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Random walks in one-dimensional random
media

By J. Bernasconi and W. R. Schneider, Brown Boveri
Research Center, CH-5405 Baden, Switzerland

(5. X. 1984)

Abstract. The long-time asymptotic behavior of the mean displacement, (x(f)), is investigated for
continuous- and discrete-time random walks in one-dimensional random media. Exact results are
obtained for model systems that contain a finite fraction of 'diodes'. Depending on the model
parameters, the behavior of <x(t)> changes from (x(t)> °= t to (x(t)> * t"F(\n t), where v < 1 and where F
is a periodic function. This remarkable phenomenon can be related to temporal self-similarity
properties of the stochastic process, and is also observed in models without 'diodes'. Corresponding
numerical simulations are presented, and an Effective-Medium approximation is shown to be applicable

only if <x(t)> « f.

I. Introduction

Random walks in one-dimensional random media have recently attracted
considerable attention, in pure mathematics as well as in the physical sciences. A
number of remarkable results have been obtained, both for continuous-time [1-6]
and for discrete-time [4, 7-10] models. Some of these results have been used to
explain the highly unusual transport properties of certain quasi-one-dimensional
materials [11—13].

The models investigated correspond to random walks in the one-dimensional
lattice Z with only nearest-neighbor transition rates W* (continuous-time models)

or transition probabilities PmP« + Pn l (discrete-time models), where nel
labels the lattice sites and where the ± superscripts refer to transitions to the right
(n —» n +1) and to the left (n—*n — 1), respectively. The transition rates, W*, or
transition probabilities, p^, respectively, are assumed to be random variables with
a given probability distribution.

Continuous-time models with symmetric transition rates W* W~+1), which
are identically and independently distributed, have been studied very extensively
[1-3]. The asymptotic behaviors of the autocorrelation function, of the mean-
square displacement, and of the frequency-dependent conductivity have been
shown to exhibit some interesting and unusual features, in particular for transition
rate distributions with diverging negative moments. Corresponding models have
successfully been used to explain the anomalous transport properties of different
quasi-one-dimensional materials [11-13].

Attention has also been directed to models with random, but asymmetric
transition rates. For example, asymmetry may be induced by a uniform electric
field, in which case one observes interesting crossover effects in the behavior of
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the field- and frequency-dependent conductivity [6, 14, 15]. Very recently, the
present authors have investigated models with intrinsically asymmetric transition
rates [4], where the pairs of transition rates associated with the same bond,
{W*, W~ta^}, are assumed to be independent and identically distributed random
variables. These models are thus essentially equivalent to discrete-time models
with random transition probabilities p*, for which one has made the remarkable
observation that under certain conditions the mean displacement (x(t)) increases
slower than linearly in time [4, 7-10]. An even more surprising phenomenon,
however, has been observed [4] in model systems which contain a finite fraction of
'diodes', {W*, Wn + y} {u, 0}. In such systems, the asymptotic behavior of (x(t))
can be determined exactly and, in addition to an overall sublinear increase, may
exhibit superimposed, nondecaying oscillations as a function of ln r. It has further
been conjectured [4] that similar phenomena should also be observed in systems
with more general discrete transition rate distributions.

In the present paper, we shall examine the origin and observability of these
asymptotic oscillations in some more detail. In Section II, we introduce
continuous-time random walks with intrinsically asymmetric transition rates, and
derive formal expressions for the mean displacement (x(f)) and for its Laplace
transform. In Section III, the asymptotic behavior of (x(t)) is determined rigorously

for a model system that contains a finite fraction of 'diodes', and in Section
IV the corresponding results are derived for the discrete-time analogue of the
'diode-model'. In Section V, the observed asymptotic oscillations are interpreted
in terms of a selfsimilar clustering of waiting times, and the results of numerical
simulations are presented and discussed in Section VI. In Section VII, finally, we
introduce and analyze a selfconsistent Effective-Medium approximation. We show
that it only leads to reliable results in situations where (*(.)} <*1.

II. Continuous-time random walks with random, asymmetric transition rates

We consider a particle whose motion on the one-dimensional lattice Z is
described by a continuous-time random walk with nearest-neighbor transition
rates W^, where nel. labels the lattice sites and where the ± superscripts refer to
transitions to the right and left (from ntoni 1), respectively. The probabilities
P„(t) of finding the particle at site n at time f>0 are then determined by the
master equation

dP
-^=w»x„ i + w-+,pn+y-(w:+w-)p„, (2.1)

and we shall always assume that

P.,(0) e5„0 (2.2)

i.e. at time f 0 the particle starts at site n 0.
The transition rates W* are random variables and in general asymmetric, i.e.

the two transition rates associated with the same bond, W* and W„tl, can be
different. To be specific, we shall assume that the pairs {W*, W„ M} are independent

random variables, identically distributed according to some given probability
density p(w+, w~).
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We shall mainly be interested in the effects of a random asymmetry,
W~tan/W*, in particular with respect to the long-time asymptotic behavior of the
average mean displacement, (x(f)). The latter can be expressed as

(x(t))= î n(Pn(t)), (2.3)
n ——oo

where (• • •) refers to the average with respect to the transition rate distribution.
Formally, our master equation (2.1) can be solved by means of a Laplace

transformation with respect to t. Taking equation (2.2) into account, the Laplace
transform of (2.1) becomes

(z + W: + W-)Pn- W:_yP„_y - Wn + 1P.1 + 1 6n0 (2.4)

where

Pniz)=[dte-"Pn(t). (2.5)

The solution of equation (2.4) can be written in the form

P0iz) iz+X0+Yor\ (2.6a)

Pn(z) P0iz) fi -^77-, n 1,2,..., (2.6b)
m y Z + Am

P_„(z) P0(z)fl^f-K n l,2,..., (2.6c)
m 1 Z + * m

where the X„ and Y„ are infinite continued fractions, recursively defined by

W+
Xn= -jz—, n-0,1,2,..., (2.7a)

Z+Xn + y

Yn ^t n =0,1,2,.... (2.7b)
1+

VV — 1

The Laplace transform, (x(z)), of the average mean displacement <x(f)), can
finally be expressed as

(xiz)) z-l(viz)), (2.8)

where
oo

(viz))= Z (X„P„-YnP_n)
n=0

=<t3+(z))-<û_(z)>. (2.9)

In the absence of disorder, i.e. if the transition rates are independent of n,
W* W±, one immediately obtains

(5(z) z-1(W+-W-), (2.10)
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so that

xit) iW+-W-)t vt. (2.11)

The mean displacement thus varies linearly with time, and v W+ — W can be
identified as a drift velocity.

If the transition rates W* are random variables, however, the situation
becomes very complex, and rigorous results for the asymptotic behavior of (x(t))
have only been obtained for a specific model system [4]. These results, which
reveal some remarkable aspects of the general problem, will be derived in some
detail in the following section.

DI. The 'diode-model'

An interesting and nontrivial model for which the t —* °° asymptotic behavior
of (x(t)) can be determined exactly, has been introduced in Ref. [4]. It is
characterized by a probability density p(w+, w~) of the form

p(w+, w^) (1-p) 8(w + -u)8(w-) + p8(w+-kv)8(w~-v), (3.1)

with k, u and v positive, and with 0 < p < 1. Any realization of this so-called
'diode-model' thus contains a fraction (1-p) of 'diodes', {W^, Wn + i} {u, 0}, and
a fraction p of two-way bonds, {W*, W~+y} {kv, v}.

As sketched in Ref. [4], the t -* » behavior of (x(f)) can be determined via an
investigation of the z—»0 behavior of its Laplace transform, (x(z)>, and in the
following we shall give a detailed derivation of the corresponding results. We
recall that

x(z) z-1t5(z) z-1[t3+(z)-û_(z)] (3.2)

and, using equation (2.9) and (2.6), we may write

6, (z) X„P0 £ fi rXv-). (3.3a)
n=0 V'm l 2 + A-m'

V-(z)=Y0P0ì (n-^r), (3.3b)

where P0=(z + X0+ Y0)~l and where an empty product is equal to 1. The quantities

X„ and Y„ are defined in equations (2.7a) and (2.7b), respectively, and in
general are infinite continued fractions depending on the random variables W*.
For the diode-model, however, their determination is simplified considerably. We
have

X„

(u if W"+1=0
kv

otherwise (3.4a)

z+K-i
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yn=-

rQ

V

ll kV

^ z + Y„+1

if w:n o

otherwise (3.4b)

so that for each segment between two 'diodes' the X„ and Y„ can be calculated
separately, and with the same respective recursion.

We now let N denote the smallest integer >0 such that the bond (—N—
1, —N) is a diode, i.e. WlN 0. It follows that YN=0, and therefore

u_(z) 0 if N 0,

and

v-iz)-

where

^oT^-Y(UaN-y-m) if N*l,
1 aN-l n=0 Sn-1 '

On=- n=0,l,...,N-l.
Z + MV-l-M

The a„ are determined by the recursion

v
On

z +(1+A.)u — Aue^ta..,

with

u z+(l+A)u
This is solved by

1-k"+1
an= p. 1-k" n=0, l,...,N-l,

where

M-

and
£/ "«+'

|± Mz+(1+\)u±[z2 + 2(1+A)uz+g(1-A)2i;2]1/2}.

(3.5a)

(3.5b)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

Together with equation (3.5b), this leads to the following expression for û_(z),

u_(z) zPo:; — r-RT h: * (3-12)
1 —/tat + (fi. — k)k Ll —p. p, —K J

which holds for N 0,1,2,....
Now let Ny be the smallest integer >0 such that the bond (N,, Ny + 1) is a

diode, i.e. Wn,+i=0. From equation (3.4a) it follows that XNi h, and that the
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(3.13)

quantities

b Xn'-'
z +XNi_„

n - 0,1,.. ¦ X
obey the recursion

b
kV

i
" z+(l+A)t>--vbn.

with

h "
u+z

qn
m l

(U + Z)(l-Kn + 1)-Up.(l-K")
and

(3.14)

(3.15)

The solution of this recursion is given by

b-=V, g- wi ^ 71 ^' «=0,1,...,N,, (3.16)
(m + z)(1 — k — up.(l — K

with p. and k as defined in equations (3.10) and (3.11). If we write

v+(z) X0P0 £ ft -^r-) X0P0 £ q,„ (3.17)
n=0 Vi l Z+Am/ „=o

we see that equation (3.16) determines

fl bN-m, n l,2,...,N,. (3.18)

In particular, we have

<ïn, rNl-i, (3.19)

if we define

rn =b„D„ta_, • • • b„

n(l — k)(A/x)"
n>0, (3.20)

r_x=q0=l. (3.21)

The qn for n > N, can now be determined in exactly the same way. Let us assume
that

k

W~+1=0 if n=XNj+fc, Ni>0, k l,2,..., (3.22)
i l

i.e. the kth and (k + l)st diode are separated by a segment of Nk+1 two-way
bonds. Inductively, we then obtain

s

lit ''N.-l^^N, ' ' ' rNk 1 I Dn_..,-i.i
m=0

for n Ny + - ¦ -+Nk + k-s, s =0,1,..., Nk+y, (3.23)



Vol. 58, 1985 Random walks in one-dimensional random media 603

and finally

ö+(z)=-r^f- Z (n^N.js^,
1 DN| k ___ [ \ji_ i /

where

rn i>A-i • • ' b0, n^O,
r t 1,

s„ b,1 + b„b„_1 + - • --1-bA-i • • • b0, n>0,
S-y=0,

and where we have observed that

zbNi

l-bNl
If we further observe that

zaN_y

(3.24)

(3.25)

Yo--
1-ÛN-1 '

(3.26)

(3.27)

the prefactor zP0= z/(z + X0+ Y0) in equations (3.12) and (3.24) can be expressed
as

zP0-
(l-g^Xl-biy.)

1 — aN_i-_>N
(3.28)

We now have to average v+(z) and tL(z) with respect to the transition rate
distribution specified by equation (3.1). If we define

(•••>„»(i-p)Ip"---,
n=0

we may write

m^-X J Xt^-«—]) ¦\ l—p+(p — K)K L 1 — p. p. — K J/N.N,
and

(u+(z)> <-—— %,/ + (-—— rN> -———
M-bNl 7n.n, \l-bN, Vn.n, l-(r„)„

In Appendix B we show that

\ï \T^i) vO„
\1 — PN| /N.N, lz=0

/ zPo VI s

\1 — DNi /N.N, lz=0

<t5_(z)>-»0 as z^O,

(l-p)-\

1,

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

so that the z—>0 asymptotic behavior of (v(z)) (v+(z))-(v-(z)) is determined
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by

,-t u d-P)"'(v(z))~-——— as z
l-<Or,

0. (3.35)

This result implies that in the limit as z —» 0 it is sufficient to consider configurations

with N 0, i.e. for which the bond (-1,0) is a diode (Wo=0). The
asymptotic behavior of 1 — (rn)n is investigated in Appendix A, and the
corresponding results for (v(z)) may be summarized as follows:

(v(z)>

'vjz,

ail-p)-2-/in-,zl z

«X3/XX- i<p

k>p,

k p,
(3.36)

where

Uoc -

(A -p)uv (1- k)2uv

pw + (l-p)Au' u + (l-A)u'
a -In p, ß —ln A, v a/ß.

The function G(£),
- „-atk-O

G(C)= Z ß(k-0 ¦

k=-r0l + e'

is periodic, G(Ç+1)= G(£), and can be expressed as

G(t)= £ gke 2irik{

with

(sirgk — I sin TTv cosh
ß V ß - i cos tti> sinh

2ir2k)"¦

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

If we observe that (x(z))= z~l(v(z)), the long-time asymptotic behavior of (x(t))
follows from general theorems about inverse Laplace transforms [16], and we
finally obtain

'VeJ,

(x(f))~|a(l-p)) 2ct/ln(ct),

Sl-p)-2(ctyF(ßi\n(ct))
where F is periodic with period 1,

F(t) T — e2,rinT
V ' ntrX(v+l + 2TTin/ß)

The coefficients /n are determined by
OO / OO N-lZr „2-nim / V* „2.T...T \

fne - \ L gke J

k>P,
A p

A<p,
(3.42)

(3.43)

(3.44)

where the gk are defined in equation (3.41).
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For A < p, the average mean displacement thus not only increases slower than
linearly in time, (x(t))~t" with v ln p/ln A < 1, but exhibits superimposed,
non-decaying oscillations as a function of ln t. As (x(t)) represents an average over
all possible configurations of 'diodes' and 'two-way bonds', the persistence of
these oscillations is very remarkable and rather surprising. In Section V, we shall
analyze the origin of such oscillations from a more intuitive point of view.

We further note, and this will be evident from the results of the following
section, that equation (3.42) is also valid for a site-disorder version of our
diode-model. In this model, the independent random variables are the pairs,
{W*, Wn}, of transition rates associated with the same site, rather than with the
same bond as in the model analyzed above.

IV. Discrete-time random walks, and the discrete-time analog of the 'diode-
model'

In this section, we turn our attention to discrete-time (t e Z+) random walks,
and our corresponding one-dimensional models can be characterized as follows. If
x, neZ denotes the position of the particle at time tel+, we assume that
xl+y n + 1 with probability p*, and x,+] n - 1 with probability p~= l-p£. With
Pn(t) denoting the probability that x, n, we thus have

Pn(t + 1) pXPn_y(t) + Pn + yPn+y(t), (4.1)

and we assume as usual that

P„(0) 5n0, (4.2)

i.e. at time t 0 the particle starts at the origin. The transition probabilities
Pn(Pn+Pn 1) are assumed to be independent and identically distributed random
variables.

If we introduce the z-transform [17] Pn(z) of Pn(t),

Pniz)= Y,Pnit)z ; (4.3)
1=0

it follows from equation (4.1) and (4.2) that

ZPn-p+n_yPn_y - Pn + yPn + y z8n0. (4.4)

Equation (4.4) is formally solved by

^(z-ihx0+V (4-5a)

Pn(z)=- Xr;' Pn-y(z), nal, (4.5b)(Z-l) + A„

P-n(z) (2_^y P-(n-,)(z), n>l, (4.5c)
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where X„ and Yn are infinite continued fractions, recursively determined by

X„ ^ n>0, (4.6a)
14-- P-'

(z-l) + Xn+1

Yn ^-f n>0, (4.6b)
1+- P —'

(z-l)+Y„+1

For the z-transform x(z) of the mean displacement x(t),

xit)= Z nPnit), (4.7)
n —oo

we finally obtain

(z-l)x(z)= ÌxnP„-ÌYnP_„
n=a n=0

-*Ât, (Ä XX)- 'A î (ft^)¦ <">

A function f(t), originally defined for t e Z+, can be extended to t e R+ by setting

/(r) /(INT(0), teU+, (4.9)

where INT(t) denotes the largest integer smaller or equal to t. Its Laplace
transform,

f(s)=[dtf(t)e-°; (4.10)

and its z-transform,

f(z)=tf(t)z-', (4.11)
1=0

are then related by

f(s)=]—^f(es), (4.12)
s

so that

f(s)~~f(l + s), s^O. (4.13)

The r—>°° behavior of the average mean displacement, (x(r)), can thus be
determined from the s-»0 behavior of <.x(l + s)) via the usual theorems about
inverse Laplace transforms. We further observe that, as s-^-0, x(H-s) becomes
identical to the x(s) for a site-disordered continuous-time model (see Section III),
with p* playing the role of W*.

Let us now consider the discrete-time version of our 'diode-model', defined
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by the following probability distribution for the transition probabilities p*,

with probability 1-p,
with probability p,»£:

where 0<cr<l, and where we recall that p~ l — p„. The s—»0 asymptotic
behavior of <x(l + s)) can then be analyzed with methods similar to those
presented in Section III, and we obtain

i(x(l + s))~()"^. s^O, (4.15)

where

<R> (l-p)ïpRR„, (4.16)
n 0

w+s>=(l+s)U,.,:^Xn;-n-v <4-i7)

and
T,tat ![l-rs±V(l + s)2-4o-(l-cr)]. (4.18)

A comparison with equation (3.20) shows that

R„(l + s) r,,(s) (4.19)

if the following identifications are made,

u=l, v=l-a, k=-^—. (4.20)
1-CT

Equation (3.35) then implies that the asymptotic behavior of the discrete-time
diode-model is obtained from that of its continuous-time counterpart simply by
making the substitutions defined in equation (4.20). In particular, equation (3.42)
thus leads to the following longtime behavior of the average mean displacement,
(xit)), in the discrete-time diode model:

l-o-
Uoof, P < 1

cr

a(l-p)-2cr/ln(c0, p-^-1, (4.21)
cr

il-pXctYFiß''in ict)), p—>1,
cr

(xit))-

where
cr-pjl-cr) j\-2a)2

u~ ~T~T, \ ' c Ö7i ^ ' (4'22)
o--l-p(l-cr) 2(l-o-)

a -lnp, /3 -ln-^-, v=^, (4.23)
1 — CT ß

and where the periodic function F is defined by equation (3.43), with ß and v as
in equation (4.23).

This discrete-time diode-model has first been considered by Solomon [8]. His
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results about the limiting distribution of x,, the position of the particle after time t,
do not immediately lead to explicit expressions for the average mean displacement
(x(t)). Our respective results of equations (4.21) to (4.23), however, seem to be in
complete agreement with his theorems.

V. Temporal self-similarity aspects

We consider the discrete-time version of the diode-model and shall try to
interpret the corresponding motion of a particle in terms of average waiting times
at m-tuples of consecutive 'two-way sites'.

We recall that two-way sites are characterized by p,\ cr, pn 1 — cr, and that
they occur with probability p. Very roughly, the average separation of
corresponding m-tuples can thus be estimated as p m.

The average waiting time, rm, at an m-tuple of consecutive two-way sites is
defined as the difference between the average and minimum time, respectively,
needed to cross such an m-tuple from left to right. Mathematically, this can be
expressed as

Tm(o-) x(„1,*(o-)-m, (5.1)

where x„ is the 1-component of the m-dimensional vector x,„ determined by

Mm(a)xm(cr) am(cr),

with Mm(cr) denoting the m x m matrix

Mm(cr)

and am(cr) the m-dimensional vector

(5.2)

(X —cr

cr-1 1

0--1

0--1 1

cr 1 1

(5.3)

am(v)

2-a
1

1

L l J

It follows that

(5.4)

¦x^yurhT'- (5.5)
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and in particular we have

Tm(a) l-O- yhm —— 0<(T<5. (5.6)
r»-»Tm-i((r) o-

Very roughly, we can therefore say that the waiting times are concentrated
around values rm ~[(1 — a)/o-]m which occur with respective probabilities ~pm.
On the average, p_1 waiting times of t~(1 — &)/cr occur before a waiting time of
T~[(l-cr)/cr]2; p

' clusters of this type occur before a waiting time of t~
[(l-cr)/o-]3; etc.

If p>«r/(l — cr), the average waiting time becomes infinite,

î~Îp"(—)"=». (5-7)
m=l V cr /

and the set of waiting times exhibits self-similar clustering with an average fractal
dimension of

v lnp/ln(-j-J<l. (5.8)

The results of Shlesinger and Hughes [18] about this type of waiting time
distributions then imply that

<x(t)>~r-F(lnt), t->oo, (5.9)

where v is given in equation (5.8), and where F is periodic with period ß
ln [(l-cr)/cr]. This is in complete agreement with the exact results of section IV,
and we conclude that the oscillating behavior of (xit)) for p>ex/(l —cr) can be
related to the temporal self-similarity properties of the random walk.

The average time, tk, it takes a particle to go beyond the first k-tuple of
consecutive two-way sites it encounters on his path, can now be estimated as

follows,

h~pX lpmXm. (5.10)
i

If p>cr/(l-cr), then tk ~Tk, i.e. the average waiting time at the first k-tuple of
consecutive two-way sites is much larger than the average time it takes the
particle to go there. We would therefore expect ln [t"(x(f))] to exhibit minima at
r t,-, which is quite accurately confirmed by numerical simulations presented in
the next section. We further note that

lim (In (fc-n-ln fk) ln (5.11)
k-~= o-

in agreement with our exact result for the asymptotic oscillation period.
Let us now turn our attention to models which have a more general transition

probability distribution than our diode-models. The results of Kesten et al. [7]
seem to indicate that asymptotic oscillations do not occur if this distribution is
non-arithmetic. In the case of arithmetic transition probability distributions,
however, much less is known about the precise asymptotic behavior of (x(f)).
Sinai [9] has restricted his considerations to models with a symmetric distribution
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of log[p^/(l -p*)], and Derrida and Pomeau [10] have investigated a special class
of binary p,,-distributions. Their approach seems to give the correct values for the
exponent v, but is insensitive to possible asymptotic oscillations.

On the other hand, arguments similar to those presented above indicate that
such oscillations should not be an exclusive consequence of our diode-models, and
that more general arithmetic transition probability distributions could also lead to
a self-similar clustering of waiting times. These expectations are actually
confirmed by numerical simulations (see the following section) and by the results of a

new real-space renormalization approach [19].

VI. Monte Carlo simulations

In order to supplement our asymptotic results for the diode-model and to test
our predictions for more general transition probability distributions, we have
performed two sets of rather extended Monte Carlo simulations. The first set (Fig.
1) refers to the diode-model, and the second (Fig. 2) to the 'left-right' model of
Derrida and Pomeau [10] (see below). In both cases, the numerical results for
(xit)) represent averages over at least 10 000 Monte Carlo samples, each
corresponding to a different realization of the respective random medium and to a

random walk of 200 000 steps. To facilitate a compact and accurate presentation
of the results over the entire time range, we have introduced a reflecting boundary
at n 0 (starting point of the random walks). This conveniently enhances the
small t values of t"(x(f)), but has no effect on the long time asymptotic behavior.

0.2

V
0.1 -

1 I 1 I 1 I 1

• •

1 ' 1

W ~\./-\./'"^ *—.?

• • • •• «

•

•v. •' •

•••

•
1 ¦? 1 tl It. 1 tl

0 8 mt 10

Figure 1

Average mean displacement (x(r)> for the discrete-time 'diode-model', equation (6.1), with p 0.3 and
<r/(l —<r) 0.09. The numerical results represent an average over 10 000 Monte Carlo samples, and
the broken curve refers to the exact asymptotic behavior [equation (4.21), case p(l — a)/cr> 1], The
arrows indicate simple estimates for the locations tk of the first four minima [equations (5.10) and
(5.5), /c l,...,4].
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Figure 2
Average mean displacement (x(t)) for the 'left-right' model, equation (6.5), with p 0.2 and
a/(l-a) ^. The numerical results represent averages over 15 000 Monte Carlo samples.

Without particular program optimization, 10 000 Monte Carlo runs took about 20
hours of CPU-time on a Digital Equipment Corporation VAX-11/780 computer.

The diode-model is characterized by [see equation (4.14)]

Xlo-,

with probability 1 — p,

with probability p,

and for our numerical simulations we have chosen p 0.3 and cr/il — a) 0.09.
According to equation (4.21), the asymptotic behavior of (xit)) is thus given by

<x(0>~(l-Pr2(cO"F(.3-Mn(cf)),
with an exponent v of

lnp 1

(6.1)

(6.2)

ln[cr/(l-o-)] 2

and an asymptotic oscillation period of ß of

l-o-
ß=ln 2.41.

cr

(6.3)

(6.4)

The numerical results for ln [r"1/2(x(t)>] vs. ln t are plotted in Fig. 1, together with
the corresponding analytic predictions for the asymptotic behavior. Even-odd
effects are important for small t, but the asymptotic oscillations develop very
rapidly. For 4<ln t< 11 we observe an apparent exponent v of about 0.503, and
the prefactor is only about 4% below its asymptotic value. Period, phase, and
amplitude of the oscillations also are already very close to the asymptotic
predictions. Our simple estimates of equation (5.10) for tk, the locations of the
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minima, are indicated by arrows. They are confirmed very accurately by the
numerical simulations.

Our second set of numerical simulations refers to a model that has been
investigated by Derrida and Pomeau [10]. It is characterized by a transition
probability distribution of the form

p(p„f) pS(p,t-c7) + (l-p)Ô(p;-(l-o-)), (6.5)

so that either pnlp* (1 -cr)/cr [left bias, probability p] or p'nlp„ (1 -<r)/cr [right
bias, probability 1-p]. We therefore call this model the 'left-right' model.

For cr<p<\ (°r \<p<ct), Derrida and Pomeau [10] predict that

(x(t))~t\ t^oo, (6.6)

with

ln[p/(l-p)]
ln[a/(l-o-)]

(6.7)

The same result is obtained if the theorems of Kesten et al. [7] are applied to the
ieft-right' model, although the former have only been proved for non-arithmetic
transition probability distributions. We believe that the expression of equation
(6.7) for the exponent v is exact, but so far no analytic information about the
possible occurrence of asymptotic oscillations has been obtained.

In our Monte Carlo simulations of the ieft-right' model we have chosen
p 0.2 and <r/(l -<r) ^, so that equation (6.7) predicts v 2. Figure 2 shows the
corresponding plot of ln[ru2(x(t))] vs. Int. The approach to the asymptotic
behavior appears to be somewhat slower than in the 'diode-model', the apparent
exponent v being about 0.515 for 5<lnf<ll. Asymptotic oscillations (with a
period close to ln [(1 — o-)/a]~2.77), however, have already clearly developed.
These numerical simulations thus confirm our expectation that asymptotic oscillations

should also be observed in models with arithmetic transition probability
distributions that do not contain 'diodes'.

VII. A self-consistent effective-medium approximation

Random walks in media with random, symmetric transition rates (W^
W~+1) have frequently, and quite successfully, been analyzed in terms of a
self-consistent effective-medium approximation (EMA). The most prominent of
these approaches is a straightforward generalization [1, 20] of Kirkpatrick's EMA
[21] for random resistor networks, and has repeatedly been rederived with
different techniques [22].

This EMA can easily be extended to the case of asymmetric transition rates
[4,23], and in the following we derive and analyze the corresponding self-
consistency equations for our one-dimensional models. To be definite, let us
consider continuous-time random walks with bond-disorder (i.e. the pairs
{W*, W^,} of transition rates are assumed to be independent random variables).
The treatment of continuous-time random walks with site-disorder and of
discrete-time random walks, however, is entirely analogous (see below).
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We start with equation (2.4), the master equation for the Pn(z),

(z + W:+ W~)Pn-WXPn-t- W-+1Pn+1 P„(0) 8n0, (7.1)

where P„(z) is the Laplace transform of P„(t), the probability of finding the
particle at site n at time t. In matrix notation this may be written as

(z-l + W)P P0, (7.2)

where

(W)m„ (W„+ + Wn) 8nm - W+n_y SB_ljm - Wn+1 8n + y,m, (7.3)

and where 1 denotes the (ooxoo) unit matrix. For given initial conditions P0 we
have

<P(z)> <(z-i+Wr1>P0, (7.4)

i.e. the average properties of the random walk are determined by (z • 1+ W) '),
which thus plays the role of an average resolvent (or Green's function). Wë now
want to represent the random medium by an effective, non-random medium with
(z-dependent) transition rates W^(z) and W~„(z). The corresponding transition
rate matrix is denoted by Weff, and we have

(weff)nm (w:„+ w;ff) 8nm - w:n s„_,.m - we-ff S„+1.m. (7.5)

We define

A==Weff-W, (7.6)

and observe that A can be written as a sum over single-bond contributions,

4 Za.> (7.7)
i

where A( refers to the bond (i, i +1),

A^AtQ+A^yQ^y, (7.8)

with

Af=We±„-Wf (7.9)

and

(Qf)nm=8mi(8n,-8n,l±y)- (7.10)

We can now define a single-bond t-matrix,

^[i-A^z-l+VVe^1]-'^, (7.11)

and observe that

The latter equation follows then from the fact that

Aiiz-l+W^A^^A, (7.13)



du „,±
" 1

„, x „,T (7.17)

614 J. Bernasconi and W. R. Schneider H.P.A.

where

F,=Af/f + Ar+i/r+i, (7.14)

ff [(z-l+Wefl)-1]„-[(2-l+We„r1]M*i, (7.15)

and where Af is defined in equation (7.9). The /f are independent of i, ff =/*,
and can be determined via Fourier transformation:

±_
1 f l-eTiqr 2^ L dq(z + We+„+ W^-e-W^-e-Weff

(?'16)

2iri *„,. "" We>2-(z + Wc+ff + We„)u + W:„
circle

For Re 2 >0, we thus obtain

/?±=^èr{1+[±(wcfl-w;fl)-z]/sefI}, (7.18)

with

Seff [z2 + 2(W:ff4GWefl)z4G(W:fl-We-ff)2]"2. (7.19)

The EMA-requirement that the average single-bond f-matrix should vanish,

(tj) 0, (7.20)

then leads to the following two coupled self-consistency equations for We+,(z) and
We-fl(z),

(i-Arr-A,+1/>° (7-21a)

<i-Arr-Ar„/>° (7-21b)

where we recall that

Af=We±„-Wf, (7.22)

and where the average is with respect to the probability distribution of the pair
{W*, Wï+y] of transition rates.

For site-disordered systems, we note that the A of equation (7.6) can also be
written as a sum over single-site contributions,

A=Za|s) (7.23)

A!s, A,+ Q,+ + ArQr, (7.24)

so that in equations (7.21) we merely have to replace A, + 1 by A~, and the average
then refers to the probability distribution of the pair {W,+ W, } of transition rates.

We further note that for discrete-time random walks the transition rates Wf
are replaced by transition probabilities pf. As pf \-pf, it follows that peff
1-Peff, and equations (7.21) thus reduce to a single self-consistency equation for
PeVz).
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From the results for non-random media [see equations (2.10) and (2.8)] it
follows that the EMA-result for the Laplace transform, (x(z)), of the average
mean displacement is given by

<x(z)>=z-2i3e„(z), (7.25)

where

ueff(z)=Wc+ff(z)-We-„(z). (7.26)

For z —» 0, equation (7.25) also holds for discrete-time random walks (see Section
IV], with

i5eff(z) 2p;ff(z)-l. (7.27)

If £>eff(0)^0, the average mean displacement, (xit)), is thus predicted to increase
linearly with time,

<x(t)>~üeff(0)-t, t-*«. (7.28)

For continuous-time random walks this turns out to be the case if either
(w /w*")< 1 or (w+/w~)< 1, and we obtain

- ,nxfU/w+>~1[l-<w-/w+>], if <w-/w+)<l
"effW \-(l/wXll-XX)l if <w+/w-><1. U '

The analogous result for discrete-time random walks is obtained by replacing w +

and w" by p+ and l-p + respectively, i.e.

vctl(0)=<
<1

(7.30)

<1.

As a first example let us consider a model with random, but intrinsically
symmetric transition rates, W* W~+l Wn. In a uniform electric field E0, the
transition rates become asymmetric,

w;,(E0)=wxEX
W,;+1(E0)=W„e-E"/kT,

where the lattice constant has been set to unity. For this model, equation (7.29)
predicts

ûeff(0) 2<l/w>-1 sinh (EJkT), (7.32)

in agreement with the result of Derrida and Orbach [6],
For our continuous-time diode-model, equation (3.1), we have

<w7w+> pM, (7.33)

<w+/w-) 00, (7.34)

and the EMA [equations (7.28) and (7.29)] predicts that

(x(t))~vc„(Q)-t, if k>p, (7.35)
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with

- /„. (k-p)uv
ve«(0)= - v. V\. 7.36

pu + (l-p)Au

which coincides with the corresponding exact result, equations (3.42) and (3.37),
for the case k>p. For the discrete-time diode-model, equation (4.14), the EMA
[equation (7.28) and (7.30)] similarly leads to

tr + p(l— cr) cr

again in agreement with our exact result [equations (4.21) and (4.22)]. In fact,
equations (7.28) and (7.30) coincide with the corresponding general results of
Kesten et al. [7] and of Derrida and Pomeau [10]. This suggests that the EMA
should always lead to the exact conditions for the existence of an asymptotic drift
velocity, and that the latter is then correctly reproduced by ûeff(0).

If both (w /w+)>l and <wf/w_>>l [or <(l-p+)/p+)> 1 and
(p+/(l -p+))> 1], however, the EMA does not seem to lead to meaningful results
for the long-time asymptotic behavior of (x(t)). This can, e.g., be demonstrated
explicitly for the discrete-time diode-model of equation (4.14). If p and a are
such that p(l -o-)/cr> 1, the EMA leads to

t3e„(z)~a-z1/2, Z-+0, (7.38)

and therefore predicts that

<x(r)>~^t"2, r^œ, (7.39)
TT

where a > 0 is a constant depending on p and cr. This, however, does not at all
reflect the exact asymptotic behavior given by equations (4.21) and (4.22).

VIII. Conclusions

We have presented a detailed analysis of the average mean displacement,
(x(t)), for continuous- and discrete-time random walks in one-dimensional random
media. Exact asymptotic results are derived for model systems that contain a finite
fraction of 'diodes', i.e. bonds which can only be traversed in one direction.
Depending on the model parameters, the behavior of (x(t)) changes from (x(t))~
lO to (x(t))~ t"F(\n t), where v<l and where F is a periodic function. This
remarkable phenomenon of persisting asymptotic oscillations is interpreted in
terms of a self-similar clustering of 'waiting times'. It is argued, and demonstrated
by numerical simulations, that such oscillations should not only be observed in
'diode-models', but also for other (arithmetic) transition rate distributions.
Finally, a self-consistent effective-medium approximation is derived and shown to
be applicable only if the transition rate distribution is such that (x(t))~ v^t, in
which case, however, v^ is reproduced exactly.
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Appendix A

In Section III we have shown [equation (3.35)] that for the diode-model

(v(z))~^~,P\ as z-0, (Al)l-(rn)„
and we therefore have to analyze the z —*¦ 0 asymptotic behavior of

1-Wn (l-P) Î P"(l-0. (A2)
n=0

Using equation (3.20), we may write

l-(rn)n A(z)-B(z), (A3)

where

A(2) (1-^!lTcW' (A4)

P"Bn(z)
+ C(z)k"'

with
up-K(u + z)

C(z) ¦ (A6)
u + z-up.

and

Bniz)=
{1~K)U

ikp)n-CizX. (A7)
u + z — up.

The z-dependence of /x and k is given by equations (3.10) and (3.11), and we
note in particular that fA 1 and k k for z 0.

If k>p, 1— (rn)n vanishes linearly in z, and we obtain

pu + (l-p)kv
l-(rn)n~j-A rr: :—z, (A8)

(l-p)(k-p)uv

B(z)=(i-p) z /;;r„ (as)
n 0 A '

so that

(A--p)itt) ,_<ß(z)> -TeX ^ z" -«„z-1. (A9)
pu + (l-p)Au

If A <p<l, we have

C(z) ^0(l), c^4=^f, (AIO)
z u + il-k)v
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and
B(z)=0(z), (Ail)

as z —» 0. It follows that the leading asymptotic behavior of 1 — (r„)„ is determined
by A(z), and a careful analysis shows that we may write

l-<r,,),,~(l-p) £ — z^O. (A12)
n=0l4--A"

z

For k p, this leads to
oc n

l-<rB>„~(l-p)- Z -S— (A13)
C"-°-+p"

c

~(l-p)- dx-2— (A14)
c Jo z

—1-p
c

~j^hA (A15)
ln p c c

so that

(i5(z))~-^-/ln-. (A16)
1-P z/ z

If À < p, we define

a -lnp, ß -ln\, v a/ß, (All)

m m(z) INTh3-,Reln-Y (A18)

where INT(x) denotes the largest integer smaller or equal to x, and

5 8(z) ß~l In-- m(z), (A19)
z

so that equation (A 12) becomes

>.(k-S)

l-<r„)„~d-p)(-) Z IVc/ k-,-,« 1

e

-eoe-«)-
k-- »i ' T e

It is straightforward to show, however, that

©Xm-1 -o.(k-S)

k=-=c JL + e '

so that we may write

(A20)

(E=i)=0(z), z-*0, (A21)

l-<rn)n~(l-p)Q G(6), (A22)
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with
oo -aik"«)

G(S)= Z 1+<,-3(fc-«)-
(A23>

k =—oo 1 "r c

As G(S) is periodic, G(<5 +1) G(6), it can also be expressed as

G (5)= Z gX™ks, (A24)
k

and a somewhat lengthy calculation yields

irl 2ir2/< 2ir2k\-1
gt =— (sin Try cosh icos m/sinh (A25)

ß\ ß ß 1

The definition of 8, equation (A19), further implies that

G(S)=g(p_i In-Y (A26)

and we finally obtain

(ü(z))~(l-p)-2(^y/G(ß-,ln^. (A27)

Appendix B

We have

sn bn + bnbn-1 + --- + bnbn-1---b0, n>0, (Bl)
s y 0, (B2)

r„ bA-i • • • h, n>0, (B3)

r-i 1, (B4)
an"

2p0=»-^-.)»-M (B5)
l-aNta_,bNi

where a„ and bn are given by equations (3.9) and (3.16), respectively. In
particular

1 — A" + 1

an\z=o=ZA_.n+2> bn\z=Q=l, (B6)

so that

snU0 n + l, r„|z ()=l, (B7)
and

1. (B8)
ZP(,

1-^N, 2=0
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We therefore immediately obtain

(xts») I d - p)2 S pN î (n. + DP"'=T1
\1-0N, /N.N, lz=0 N_0 „ 1-

(B9)

and

(xtr") =(i-p)2ZpnZpn' 1- (BIO)
\1-0N| /N.N, 2=0 „ta-,, „1=0

A careful analysis of the z —» 0 behavior of /x, k, aN and 6Ni further shows that
the leading asymptotic behavior of (v (z)), equation (3.30), is determined by

(v (z))~(l-p)2 £ PN' Z PN
°(N)

(BID
N,=0 N=0 1+£>N, + N

z
oo n^

~(l-p)2Z— 0(M2). (B12)
M-'l+-AM

z

Essentially by differentiating the results for 1 ~(r„)n [see Appendix A], we finally
obtain

(tL(z)>~ const. • z, k>p, (B13)

<tL(z)>~const.(-)(ln-) A p, (B14)

<{L(z)>~const.(-J Un-j A<p, (B15)

so that for all parameter values, (t._(z))—»0 as z —»0.
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