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Note on relative entropy and
thermodynamical limit

By Eberhard E. Miiller')

Laboratorium fiir Physikalische Chemie, ETH-Zentrum, CH-8092 Ziirich, Swit-
zerland

(29. X. 1984)

Abstract. Let ¢, yeM,, be faithful normal positive linear functionals on a von Neumann
algebra M. We call ¢  ‘thermodynamically convertible into " iff R(e/y)=
—log (A w) * Xjy (A ) +10g (Ay) =0, a Clausius-type version of the second principle of ther-
modynamics. The relation of this definition with the KMS-condition is established. Let #M{#C be a
factor. M is of type III, if for any faithful ¢, ye M}, , inf Y(S(e(u - u™)/¢)) =0 where the infimum is
taken over the unitaries of #, and S(¢,/¢,) = ¢5(R(¢,/¢,)) denotes Araki’s relative entropy.

§1. Introduction

The thermodynamical limit idealization of a physical system by an infinite volume
and an infinite particle number for finite mean particle density is usually advo-
cated by the following arguments: 1. Finite systems exclude phase transitions. 2.
Closed finite systems show almost periodic behaviour in time which excludes
ergodicity. 3. Perfectly extensive quantities A cannot exist but in infinite systems
(because of the boundary effects in the finite case), and 4. the relative fluctuations
AA(N)/N vanish with N Y2 (N being the particle number), such that the
corresponding intensive quantities a :=limp_,.. (A(N)/N) assume sharp values as
in phenomenological equilibrium thermodynamics. 5. The limit can be regarded
as a coupling of a finite realistic system to a reservoir of the same matter, or 6. as
a tool to pass from a ‘microscopic’ to a ‘macroscopic’ level.

In this paper we extract a Clausius-type formulation [8] of the second
principle of thermodynamics from the KMS-condition. This leads to a positivity
condition of an operator which we construct using the Tomita—Takesaki theory of
von Neumann algebras. There exists a relation between this R-operator and the
type III,-property. Hence we are provided with a link between the second
principle and the thermodynamical limit, at least in those cases where the
representations of a quasilocal C*-algebra, arising in the limit, are factors (resp.
direct integrals of factors) of type III,. This includes thermodynamical equilibrium
representations of prominent physical examples. So the above given limit argu-
ments could be supplemented, or replaced.

In §2 we expose some material of the modular theory. In §3 we construct the
R-operator from the KMS-condition, and prove its self-adjointness if it is
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positive. To translate the KMS-condition into a Clausius-type statement we
employ Araki’s theory of perturbation of states [1]. The relation between the
R-operator and the type-III, property is shown in §4. There we make use of a
theorem of Connes and Stgrmer on the homogeneity of a type III,-factor state
space [11].

§2. Ingredients of the modular theory

Assume that a concrete physical system can be described by a o-finite von
Neumann algebra in standard form [3, 15, 10] with Hilbert space #, and natural
positive cone P < #. The states of the system shall be the set #,, of normal
positive linear functionals on #. There exists a homeomorphic bijection

YeMy, —EW)=VeP (1a)
uniquely representing the states ., by the vectors in & such that
p(x)=(¥, x¥), xeM (1b)

where (---) denotes the inner product in . For two cyclic (and therefore
separating) vectors ®, ¥ € 2 the ‘relative modular operator’ A, y is defined by the
polar decomposition

Sow=:J(Agw)'"? (2a)
of the closure Sg 4 of the operator
xV¥— x*P, xeM. (2b)

J is an antiunitary involution, and A4, ¢ a positive selfadjoint operator. For & =¥
we write Ay ¢ =:Ay; the one-parameter ‘modular automorphism group’ is defined
as

a¥(x):=(Ay)"x(Ay) ™. x e M. teR. (3)

For arbitrary faithful pairs ¢, e My, (with cyclic and separating representing
vectors ®, ¥ e P) there exists a unitary cocycle [9]

(Dg : Dip), = (A 4) " (Ay) " € M, teR (4a)
strongly continuous in ¢, such that
(De : DY), o¥(x)(Dg : DY)* = a¥(x), xeM, teR. (4b)

All information in comparing two (faithful) states ¢, s € M, , is contained in the

densely defined operator (Ag ) "*(Ay) "%,

(Ap ) "2(Ag) (X)W = (Agp) 2IT(Ay) V2 IX W
= (Apw) ?T(Ay) *x ¥
= (Agpw) LZS 'l
= (Agw) ' Px*W
= JSqwx*¥
=Jxd
=j(x)®, xeu 5)
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where

xeM—j(x):=IxJe M (6)
is an anti-linear isomorphism, with /' the commutant, and

=9, Qe (7)

(Apw)'?(Ay) V2 is affiliated with A :

j(u*)(Aw,xy)Uz(Aw)”llzf(u)f(x)w
= j(uM)j(u)j(x)P
= j(x)P
= (Ag)2(Ag) Z(X)¥,  u*=uledl, xed (8)

A comprehensive treatment of the Tomita—Takesaki theory can be found e.g. in
[7, 18, 6].

§3. KMS-condition and second principle of thermodynamics

A Clausius-like version of the second principle of thermodynamics states
whether a process ¢ — ¢, for states ¢, ¢ goes by itself, i.e. without transmitting
energy to the system. If this is the case the entropy (‘Verwandlungsinhalt’)
characterizing the conversions ¢ — ¢ increases [8]. Evidently the work of
Clausius refers to a classical context. But a priori there are no reasons to restrict
his fundamental principle to classical (i.e. commutative) systems. Therefore we
admit states of non-commutative systems in the second law and consider proces-
ses p My, > PreM,,.

From a mathematical point of view the operator (Agw)"*(Ay) "% charac-
terizes the transition ¢eM,,—> yeM,,. To construct a thermodynamically
reasonable expression from this operator, we refer to the KMS-condition which
we believe to characterize thermodynamical equilibrium states [13, 7]. The
following Proposition 2 decomposes the KMS-property into two independent

parts. One expresses stationarity. Therefore the other one should cover the
second principle.

Definition 1. a) Let M be a W¥*-algebra and {«,},.x a weak*-continuous one
parameter group of automorphisms on M. Define
PDg:={zeC|0<Imz <}, B=0, ©)
Ps:={zeC|B<Im z <0}, B =<0,

and let g be the closure of @, if B#0, and §, =R if B =0. A normal positive
linear functional w € M, is said to fulfill the (a, B)-KMS-condition for 8 R if for

any a, be M, there exists a complex function F,, which is analytic on 9, and
continuous on %, such that

F, (t) = w(aa,[b]),
F,(t+iB)=w(a[bla), teR.

b) Let # be a von Neumann algebra in standard form with Hilbert space ¥,
H a self-adjoint operator on ¥, and a,(x):=e"™¥e ™ xeM, teR. A normal

(10)
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positive linear functional w € M, is said to fulfill the (H, B8)-KMS-condition for
BeR if

o is (a, B)-KMS, and (11(i))
HQ=0. (11(i1))

For B # 0 the (a, B8)-KMS-condition for w implies the stationarity of w. To ensure
the stationarity of the respresenting vector () condition (ii) has to be added
explicitly. Clearly (ii) is not independent of (i), since (ii) by itself implies the
stationarity of w.

The following proposition contains an operator theoretical version of the
Roepstorff-Araki-Sewell correlation inequality which has been proven to be
equivalent to the KMS-condition [7].

Proposition 2. Let M be a von Neumann algebra in standard form with
Hilbert space ¥, and s € M. a faithful state. Let a,(x) = e"™'xe ™ x e M, teR, be
the time evolution such that the common domain 2(H)N%(log Ay) of the self-
adjoint operators H and log Ay contain a core M,V of H, MoV < MY, M= M,.
Then ¢ is (H, B)-KMS iff

HY =0, (12)
BH = —log Ay (13)
Proof. If  is (H, B)-KMS, Ay =e PH. Therefore the above inequality as-

sumes equality. Now suppose (13). For all a e #{ with a¥ e @(H) N PD(log Ay) the
convexity of —log implies

{(aV¥, HaV¥) (a¥,AgyaVl)
——————=-"log——————
(a¥, a¥) (a¥, a¥)

(a¥, a¥)

=log (a*V¥, a*¥) "

By (12) the Roepstorff-Araki-Sewell inequality follows which is equivalent to the
(a, B)-KMS-condition by Theorem 5.3.15 in [7]. qed

Condition (13) relates the ‘energy-operator’ H to a state . In the case
BH =-log Ay—h (14)

for some h = h* e M, we can interpret (13) as a relation between two states using
Araki’s theory of perturbed states [4]:

log A\,p + h. = lOg (Aé(wh).\p), (15)
where

E(y") =exp {3(log Ay + h)}'¥,

P (x) = (W), xEW"),  xe M.
Therefore inequality (13) can be written

R(y" | ¢)=0, (17a)

(16)
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R(y" | ) :=—log (Agpryw) +log Ay
=—h. (17b)
Note that if ¢ is faithful so " too (Corollary 4.4 in [1]).
Now the R-operator can be defined for arbitrary faithful states, such that the

thermodynamical positivity relation can be extended. This positivity relation will
imply a unique self-adjoint extension of the R-operator.

Definition 3. Given two faithful states ¢, Y€ 4, of a von Neumann algebra
M. Let x;.») denote the characteristic function of the real interval [a, b], and put
Xn i= Xj—n=lO0g Ag ). We define

R((P | (\[I) =S i }lm {_log (A(I).‘I’)Xn + log (A‘I»’)} (]8)

on those vectors for which the strong limit exists. ¢ is called ‘thermodynamically
convertible into ' if

R(e | ¢)=0. (19)

Definition (18) generalizes (17b). For h =h*e M, the domains of log Ay and

log A+ are identical such that the limit in (18) exists for all vectors of this
domain, and equals —h.

Theorem 4. If R(¢/¢)=0 there exists a unique self-adjoint extension
affiliated with /(.

Proof. Let M,<= M be the set of analytic elements

xfzzrl al(x)f (1) dt, xeM, fe CiR) (20)

where C;(R) means that C”-functions with compact support. 4, is a weak™-dense
subspace of # [7], such that #,¥ is dense in #. Moreover

1 ;
lim - ((Ag)" —1)x, ¥ =x_pV.

t—0 It
So M,¥ is a core for log (Ay). On the other hand
s (x¥, —log (Ap w)xnx¥) (x¥, —log ' x )
- (x¥, x V) (xV, x¥)
(x¥, e'o2Bav)x. x\P)
(x¥, x¥)
XV, Ap wX(e " o(Ap )X V)
(x¥, x¥)
- _lo ((A¢,w)”2x‘1", X ",a:)(Ad),\I')(Ad)‘\y)sz"p)
. (x¥. x V)
(B 0)'*xV, (Bew)*x ) | - (X*D, x*D)
(x¥, x¥) 5V, x W)

= —log

= —log

= —]
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since log is concave, and monotone increasing. Therefore the symmetric quadratic
form

t(xW, x¥):=(x¥, {—log (Ap ) x. +10g (Ag)}x V), xeM, (21)

is densely defined. In addition it is closable. Now by assumption the quadratic
form

t.(x¥, x¥):= lim t, (x¥V, x¥), xeM, (22)

IS positive,

0=t (x¥, x¥)
¢ (xx*)
P(x*x)

It is densely defined, and by Theorem S.14 in [17] it is closable. Thus the closure
tr of t. uniquely defines a self-adjoint operator [17] which we again denote

R(e¢ | ¥).
At the same time

lim (x‘l’, log (Aq,'\p)xnxq’) = (x‘P', log (Aq,‘q;)xq,), X e ./“0. (23)

<(xV¥,log (A\p)x‘lf)~log( )u];(x*x), x € M,.

Therefore

(x¥, R(¢ | )x¥)
=(xV, {~log Ay v +1og Ay}x¥)

- <xqr, lim : {(App)"(Ag)™ —"}"‘I’>

= (xqr, j(u*)j(u) lim ; {Bew)"(8e)™ 1 }"‘I’>

t—0
o ; > .
= (2w, ) lim (80,0 (B) -1} (2% )
t—(
=(x¥, j(u*)R(e | ¥)j(u)x¥) (24a)
for xe M,, and all unitaries u e M, where we have used (4a). This shows that

R(¢ | ¢) is affiliated with 4. qed

Remark. The conclusion of the theorem remains correct if we only assume
that R(¢ | ¢) is semi-bounded instead of positive. We will shortly discuss the
physical aspects of this fact later on.

Corollary 5. R(¢ | ¢) coincides with the strong derivation of (D¢ :Dy), at
t=0:

R(p [4)= 5= lim {(Aa0)" (A0 -1} (24)

To provide a link between the relations (17a) and (19) we need the following
lemmas. The first one can easily be read off from [1]:
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Lemma 6. Given y€ M. Then for any ¢ € M, there exists a sequence {hg},
he=(h®)*e M such that ¢ =lim,_,.. ¢ .

Proof. Let J be the modular involution associated with the standard form of
M. According to Proposition 5.4 in [1] and the remark following it,

MZ :={e’|beM, IbY=>bV¥, o¥b) has an analytic continuation o¥(b) for
Im(z)e[-1/2,0]}

is dense in 2, and for all a e M7 there exists a h = h* = # such that a¥ = ¢(yh).
Now the proposition follows from the inequalities [3, 7]

1P, = o <[loy = @l <[Py + Do |0, — P, @€y, i=1,2. qed
(25)

Lemma 7. Given faithful ¢, Y€ M. For a sequence {¢,} of faithful ¢, € M,
with lim, . |l¢, — (p"—() we have

(a) lim,_.. (A¢ w)l =(Ag )112,
(b) lim, ... (Ad) w) *(Aww)"

both limits taken in the strong topology, the last one being uniformly in t for t varying
in a compact interval.

Proof. (a)

\|(A¢k.w) ”23“.[’ - (A¢.W)”2x‘p“
= "J(A«bk,w)llzxq’ - j(Ad,‘w)”zx\If"
= ||S<bk,wx V—S4wx ‘I’"

=[lx*®, - x*3
<|x* P, — |
= ||l |, — P

<|Ix|| llex — ">

The last inequality follows from (25).
(b) The implication (a) = (b) is well known (see e.g. [19]). qed

An immediate consequence of the preceding lemmas combined with
Theorem VIIL.21 in [17] is the following corollary.

Corollary 8. For any pair of faithful states ¢, € M+ with R(¢ | ¥) bounded
from below, there exists a sequence {h¢}, h®=(h¢)*e M with ¢ =lim, .. ¢" ~ such
that

lim R(y"™ [ ¥) = lim (=h3) = R(e/w)
in the strong resolvent limit.

Corollary 8 insures the consistency of the positivity relation R(¢/¢)=0 with its
extension from pairs of states, one being a ‘perturbation’ of the other, to general
pairs of M, , with equal support.
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Supposed —h/B in (14) corresponds to an energy transfer being positive if the
work is absorbed by the system in the state y, an idea supported by the stability
properties of the KMS-states [14, 16, 7]. Then Definition 3 appeals to be taken as
a Clausius-type version of the second principle of thermodynamics: The process
@ €My, —> e M, is possible without energy supply from outside the system.

Definition 3 is an abstract statement. It says nothing about the concrete
realization of irreversible processes.

§4. Type IlII,-criterions

The expectation value of the operator R(¢/¢s) in the state ¢y coincides with
Araki’s definition of a relative entropy [5]:

S(e/w):= lim (¥, —log (A w)x. V)
=(¥, R(¢/¥)¥). (26)

This expression may be finite or +; for normalized ¢, ¢ it is non-negative [5]. In
special cases S(¢/¢) coincides with familiar thermodynamical expressions usually
interpreted as a relative entropy (see §5). Now since R(¢/¢) is thermodynamically
relevant by its relation to the KMS-condition, this relevance carries over to
S(¢/¢), and vice versa. The following theorem gives a sufficient characterization
of the type-IIl,-property in terms of S(¢/ys).

Theorem 9. Let # be a factor von Neumann algebra with separable predual,
not coinciding with the complex numbers. M is of type III, if for arbitrary
normalized faithful states ¢, e My,

inf S(e./¢)=0, (27)
where U:={ueM |u*=u""}, . (x):=¢(a*xa), xeM.
To prove the theorem we expose a result of Connes and Stgrmer [11].

Lemma 10. Let M be a factor von Neumann algebra with separable predual,

not coinciding with the complex numbers. Denote the normalized states by M.,

and the normalized faithful states by M L}. The following statements are equivalent:
(i) M is of type IIl;;

(ii) V(. ye ML) ¥(e>0)Aue U):|e.—

(i) Y(p, pe ML) V(e >0)I(ue U):|e, -y

Proof.
()« Gi): [11].
(if) = (i1i): The statement (iii) is covered by (11)
(iii) > (ii): Given an arbitrary o eMfl, and 0<8<1. Then
¢:=(1-8)¢ + 8w, Y:=(1-8)Y+ 8w are normalized and faithful for arbitrary o,
yeMi,. Now

lew — vl =16u — ¥ + 8(¢u — @, — ¥ + @)|| <G, — &l + 48,
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and |lg, —yll<e, if [|¢.— ¥ll<e/2 and & = ¢/8, for any preassigned £ >0 and an
appropriate ue U. qed

Proof of Theorem 9

(¥, R(e/y)W)""? = (¥, (—log Ag 4)¥)'?
= 21(¥, (<log (Auw) ) ¥)""
> 2”2<‘P, (_(Aq)‘\y)l/?_ +11 )‘1’}”2
= (W, [(Aq),w)‘/z -1 ]2‘I’>”2
= [(Aqw) "> —1 ¥

=||d -
=P+ e —
=i le—uwll, o el

The first inequality uses —log (x)=—x+ 1, the second (25). Now the conclusion
follows from Lemma 10. qed

The author was told by Prof. Araki that there exists another proof of the
inequality |l¢ —v||<2 (2S(¢/¥))"? [20]. Lemma 7 and Theorem VIII.21 in [17]
imply the following necessary condition for the type III,-property:

Proposition 11. Let 4 be a type IlII, factor von Neumann algebra with
separable predual. Then for normalized faithful states ¢, e ML there exists a
sequence of unitaries u, € M such that in the strong resolvent sense

lim R, | ¢)=0. (28)

§5. Discussion

1. In the case of a matrix algebra, if p, denotes the density matrix of a state
w we have (4],

R(¢/¢) = —log p, + log p,
S(¢/y) = tr [py(log p, —log p,)].

(p,» p, are supposed to be strictly positive.) In the case of a commutative von
Neumann algebra L.(€), ) and strictly positive probability distributions f,
geL,(€, u), we have

R(flg)=—log f+log g
_ g(w)
S(fig) = L i (do)gw) log 52

2. If R(¢/¢)>0 then ¢ and ¢ cannot have the same norm. This is seen in the
following way. Assume ¢ =¢" and ¢"(1)=1 for h=h*e M. Then Araki’s
generalization of the Peierls—Bogoliubov inequality [2],

" (1) =exp ¢(h) (29)
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implies ¢(h)=<0, i.e. a negative part in the spectrum of h. But his generalization
of the Golden-Thompson inequality [2]

Ple™)=y"(1) (30)

implies (e")=1, i.e. a positive part in the spectrum of h. This contradicts
R"/y)=—h>0.

We have focussed our discussion on dissipativity. However it should be kept
in mind that in physical processes dissipation and fluctuation jointly occur, the
latter being not considered here. Therefore the problem of norm conservation in
the dynamics of states, related to the possibility of a probabilistic interpretation,
cannot be discussed definitely in the framework of the present note.

3. While a purely positive R-operator indicates stability, bounded negative
parts in the spectrum of R indicate local instability. This could possibly be applied
for the discussion of chaotic behaviour in the sense of sensitive dependence on
initial conditions when the dynamics of states is non-linear.

4. Thermodynamical equilibrium representations of physical systems in the
infinite volume limit idealization with non-zero and non-infinite temperatures lead
to type III-factors (resp. direct integrals of type III-factors). In particular the type
II1, arises for important physical examples. The case of type III,, A # 1, may come
from an oversimplification. For example [12] an infinite chain of harmonic
oscillators all having exactly the same frequency exhibits the type III,-property,
A# 1, but this arrangement cannot be controlled experimentally.

Theorem 9 relates the type IIl;-property to a thermodynamically relevant
quantity. Therefore it should be possible to replace the infinite volume limit
arguments. To be specific, we could characterize a thermodynamical reservoir as a
system where for each process ¢ € M4, — Y€ M, possible entropic restricitions
can be circumvented by reversible (unitarily implemented) inner excitations. Then
Theorem 9 implies the type III,-property.
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