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On the Green function of periodic
Coulomb systems

Ph. Choquard, Institut de Physique Théorique, Ecole
Polytechnique Fédérale de Lausanne, PHB-Ecublens, CH-1015
Lausanne

(20. IX. 1984)

In honor of Emanuel Mooser’s 60th birthday

Abstract. An analysis of real space representations of the Green function of neutral and periodic
Coulomb systems is presented. It is shown how to represent this Green function, generally known
through its Fourier representation, in terms of absolutely convergent Poisson sums of auxiliary
potential functions. Explicit representations are constructed to treat problems of Electrostatics which
occur in periodic systems composed of cells possessing a quadrupole moment.

I. Introduction

The Fourier representation of the Green function of a periodic and neutral
Coulomb system in the three dimensional space R> is given by

, 4T
G0)= L 3

g (1.1)

where A is the basic cell of the periodic system, |A| is the volume of the cell, r is a
vector in A # 0, |r| is its euclidean norm, K is a vector in the reciprocal space and
Kr is the ordinary scalar product. The ' indicates that the term K =0 i1s omitted
from the sum. This restriction expresses the condition of charge neutrality that the
r.h.s. of the Poisson equation (2.4) associated with (1.1) must satisfy. This is so
because there is no Green function for the bare Coulomb potential (c.f. [1], p.
98).

The potential energy of a periodic, neutral and dipole-free assembly of any
number of charged particles with position vectors {r,} in A and charges {e;} is given
by

VS%ZeeeiG(n—erZe?U (1.2)

k] i
where the shape-dependent constant U is defined by

U:1iml(G(r)—i) (1.3)

r—0 2 lrl
In Section 4 of this Note, we shall return to (1.3).
If the assembly of charges possesses a non vanishing polarisation, then, (1.2)
must be supplemented by a quadratic form in the components of the polarisation
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as shown particularly clearly by S. W. de Leeuw, J. W. Perram and E. R. Smith in
their first paper on the ‘Simulation of Electrostatic Systems In Periodic Boundary
Conditions’ [2].

The purpose of this note is to investigate real space representations of G(r).
This means that we are interested in finding representations of G(r) as Poisson
sums of auxiliary potential functions centered in the cells of the periodic system,
integrable at infinity and with zero mean values. If g(r) is such a function, then

G(r)=2 g(r+R) (1.4)

will be absolutely convergent and defined for all r in R* # {R} where {R} is the set
of the centers of the cells A(R) which cover R?. We shall often write A(0)= A for
simplicity.

In the following sections, we shall introduce a certain class of functions g(r)
satisfying the requirements listed above and we shall discuss the application of
specific representations to problems of Electrostatics which occur when A posses-
ses a quadrupole moment. Indeed, for cells without quadrupole moment, E. H.
Lieb and B. Simon have solved (1.4) within a constant (given by (3.5)), in Sections
V1.2 and VI.3 of their fundamental paper on ‘The Thomas—Fermi Theory of
Atoms, Molecules and Solids’ (c.f. [1], p. 98, 100 and 101). In fact, the content of
these sections has stimulated the development of the present investigations.

II. The auxiliary potential functions

We establish here the conditions which have to be fulfilled by the admissible
g(r). Let us set |A|"'=p and let g(q) be p times the Fourier transform of g(r).
Unless otherwise specified, all the integrals are carried over R>. With these
conventions we have

g(q) = pjd3re‘i“'g(r) (2.1)

and
d* . '
g(r)= IAII (21:;3 e "g(q) (2.1)

Let us calculate G(K) from (2.1). Using the property that exp iKR =1, VK and R
defined in Section 1, we find:

= ; 4
G(K)= pj d3re“’<'G(r)=__I:f
A0)
= Z Pj d’re ®g(r+R)= z pj d3r e K HiKR g (1)
R A R “A(R)

aee pjd3rleiKr’g(rf)

= g(K)
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The first condition is accordingly

~ - 4

B@l-x=GK)=2F5  K#0 (2.2)
and the second condition is

lim g(q)= G(0)=0 (2.3)

which is sufficient to guarantee the integrability of g(r) at infinity.

We proceed by examining the Poisson equation satisfied by G(r).
We have

~AG(r) =) 4mpe’® =Y 4mpe’™ —Amp
K K

=4m(84(r)—p) (2.4)
where 8,(r) is the periodic Dirac & distribution, i.e.
8.(N=2.8(r+R) (2.5)
R

If we introduce (1.4) and (2.5) into (2.4), we get

Z—Ag(r+R)=4w(z 8(r+R)—-p) (2.6)
R R

Then, the question is: which Poisson equation should g(r) satisfy? Since (2.6)
represents a sum rule, the most general answer is provided by a resolution of the
constant term in (2.6), trivialy periodic in A, in terms of piece-wise continuous
source functions f,(r), the subscript ¢ standing for ‘candidate’ such that

1=Y f.(r+R)

=Y f.(K)e™ 2.7)

with f.(0)=1 and zero otherwise. The candidate functions g.(r), is then chosen to
be the inhomogeneous solution in R? of the Poisson equation

—Ag (r) =4mw(8(r)— pf.(r)) (2.8)
which, in Fourier space, becomes
q°g.(q) = 4mp(1-f.(q)) (2.9)
We observe that for q=K#0
4 v
@(K)=%’ (2.10)

and the condition (2.2) is satisfied for any f. solution of (2.7). For K =0 however,
(2.3) restricts the choice of f.(r) to that class {f}<{f.} for which

4mp
Q2

lim 2(q) = lim (1-f(q)=0 (2.11)
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Since f(r) is symmetric (2.11) means that, for small g
f(@)=1+0(q" (2.12)

In real space (2.12) means that

P Fd3rf(r)=1 (2.13)

o

and
.
pld’mrf(n=I,=0 (2.14)

i.e. that the second moments of f vanish. The admissible g(r) are furthermore
given by

g(r)=l—pjd3r’f(r') (2.15)

Irl Ir=r|
The class of source functions satisfying (2.13) and (2.14) must be further re-
stricted. Considerations of physical and mathematical nature, which will become
obvious below, suggest considering only source functions of compact support. If
so, it follows from (2.13), (2.14) and (2.15) that, for large |r|, outside the support
of f(r), the potential function decays as 1/|r|°> for all shapes of A.

In summary, the problem of defining the admissible potential functions has
been formulated as follows: we look for identity resolving, piece-wise continuous,
even source functions f(r) of compact support, normalized to unity and with
vanishing second moments. Then g(r) is given by (2.15).

III. Auxiliary source functions

We develop here an operational procedure for constructing source functions
f(r) belonging to the class defined above. We shall proceed inductively and begin
with the construction, in two steps, of the simplest possible f(r) for a cubic cell
A =c. First, (2.2) will be satisfied but not (2.3) and then, (2.2) and (2.3).

In Section 2, we have learned that any solution of (2.7) satisfies (2.2). The
simplest of these solutions is certainly the characteristic function x(r) which is one
for r in A and zero otherwise. For a cubic cell of linear dimension a we have

3

_ sin (q,a/2)
— il -l Sl 3.1
x(@) ,,11 (g.al2) i31)

The potential function, say y(r), associated with this source function satisfies the
Poisson equation

—Avy(r) =4mw(8(r)— px(r)) (3.2)

and becomes

1 1
'Y(r)=——pj azr (3.3)

|r] Ir—r'|

This is precisely the potential function considered by Lieb and Simon ([1] Eq.
119). Since the second moments of the charge distribution of 3.2 are diagonal and
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isotropic, y(r) falls off as 1/|r|> for large |r| and the Poisson sum Y y(r+ R) is
absolutely convergent. This sum represents the electrostatic potential produced at
the point r from an infinite cubic array of point charges immersed in uniform
background of opposite charge. This system is readily identfied as a Wigner
lattice. The Fourier transform of (3.3) is

_ 41p 2 sin (q.a/2)
(@=""2 (1- J] T-2) (3.4)
T ,.Hl (qaa/2)
For K# 0 we have evidently
4p
K)=
y(K) = e

whereas y(0) is not zero. We have instead

471'( 2) 47rp e
lim ¥(q)=1 3,42% 2 @

= o[ ary(r (3.5)

However, since ¥(0) is a well defined non vanishing constant, it is easy to carry
out the second step. The simplest way of implementing (2.3) is indeed to write

4
g(N=v(n =5~ x(r)
= v(r)—pjd3r’v(r’) - x(r) (3.6)
The Fourier transform of this g(r) is
1-
2@ =amo(L 2L (q)) (3.7

with the property g(0)=0. Notice however that the above choice makes g(r)
discontinuous at the surface of the cube. We shall return to this point in Section 4.
The above exercise tells us that the characteristic function of the cell is
manifestly useful in that it is the simplest function which fulfills (2.2). This fact
suggests constructing an admissible f(q) for the general case with the Ansatz

f(@) = fol@)fi(q) (3.8)
where
fol@) = x(q) (3.9)

and where f,(q) is chosen to fulfill (3.2), i.e. to cancel the quadratic q dependence
of x(q) for small q as requ1red by (2.12). For the ClelC case discussed above, we
might choose f,(q) =1+ 5a%q’since x(q)=1-5aq> and obtain

4 4mp

g(q)=— (1—x(q)(1 +228°q*)) (3.10)

We notice that (3.10) is exactly (3.7)!
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We proceed with the characterization of the admissible source functions in
real space. From the Ansatz (3.8), we have in the general case

f0) =0 [ drfur)fitr—r)
—pj d>r'fi(r—r) (3.11)

The function f,(r) is still unknown apart from the fact that it is of compact
support. In addition, we know its mean value

pjd3rfl(r) =1 (3.12)

since f(0)=1 and f,(0)=1 and its second moments from (2.14) and (3.11)
pjd3rrar,3f(r) =)= pjd3r'r;r('3f0(r')

+pjd'5rnrurg ](ru)
P T (3.13)

We are left with the question of finding the most convenient function f,(r) for a
given situation. A few examples are treated in the next Section.

I'V. Applications

We develop here two specific representations of G(r): the first one with the
purpose of giving a precise meaning to the shape-dependent constant U defined
by (1.3), the second one, with the purpose of examining the source function of
smallest support in real space.

As a preamble to the first application we return for a moment to the cubic
case in order to interpret U on the basis of the potential functions g(r) given by
(3.5). As expected, we shall find that U is the Madelung energy of the simple
cubic Wigner lattice. The demonstration is based on an appropriate decomposi-
tion and re-arrangements of the terms contributing to U. We have

2U =lim (G(r ——)—hm (Z g(r+R)— l ‘)

il rl) =0
o[ 4
| |

( (r+R)—x(r+ R)de3”7(r’)) _I_i_l)

+ T v®)-p|drv(n

d’r
l R#0
d’r
| =+ T v(R)- Zjd3w(r+R)
1 R#0 R “c
1
___2 j - jd3 d3 ’ ;
ST r—r|
1 1 1
_ d31 J,d‘& d3r ’}
+R§O{IR| I TR "j R—r] " "CT IR -1

(4.1)
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The first term is twice the attractive interaction between the particle located at
r =0 and the cell ¢(0), the second term is the self-energy of ¢(0), and the terms in
parentheses represent the interaction potential between the two cells ¢(0) and
c(R). Half of (4.1) is precisely the Madelung energy or ground state energy of the
cubic Wigner lattice.

After this useful little exercise, we consider the general case and we look for
a simple function f,(r) satisfying (3.12) and (3.13). Inspection of these conditions
suggests choosing

pf (r)=28(r)— px(r) (4.2)
We verify indeed that
p|drfi(n=1

and that

r

P d3"araf1(r) = IlaB = _Ioaa

for all A. With (4.2) the source function becomes
f0=p [ ffir=r)

= 2x(r)— A(r) (4.3)

where

A(r)= pjd3r'x(r’)x(r—r’) (4.4)

is p times the overlapping volume between the characteristic functions separated

by the vector r. For instance, for an orthorhombic cell of linear dimension a,, a,,
as

(o3

It follows from (4.4) that the support of (4.3) is a cell of the same shape as A but
with linear dimensions twice those of A. With (4.3), Poisson’s equation for g(r)
becomes

—Ag(r)=4m(8(r)—2px(r)+p A(r)) (4.6)

and in Fourier space it reads
a*g(q) = 4mp(1-2%(q) + X*(q)) (4.7)
The inhomogeneous solution of (4.6) can be written in the form
1 1
gu»:7~pjd%' —pjd%"

|r |r+r'|

-

r=r"|
1

SO 4.8
'r + rf _ rﬂl ( )

+p2j d3r1 d3rn
A
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It follows from (4.8) that g(r) can be interpreted as the interaction potential
between two neutral and dipole-free cells separated by the vector r. The constant
U is then given by

. 1
2U =lim (; g(r+R)—m)

—tim (50~ )+ ¥ ¢(R)

Irl/ =6

LY e®) (4.9)

lr_ r'l R#0

which proves unambiguously that U is the ground state energy of a Wigner lattice
with unit cell A of any shape.

We have just given a useful interpretation of g(r). However, we can give
another interpretation of g(r) in writing the source function (4.3)

f(r)=fo(r)+fa(r) (4.10)
with

fo(r) = x(r)
as before and

fa(r) = x(r) — A(r)
than, with

1
e _zp’[ d3r_'___+p2‘[ d3rd3rr
A || A

1 1
y(r)=—- J a’r - (4.11)
|r| A "_rl
the potential g(r) becomes
1
g(r)= 'y(r)—pjd3r’fz(r’) P (4.12)

In Fourier space this way of writing g(r) becomes

41T 4
g(q) =q—2" (1—2(q)>—q—§’ (%(q)— x*@q))

=v(q)— x(q)¥(q)
Now it is clear that for a non-cubic cell ¥(0) is not defined. We have indeed

4_77 QQqB —9

IO&B q2

; iy 4_77 _ 3 iqr)_ :

tm @)=ty 3 (1| dve) - i 3
Nevertheless, vy(r), the first term of (4.12) can be viewed as the potential
produced by the ‘real’ charge density of the cell A, namely 6(r) — px(r). As to the
second term, it can be viewed as being produced by a ‘fictituous’, symmetric
charge density f,(r), of zero mean value, changing sign at the surface A of A,
decreasing linearly to zero on both sides of dA, positive inside A and negative
outside and with second moments

Ie = de3”araf2(f) =0- Ioop (4.13)
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which compensate exactly the second moments of the real charge density. This
interpretation immediately suggests the question: can we squeeze f,(r) into a
surface charge double layer? The answer is yes in the sense of distributions. The
result is very simple, and will be given without proof. Consider

f=x@)—x%q)
= %(q)(1—%(q))

expand

L-%(@)=1-p [ d*re

= z %I(luﬁquqﬁ T

o, 3

and retain only the quadratic terms of the expansion. The function f(q) becomes

F*(@) = (@) + X(@)3L00pa4s (4.14)
and thus
4
g%(q) = —q’fe (1= %(@)(1+300p0.45)) (4.15)

appear to be the natural generalization of (3.10). The corresponding auxiliary
potential function becomes

g*(r):l_ J' d3r' (4.16)
A

+ 2 lsas DD j d3r
lri A

1
r=7]
where D, =d/dr,. It 1s apparent that among all admissible g(r), (4.16) is that of
smallest support. This property is of theoretical interest and may also prove useful
for determining G(r) quantitatively and efficiently from (1.4).

If A is cubic then I,z =75a°p 8,5 and the last term of (4.16) becomes

=71

, 1 41 , ,
a’p SQBDQDBJ:_ d>r P - L d*r 8(r—r')
4T
" 24a x(r)

which is exactly the last term of g given by (3.5). This shows a posteriori that the
choice of (3.5) was not artificial and that the jump of g at the surface of the cube
results from the effect of the surface charge double layer.

As a closing point, we note that for finite r and, while keeping its shape, the
size of the cell —x, the tensor

1 !
= DD, | fr

A el

becomes the well-known depolarization tensor of the theory of polarizable media.
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