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Surface stress, surface tension and fusion
temperature of very small condensed matter
particles

By J.-P. Borel and A. Châtelain, Institut de Physique
Expérimentale, Ecole Polytechnique Fédérale de Lausanne,
CH-1015 Lausanne, Switzerland

(30. VII. 1984)

In honor of Emanuel Mooser's 60th birthday

Abstract. Phenomenological thermodynamics can be used to understand the decrease of the
melting temperature when the size of small systems decreases. The agreement between experimental
results and the predictions is astonishingly excellent down to very small sizes (20 Â). A review is given
here which includes not only the case of free particles but also the case of particles embedded in a
matrix. The distinction between surface tension and surface stress is important when analyzing
experimental results obtained on solid surfaces and on small particles. The existence of a surface
induced pressure in anisotropic crystals depends on symmetries. A careful thermodynamical analysis is

presented which precises the general conditions describing various equilibrium situations and the
validity of Laplace type laws.

I. Introduction

From the point of view of statistical mechanics and thermodynamics, the
phenomenon of fusion is studied in general for systems of large dimensions. In
particular, a parameter describing the order at large distance vanishes when fusion
takes place. In the case of very small systems, such a parameter cannot be defined.
However, typical structures have been found experimentally in small particles. In
some cases, these structures are characterized by the Bravais lattice of the
corresponding large system (bulk) with eventually imperfections. In other cases,
small particles show a quinary symmetry non existent in the corresponding large
system. These particular shapes called MTP (Multi Twinned Particles) have been
interpreted as resulting from 5 fcc tetrahedral crystals with a common edge
(decahedra) or from 20 fcc tetrahedral crystals with a common apex (icosahedra
[1, 2, 3, 4]. In all cases, fusion corresponds to the disappearance or at least to the
non permanence of the atomic arrangement which results in particular in the
absence of the characteristic diffraction pattern. Buffat [5], for example, studied
the fusion of small gold MTP particles using the diffraction ring which corresponds

locally to the (220) family of planes of a bulk fcc crystal. Other criteria of
fusion have been mentioned. For example, Sambles et al. [6,7] in the case of
Gold particles used the variation of the evaporation rate at the melting point.
Pepiatt [8] and Blackmann et al. [9] observed a sudden change of the external
shape of metal particles. Devine et al. [10] in the case of bulk sodium and Sadeghi
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et al. [11] in the case of small Na particles measured the increase of the
conduction electron spin resonance (CESR) linewidth at the melting point.

The same diversity can be found in the theoretical approach of the problem.
A description has been given elsewhere [39,40]. In particular, the following
examples can be given: the equality of the chemical potentials of the solid, liquid
and vapor phases, the Lindemann criterion (fusion happens when the mean
quadratic atomic displacement reaches a certain fraction of the nearest neighbour
distance) and the sudden variation of a physical parameter at the fusion. Clearly,
the phenomenon of fusion, in the case of small particles, can be understood
without ambiguity. A phenomenological description will be given here which will
be compared to our experimental results.

The distinction between surface tension (or surface free energy) and surface
stress is important when analysing experimental results obtained on small particles.

The derivation of the surface tension from the lattice contraction (measurements

of the relative changes on the diffraction ring diameters) is inadequate for a
solid. Effectively, the drop model commonly used [12, 13, 14, 15, 16] assumes that
the crystal is isotropic, reducing the surface stress tensor to a hydrostatic pressure,
and the shape of the small crystal to a sphere. The pressure is given by a Laplace
law Ap 2 y/R where 7 is the surface tension. It is clear that such a model does
not take into account faceting of the microcrystals and the anisotropy of the bulk
and surface stress tensors.

The virial of the surface forces which gives the volume change of a crystal
[17, 18] has been calculated for a real crystal with a general faceted shape [19]. In
particular, it has been found that the concept of pressure can still be defined
inside a small crystal if a property called g symmetry is satisfied (relation between
the geometry of the crystal and the surface stress gslm). A thermodynamical
analysis will be given here which precises the general conditions describing
various equilibrium situations and the possible existence of a real pressure inside
the solid particles.

II. Surface tension, surface stress and equilibrium conditions

The surface phase can be considered as a non autonomous two dimensional
phase [12]. The work in the Gibbs equation is usually expressed as y dA where
the surface tension coefficient 7 corresponds to the increase of surface energy per
unit area 31/73A in the absence of surface deformations (the coefficient 7 is also
often written as a). Such a description is adequate in the case of liquids where the
excess surface stress immediately disappears because extra atoms migrate freely to
the surface or away from it. In the case of solids, however, a distinction must be
made between surface tension 7 and surface stress gsim, the later measuring the
work required to deform the surface. In order to take this contribution into
account, we have proposed to introduce explicitly the surface deformation
variables eslm in the Gibbs equation [20]. The area A of the surface can be increased
in two ways: i) by the increase dA° without structural change and ii) by the
increase dA* ATrdelm due to the deformations. Accordingly, the work is

equal to ydA° + Y_lm Ag*„, dejm. The Gibbs equations is then:

dUs Ts dSs + ydA + Yp-i dm\ + YMgL-j8lm) del, (D
i Im
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T, S, f/-i and m> are, as usual and respectively, the temperature, the entropy, the
chemical potential and the adsorbed mass of the chemical component i. If only
one chemical component is present, the position of the surface can be defined in
such a way that mf 0 [12]. The energy function Us is homogeneous and of first
degree in the extensive variable SSA and m\. Consequently, by Euler theorem:
Us TSSS + yA+Y.i p^mï- In order for this latter expression to be compatible
with equation (1), a Gibbs Duhem type of equation must be verified which, in the
case of constant temperature and one chemical species, reduces to

gfm=7SIm+-^- or gs=|TrgL 7^-(7A) (2)
öe.m 3A

These well known expressions [21,22] are obtained here in a new way. In the
case of liquids, y is independent of the strain tensor and g'm y8lm gs 8lm. It
should be noted that, according to various studies [23,24,25], 7 should be size

independent down to approximately 10 Â.
A crystal is considered with general faceted shape surrounded by a liquid or a

gaseous phase with which it can undergo exchange of mass by solution or
evporation [12] (Fig. 1). The system is assumed to be adiabatic and characterized
by constant volume and mass. Furthermore, to first order the volume changes
dU0 are assumed to be equal to A3 dh6 which leads to the relation:

A3dfi0=|h3dA0 (3)

The expression of the entropy production near equilibrium is, according to the
thermodynamics of irreversible process [26]:

jçtotal^-=I/mXm>0 (4)
dt

where Jm and Xm are the generalized currents and conjugated forces. dStot^/dt is

obtained from the Gibbs equations of the surface, fluid and solid phase. For these

YP

AP

hP

Figure 1
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two latter phases:

dVf=TfdSj-pfdVf + Yp-\dm[ (5)

dUc T¦ dSc +Z^i dVß + Y ri dm<t (6)
3 " i

In these equations, pf is the pressure existing in the fluid and £0 (dUc/dVß) dVß
corresponds, in general, to the work in the crystal phase expressed in terms of the
extensive variables Ve. Introducing equations (1), (5) and (6) in equation (4), the
generalized currents are identified [20] as: the currents of energy, mass, area and
deformation. The conjugated forces, according to the theory must be zero at total
equilibrium. With the expected conditions of thermal equilibrium (Tc Tf Ts)
and chemical equilibrium (p.c p., p.s), one gets [20]:

+ T^) TT and gL=73S(m (7)\p+dx): h

The diagonal form of gfm implies that no deformations are present at the surface
and therefore that the atoms can rearrange easily. This is certainly the case in
liquids and solids at sufficiently high temperature or if defects of high mobility are
present which should also be necessary in order to reach the chemical equilibrium.
Another consequence of the diagonal form of gfm is that the total virial of the
surface forces is found to have a scalar form [19] and therefore that a pressure
difference can be defined on both sides of the surface. The quantity dUc/dVß is

independent of ß and can be interpreted as the effective pressure that should be
applied to the corresponding bulk system in order to obtain the same deformations.

From equation (7), the shape of the crystal is characterized by the well
known Wulff relations [12]:

7ß
3= const. (8)

and a Laplace type law can be written: pe - pf 2(£3 73A3/X„ hßAß). In the case
of fcc metals, the Wulff shape may be that of a regular cubooctahedra [1].

Assuming pct p,{= PÏ as weH as constant mass and volume, other less
restrictive conditions of equilibrium can be found, by minimizing the total free
energy F (assuming constant temperature) or the total energy (assuming adiaba-
ticity). If one chemical species is present, the equilibrium conditions are [20]:

xm-4
where g3 is defined by equation (2). If the virial of the surface forces is a scalar, a

pressure difference can again be defined on both sides of the surface and the
shape at equilibrium is governed by:

-77 const. (10)
n

Another Laplace type law can be written: p' — pf 2 (£ö g3A3/Xß hßaß). These
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relations are not restricted to isotropic crystals but are valid for any faceted crystal
characterized by a scalar form of the virial. This is the case, for example [19], if
the surface forces are perpendicular to the edges, for any direction, and if all
planes having the same value g3 are distributed ('g symmetry') according to
Y-n Aßaßaß const. S£j where a3 are the direction cosines of the normal to these
ß faces. Any regular polyhedron of cubic structure with g [111]^ g [100] satisfies
the 'g-symmetry' and thus the equilibrium shape is described by equation (10).

In the more general case of several chemical species, a partial mechanical
equilibrium is obtained [20] if the surface forces are, as before, perpendicular to
the edges for any direction and if the surface increase is due to the deformations
only: dAB dA*3. A similar discussion leads to the equilibrium shape given by
equation (10). In this case, however, dm] and dml have a zero value and the
equality of the chemical potentials is not necessary for the validity of equation
(10).

All the equilibrium states described here are characterized by — (dUc/dVß)oT
-(dFß/dVß) independent of ß which means that the deformations due to the
presence of the surface are homogeneous. This is confirmed by experiments
measuring the lattice contraction directly or indirectly [13, 15,16]. The concept of
effective pressure is phenomenological but does not correspond to a real physical
pressure except in the case of isotropical systems and near the surfaces in the case
of 'g-symmetry'. For example Solliard [27] has measured at room temperature,
using electron diffraction, the lattice contraction of small Gold particles. The
measurements verify a Laplace type law with an average value of the g3 equal to
g Œ0g3A3/X0A3) 3.1N/m. For the same type of Gold particles, Buffat [5]
has determined the surface tension coefficient y near fusion, 7= 1.38 N/m which
leads to 7 1.84 N/m at room temperature using the Eötvös coefficient dy/dT
-4.41 10 4J/m2K [5J. Thus, the contribution A(d7/dA) has a value of order of
1.2 N/m in this case which shows that the surface is in a state of extension. In the
case of silver particles of approximately 55 Â diameter [28], the lattice contraction

also follows a Laplace type law with g 2.8 N/m. Piuz et al. [29], from vapor
pressure measurements as a function of size, have deduced at 567°C the value of
the surface tension coefficient 7 =1.4 N/m. Taking into account the Eötvös
coefficient dy/dT= — 4.5 10~4 J/m2 K, the value of 7 at room temperature is

7 =1.6 N/m. Again the average value for A(ô7/3A) is of order of 1.2 N/m
corresponding to a state of extension of the surface. These results can be
explained taking into account the MTP structure [3, 4]. In these structures all the
faces are [111], have the same area and are distributed symmetrically. The total
virial of the surface is scalar and relations (10) are verified for the external forces.
Therefore, at equilibrium, one gets dFc/dVß const, independent of ß and,
accordingly, the elastic deformation of the crystal lattice necessary to allow the
junction between the tetrahedra is uniform. The surface is in a state of large
extension estimated to be 5% [27]. In the case of Platinum, normal fcc monocrystalline

structure are observed down to approximately 30 Â [27]. The experimental
results are interpreted in terms of a value of g slightly higher than 7 which
indicates that the surface is in a weak state of extension. Using a moire fringe
method, Woltersdorf et al. [14] have measured Aluminium particles of 200 Â and
100 Â. Again, their conclusion is that the surface is in a state of extension. These
examples show clearly the difference between surface stress and surface tension,
the latter characterizing the total thermodynamical equilibrium state only.
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in. Thermodynamical size effect

The chemical potential of a particle varies with its size. In order to study this
effect, we have shown [30, 5] that, if the shape of the crystal follows the Curie
Wulff relations, then the chemical potential can easily be expanded in a power
series. Introducing the concept of equivalent pressure given by equation (8) one
gets:

p(T, p) p(Tu, Po)+!*p (T- TiXj1 (pex. +~ P")

Jd2p 2 laV/ 27 V
+ 2dT2{T-T"] +2dV2\P-'+h-p")

+ - ^(pe„+Y-Po)(T-T0)+--- (11)
dpôT

The partial derivatives of the chemical potential can be expressed using the
phenomenological equation valid in the volumic phases

-Vdpe_ + SdT+md(x 0 (12)

and the following phenomenological relations

isothermal compressibility

linear expansion coef.

specific heat at constant pressure Cp

latent heat of fusion

where the indices L and S characterize the liquid and the solid states respectively
and s S/m the massic density of entropy. The expression for the chemical
potential is then:

H(T, p) n(T0, Po) - s(T- T0) + - (pext +-^- p0) -Q (T- T0)2 -

-^(pex,+Y"Pn) +~(p«.+Y"Po)(T"To) + '"- (13)

To first order, this equation becomes

fx(T,p)=M,(T0,p0)-s(T-T0) +^+^^^ (13b.s)
ph p

If Pcxi Po: equation (13) can be written in a more condensed form, always to

1 dp
x

Pop
1 dp

a 3dT

t as dS

'~mdT~ dT

L=-(SL-Ss) T(sL-
m

-Ss)
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second order approximation:

p.(T,p) p-(T0,p0)-s(T-T0)+ ll -~r(T-T0)2 +
p(h + h0) 2T0

+jih)(T-T°)+--- (14)

where

h0=yx (15)

This quantity is often very small (<1 Â in the case of Au or Ag).

The fusion of small free particles

We assume here that, at the melting point, solid and liquid particles having
the same mass exist simultaneously and are in equilibrium with the vapor phase
(subscript g). The particles do not interact with the sample holder (see Fig. 2).

The fusion criterion is the chemical equilibrium

Ps M-l M-R (16)

Figure 3 shows the phenomenon of fusion in the case of small particles. In this
representation, the value of ss is zero and the value of sL is therefore equal to
L/T0. Naturally the reference temperature T0 is taken as the fusion temperature
of the bulk. If the vapor phase is a perfect gas, then the chemical potential follows
the relation p,K pa> + (RT/M) Log (p/pJ). With first order approximations for p,s

and pL, the equilibrium is characterized by a Gibbs-Thomson law:

P(W-P-mexp(^)i (17)

According to this equation liquid and solid particles with the same mass should
have the same vapor pressure. This law has been verified experimentally by Piuz
[29] in the case of silver particles of order of 100 Â. The values found for 7S are
in good agreement with those measured in the case of bulk samples.

Buffat et al. [5] have solved equation (16) ps p.L in the case of gold using
the expression of the chemical potential (13) including the second order terms.
Figure 4 shows both the result of the calculation and the experimental results of
Buffat [5] and Sambles [6,7],

Good agreement is found between experimental results and the calculations

oo • O o • o
7-
L s

Figure 2
Chemical equilibrium between solid particles, liquid particles and vapor.
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Pg(T,P) -

T.-TL^
Solid Liquid

Particles
H.IT..P.

Particles

1 1

Figure 3

Chemical potentials according to equation (14) of solid and liquid particles as a function of the inverse
of the radius hs of the solid particles and at a given temperature T<T,y (ss has been taken as zero).

showing that phenomenological thermodynamics is capable of very good prediction
down to astonishingly small sizes. If only the first order approximation is

considered, the resolution of equation (16) is easy and the result is given by
Pawlov's relation:

Tp-T
T, psLhs L s L

\pL / J (18)

This phenomenological equation predicts that the particles should be in a liquid
state at any temperature if their size is smaller than a critical value.

ht

1300

1000 _

500 _

300

2-\ erTita

i T °K

m. p. bulk .-ta¬

so 100 150 200 DA

(19)

Figure 4

Experimental and theoretical values of the melting point temperature of gold particles.
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If second order terms h0L xLy, and h0s xsys are added, one gets:

K^^r[ys-yL(—)2/3]-h0s (20)

where h0L and h0s have been assumed to verify the relation h0L=h0s(pJpl)il3' in
order to simplify the expression.

In the case of Au and most of the metals, hcs is found to be of the order of
1 Â. Indeed, thermodynamics does not apply for such sizes. This means that at
low temperature, the particles keep an ordered structure down to very small
clusters of atoms.

At first sight, substances characterized by larger values of hLs may exist.
Friedel [31] has pointed out that this remark could explain the existence of an
'amorphous' phase in the case of small clusters, such a phase has been reported by
Farges [32] in the case of Argon.

A good knowledge of certain phenomenological coefficients is very important
in order to choose the substances that could show remarkable size effects.
Unfortunately a certain lack of precise experimental results exists in this field;
especially concerning the surface tension of solid and liquid phases, which
constitutes undoubtedly a difficulty in the pursuit of investigations.

The fusion of small particle embedded in a solid matrix

Small particles embedded in a solid matrix can be prepared by following
many different experimental procedures.

For example the X or UV irradiation of ionic crystals followed by appropriate

heat treatments can precipitate point defects in the lattice and consequently
produce small particles [38]. In such a case, the results obtained in the previous
section are valid only if the solid or liquid particles can be considered as free
inside a cavity. If not, interactions with the matrix must be introduced with the
following main consequences: i) surface tensions 7S and yL must be replaced by
interfacial tensions 7sM and yLM where the indice M stands for matrix, ii) an
external pressure pex, must be eventually introduced in order to take into account
the pressure applied to the particles by the matrix.

Here we will assume that a 'membrane equilibrium' [33] exists across the
matrix and, consequently, that the equilibrium is described as before by the
equality of the chemical potentials of the solid and liquid particles of same mass.
To first order approximation for p:

fis p(T0,p0)-Ss(T-T0) +^+^^PoPshs
PS^ (21)

p,L p.(T0, p0)-sL(T-T0) + —— +
PX Pl

A generalized Pawlow equation is obtained, neglecting the vapor pressure p0:

^XXXT'Ri---} (22)
T0 Lpshs L \pL I J L L ps Pl J

As an example, the following case can be considered: the solid fills exactly and
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- i

T.-T

50

40

nm

Figure 5

Representation of (T0- T(hs))/T0 as a function of the size /i. in the case of Na particles. The solid line
corresponds to the prediction of equation (18) with the values of the parameters mentioned in the text.The line corresponds to the best fit for the experimental values measured in a NaN, matrix.

without stress a cavity in a rigid matrix and therefore, the fusion is characterized
by constant volume. In such a case, pexts =0 and pex,L (l/xL)(ps-pL/Ps) where
the values of the volumic masses are here those of the free phases In the case of
Sodium and near T0, p, =0.9552 x 103 kg/m3, Ps 0.9275 x 103 kg/m3 and x
1.9 x 10 ,0 m2/N [34, 37] which leads to pexti 1.5 x 108 N/m2. This value exceeds
by far the limit of elasticity of any matrix and thus pexti must be smaller.

The fusion of Na particles in a matrix of NaN3 has'been observed using the
conduction electron spin resonance technique (CESR). When the temperature
increases, the linewidth increases and, at the fusion, a discontinuity is observed
[35, 36]. The fusion temperature has been found experimentally (Fig. 5) to follow
a T0/(T0-T) ahs law rather than a TJ(T0-T) - ahJO - abhs) where

b
1 Pext,

L pL
and

Eps 1

[tsm-7Lm(^)/]
As a consequence, the pressure excited by the matrix on the particles appears to
be zero. The value of the coefficient [ysm-Ylm(ps/tl)2/3] deduced from this
experiment is -10 N/m. Using the values of ys 0.290 N/m and 7,=0.202 N/m generally accepted in the literature [34, 37] a value of ~10_1 is found.
This result indicates that 7SM is only slightly higher than yLM which is reasonable
considering that the preparation procedures of the Na particles involves a heat
treatment at temperature above the fusion point of the metal.
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