f) have the same value a, and consider an
observable B represented on the pure states by a function b such that
b(a)# b(B). By our assumption (b) on classical systems, for any nonzero real
number x there is an observable A + xB represented on &, by the function a + xb,
which also takes distinct values on « and B. Thus, as just remarked, while B can
take on vy the values b(a) and b(B) only, A+ xB can take on <y the values
a+xb(a) and a + xb(B) only, and by the last part of assumption (b) on classical
systems the only possible values of A on vy are, at this stage, a, a + xb(a)— xb(B)
and a +xb(B)— xb(a). By repeating the argument with a different value of x we
conclude that A can only take the value a on v, and from this the validity of (17)
in full generality follows immediately.

Notice that in the proof of (17) for an observable A such that a(a)# a(B) the
classical character of the system has only been used to assure that A has definite
values on a and on B. Thus, if the system is non-classical, a superposition y of
two states a and P still behaves like a mixture if the set of observables is
restricted to the ones which take definite, distinct values on the component
studies. However (17) is no longer true, in general, for observables whose
ranges on « and 3 are not concentrated at a point.

Notice also that the superpositions of two pure states of a classical system
form a segment of length 7 with endpoints at the component states. This is no
longer true in general when the system is not classical, since two superpositions
with the same distances from a given pair of component states may then give rise
to distinct distributions for some observable which does not take definite values on
the component states, and theretfore be distinct.

6. Pure superpositions in quantum mechanics

Let {#, 0, p} now denote a quantum-mechanical system, with the state space
& restricted to the pure states. Thus & is the projective Hilbert space # associated
with the complex, separable, infinite-dimensional Hilbert space # ; the elements
of O are represented by self-adjoint operators in #, and the probability function is
given by p(A, a, E)={(a, Ppa), where Py is the projection operator associated
with the Borel set E in the resolution of the self-adjoint operator representing A,
« is any unit representative of the pure state « in # and ( , ) denotes the inner
product. It can be proved that in this case one has [20]

T(a, B) = (e, B)I™. (24)

We shall show that whenever a state y is a superposition of two distinct states «
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and $ (in the metric sense defined in Section 4), it is also a linear superposition of a
and B (in the ordinary sense of Quantum Mechanics).

In fact, on account of (7) and (24), the relation aff = ay+ yB can now be
written in the form Arc cos [(a, B)| = Arc cos [{a, v¥)|+ Arc cos |{y, B)|, i.e., by tak-
ing the cosines:

e, B = ee, V)] Ky, B — V(1= Ket, W)I*(1 = [{y, BI),

which implies (by solving with respect to the square root and taking the squares):

1= [(ee, B~ KB, WI* = (v, @)+ 2 [{er, BB, ¥) (v, @) = 0. (25)

On the other hand, for any triple of unit vectors a«, B and vy in , the
positive-definiteness of the hermitian form ( , ) implies the relation

1 (o, B) (o)
B, a) 1 B,v)|=0,
_ v.e) (v.B) 1
1.€.
1- o, B)Z = (B, ¥)I> = (v, a)*+ 2 Re ({at, BY(B, ¥) (v, ) = 0. (26)

Since Re ({a, B){(B, v) (v, o)) < [, B)(B, ¥) (v, @), (25) can be true (and y can be
a ‘“‘metric’’ superposition of a and B) only if Re ((a, B){B,v){(y, )=
(o, BY(B, v){v, a)| (so that {(a, B){B,y){v, @) is real and non-negative). If this
occurs, the left-hand sides of (25) and (26) coincide, so that (26) holds with the
equality sign, and this expresses the linear dependence of the three vectors «, B
and vy.

On the other hand, from (25) one gets |[{o,B)=
(o, ¥)| B, )| £ V(1= [{er, ¥)[P)(1 =B, ¥)I*), and by taking the cosines one sees that
this relation is necessary and sufficient for «, 8 and vy to be aligned.

Notice that the value of the product (@, B){B,y)(y, a) (in particular, its
non-negative character whenever it occurs) is independent of the choice of the
unit representatives of the three states involved.

Whenever avyf is true, so that {a, B){B, v){y, a)> 0, the representatives «, B
and vy can be chosen such that (a, B)>0 and, at the same time,

vy=ao+bB (27)
holds with positive coefficients a and b. The coefficients satisfy the relation
a’+b*+2abla, B)=1, (28)

which expresses that vy is a unit vector. From (25), (24) and (7) we get

cos%= a+bl{a, B)

cos %B =b+ala, B),
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which yield

cos ul W cos lé cos SE cos ﬁ— cos s cos ﬂg
2 2 2 b . 2 2
a= s = .
(04 ap
1- 2 — 1 — 2 —
cos > cos 5

If, keeping the representatives a and B fixed, the coefficients a and b in (27)
are allowed to take complex values compatible with the normalization (y,y)=1, vy
describes a 2-sphere through a« and B (the complex projective space associated
with the two-dimensional hermitian space generated by o and B).") If a8 <, (28)
shows that the strong superpositions of @ and 8 belong to the shortest geodesic
arc with endpoints « and 8, while their weak superpositions constitute the whole
sphere. If af3 = w the strong superpositions, together with a and  themselves,
constitute the whole sphere. (Compare with the example of Section 4.)

Thus, in the quantum-mechanical model, there is a correspondence between
the envelopes of pairs of states of ¥ and the linear subspaces of # generated by
their representatives. It is easy to see that the linear subspaces of # of any finite
dimension also correspond to subsets of & which are closed under superposition
(in the sense of Section 4).

7. A metric characterization of the complex separable projective Hilbert space

Among the spaces listed in Wang’s theorem (Section 2) the finite-dimensional
complex elliptic spaces (i.e. the finite-dimensional complex projective spaces CP",
n=1,2,...) are the only ones with the property that the envelope of any pair of
distinct points is isometric to a 2-sphere. Therefore, as an immediate corollary of
the theorem, the complex projective space of dimension n can be characterized as

1) In this case the number p = (a, B){B, v) (v, a) is complex. Writing p = |p| e'®, whenever p# 0 the
“relative phase’ 6 of the triple «, B, ¥ is determined, up to the sign, by the equation

_ Ko B+ B, I* + Ky, @)l
2 o, BYB. v) (v, @)l

which can be written in purely metric terms:

os 6

o x
cos? B + cos? ﬁ+ cos? ¥
2 2 2

af By vya
2 cos 7 €OS — COS —

2 2

cos @ =

The condition for the right-hand side to belong to the interval [—1, 1] is equivalent to the
relation

1 cosafl cosay
cos Ba 1 cos By| =0,

cos ya cos yf3 1

which is a necessary and sufficient condition in order that the triple a, 8, v be isometric to a
triple of points of the 2-sphere of radius 1 (see [27]).
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a metric space with the following properties:

(a) compactness;

(b) two-point homogeneity;

(c) the envelope of any pair of distinct points is isometric to a 2-sphere;

(d) there exists a set of n points (but not one of n—1 points) having the
whole space as its envelope.

(Convexity is not explicitly mentioned, but is implied by (c)).

We shall now see that, again as a consequence of Wang’s theorem, the
infinite-dimensional complex separable projective Hilbert space # admits a
characterization of the same kind. Namely, it is the only metric space M with the
following properties:

(a) There exists a countable set of points % < M having the whole space as its
envelope, and no finite subset of X has this property;

(B) the envelope of any finite subset of 2% is compact and two-point
homogeneous;

(y) the envelope of any pair of distinct points of M is isometric to a
2-sphere.

Remarks

If the space is convex and condition (B) is assumed to hold for any finite
subset of M, the envelope of any pair of distinct points must be one of the spaces
listed in Wang’s theorem and () can be replaced by the weaker requirement that
its dimension be 2 for some pair of distinct points.

Let us also note that on account of an extension of Wang’s theorem due to
Tits [25], in (B) ‘‘compact’ could be replaced by ‘‘finitely-compact™ ([17] Section 2)
provided that it is also assumed that the space has finite diameter (a condition
which is automatically satisfied, as we know, by the state space of any physical
system).

Proof of the characterization of %

Let M be a metric space with the properties («), (8) and (y). We must show
that M is isometric with the projective space # associated with the complex
separable Hilbert space .

Let e, e,, ... be the elements of the countable set 2 with the properties (a)
and (B). For every integer k, denote by %, the envelope of the first k elements of
3. By Wang’s theorem and assumptions (B) and (y), 2, is isometric with a
finite-dimensional complex projective space, so that we can find an isometric map
¢, from %, to ¥,, the complex projective space associated with some finite-
dimensional linear subspace #, of #, and each ¢, can be chosen such that, for
h <k, ¢, is the restriction of ¢, to X,. ;

For an arbitrary point x € M, let x, be a point of the compact set %, such that
the distance xx, is equal to the distance from x to 3, (i.e. xx, =min s _xy). The
numerical sequence {xx,} is obviously non-increasing, and one has lim xx, =0: in
fact, if this were not the case, the distance from x to %, would be greater than
some positive number p for every k, so that the distance from x to [Jx_; 2,
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would also be greater than p, and \Jx_, 2, would be an a-closed set containing 3
and distinct from M, in contradiction with (a).

Together with the sequence {x,} which converges to x in M, the sequence
{@r(x,)} is a Cauchy sequence in # (on account of the isometric character of the
@«’s), and by the completeness of Hilbert space some sequence {¢,(x;)} of unit
representatives of the ¢, (x,)’s in # converges to a unit vector ¢(x) representing a
well-determined element ¢(x) e #. The map x — ¢(x) is an isometry because, if y
is any other point of M, one has xy=Ilim x.y, =lim @, (x; )@ (yx) =
lim ¢ (x, )@ (ye) = @(x)@(y).

Denote by #),, the smallest closed subspace of # containing all the represen-
tatives of the points of the subset ¢ (M) of ¥ described by ¢(x) as x runs through
M, and by #,, the associated pro;ectlve space: every element of Hrq is the limit of
the sequence of its nearest points in the subsets #, and therefore it is the image
of some point of M. Thus #,, and M are isometric, and our proposition is proved.

We conclude by observing that while simple homogeneity is a very natural
assumption for the set of pure states of any reversible physical system (see [24]),
the two-point homogenity condition expresses a high degree of symmetry of the
state space. It represents a true restriction which, together with the dimensionality
of the whole space and of the superpositions of pairs of states, essentially
characterizes the quantum-mechanical model.
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