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Dynamics of commensurate and incommensu-
rate vortex phases in a two-dimensional super-
conductor

By P. Martinoli, H. Beck, G. A. Racine, F. Patthey and Ch.
Leemann, Institut de Physique, Université de Neuchatel, CH-
2000 Neuchatel, Switzerland

(19. X. 1984)

In honor of Emanuel Mooser’s 60th birthday

Abstract. A study of the complex vortex response at radio-frequencies of superconducting films
with periodically modulated thickness is reported. In this system, depending on vortex density and
temperature, the two-dimensional vortex lattice undergoes a transition from a commensurate (C)
phase in registry with the film periodicity to an incommensurate (I) phase. The Cl-transition is
triggered by soliton excitations which, at low temperature, form a one-dimensional superlattice in the
I-phase. Structures emerging at well defined vortex densities in both the real and imaginary parts of
the rf vortex response are interpreted as a signature of the Cl-transition. A theoretical calculation of
the vortex response based on the dynamics of an elastic dissipative vortex continum with discommen-
surations provides a good qualitative description of the rf-signals observed at low temperatures. It is
shown that the mechanism responsible for the occurrence of the structures at the Cl-transition is the
break of translational symmetry caused by the formation of the soliton superlattice.

I. Introduction

Modulated structures whose period is incommensurable with that of the
underlying lattice have been discovered and studied in a variety of condensed-
matter systems [1]. They are usually observed in systems showing two competing
periodicities as, for instance, rare-gas monolayers adsorbed at the surface of a
solid, crystals with two interpenetrating incommensurate sublattices, metallic
conductors undergoing a Peierls transition leading to the formation of a charge
density wave and helical or sinusoidal magnetic structures incommensurable with
the crystal lattice in certain rare-earth compounds. Moreover, the very existence
of commensurate (C) and incommensurate (I) phases has also been demonstrated
for a two-dimensional (2D) lattice of vortices in thin superconducting films whose
thickness is periodically modulated in one direction [2-7]. In this paper we show
how some of the features characterizing the CI-phase transition of the 2D vortex
crystal in modulated layers can be seen in a study of the dynamic response of the
vortices to a small rf driving field.

The phase diagram of 2D crystals exposed to a periodic 1D force field has
been studied by Pokrovsky and Talapov [8] and by Martinoli et al. [7]. At low
temperatures, where melting phenomena driven by the unbinding of thermally
excited dislocation pairs [9-11] are expected to be irrelevant, it is determined by
considering only one particular type of topological excitations, called solitons (or
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discommensurations), which trigger the instability of a C-phase with respect to an
I-phase. The I-phase is characterized by a 1D soliton superlattice, of period P,
varying, for the incompressible lattice of vortices, under an angle 45° with
respect to g,, the wave vector of the 1D thickness modulation. For an infinite 2D
vortex crystal at T=0 a Cl-phase transition, at which P diverges, occurs
whenever the deviations from a configuration g, = g,.. corresponding to perfect
matching (g,,, iS a reciprocal vortex lattice vector) are such that the mismatch
parameter 8 = 1 —(g,../q,) reaches the critical value 8. = (2/7)(A/n)""?, where A is
the amplitude of the cosine pinning potential and w the shear modulus [12] of the
vortex lattice.

To study the dynamic response of the pinned vortex medium, we rely on a
modified version of the two-coil technique devised by Fiory and Hebard [13].
With the vortex crystal in a C-phase, this method does not excite transverse
modes of an infinite lattice. In such a phase coupling to lattice shear modes only
arises from the finite size of the sample, from Umklapp (U)-processes and/or from
residual random pinning. In a I-phase, on the other hand, the 1D periodic
sequence of solitons breaks the translational symmetry of the vortex lattice,
thereby allowing intrinsic coupling of the oscillating driving field to transverse
modes of the soliton superlattice. Thus, pronounced structures reflecting the
occurrence of the Cl-phase transition at § =&, are expected in the rf complex
vortex response of thickness modulated layers as the transverse magnetic field B
(and, consequently, &) is swept across the value, B,,,, defining a configuration of
perfect matching (6 =0) [5,7]. The detection of these structures (Section II) as
well as their theoretical interpretation (Section IV) in terms of a model for the
dynamics of the 2D vortex medium in its different phases (Section III) are the
central object of the present paper.

I1. Experimental results

The experiments were performed on a thickness modulated (A,=2m/q,=
0.73 wm) granular Al-film [2, 7] with a BCS-transition temperature, T., of 2.05 K,
a normal-state sheet resistance, R, ), of 25 (), an average thickness, d, of 500 A
and a relative thickness modulation, Ad/d, of the order of 10%. As shown in Fig.
1, excitation of the vortex medium was provided by two elongated rectangular
(20 mm X 1.8 mm) coils, D, and D, placed at an average height, hp, of approxi-
mately 0.5 mm above the film surface and driven in opposition by a 5uA
rf-current, [,, of angular frequency w. With this coil configuration, the driving
‘Meissner’ sheet supercurrent density J,, flowing in that region of the film, located
between D, and D,, which significantly contributes to the rf-voltage detected by
the receive coil R (Fig. 1) is nearly unidirectional and parallel to the unit vector D
shown in Fig. 1. The square-shaped (4 mm X4 mm) receive coil R lies in a plane
perpendicular to the superconducting layer, the distance, hg, of closest approach
of its winding to the film surface being of the order of 0.1 mm. The rf-signal,
which was phase-sensitively detected against rf-drive, contains two contributions.
The first one, denoted by V, arises from the total sheet current density J flowing
in the modulated film. J is the sum of J,; and of the ‘vortex’ sheet current density
J, resulting from the oscillating motion of the vortices driven by J,, [14]. The
second one is the pick-up signal at R due to the rf-current circulating in D, and
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Figure 1
Geometry of the drive (D, and D,)-receive (R) coil configuration used to measure the rf-response of
commensurate and incommensurate vortex phases in a thickness-modulated superconducting film.

D,. In order to discriminate the genuine film response V against the spurious
film-independent pick-up, a low-frequency (~3 Hz) weak-field (AB ~ 0.1 gauss)
modulation technique was used. As a result, the actually detected signal at R
turns out to be proportional to dV/dB. Moreover, to study the angular depen-
dence of the rf-response, the orientation of the R-coil relative to D, and D, as
determined by the unit vectors R and D in Fig. 1, was changed and the whole coil
arrangement was rigidly rotated with respect to gy, which is assumed to be parallel
to the x-axis. We shall denote by («, 8) a coil configuration such that the driving
force on the vortices, F; = (¢o/c)(Jyy X Z2), provided by D, and D, is in the
a-direction while the orientation of the R-coil is such that it detects the response
arising from the projection of vortex motion along the B-direction.

Data taken at 3 MHz and at different temperatures are shown in Fig. 2 for
the (y, y)-coil configuration. Pronounced structures in both the in-phase and out-
of-phase components of 0V/0B emerge from a monotonically varying background
around B, = (v3/2)(do/A2) = 33.6 gauss, the field defining the fundamental match-
ing configuration (m =1, n =0) [5-7]. These structures, which are not resolved at
low temperatures (T'<1.7 K), show up at about 1.7 K and, after an initial growth
in strength with increasing temperature, gradually disappear at higher tempera-
tures. It should also be noticed that, although comparable in magnitude, the
imaginary part of the signal around B, is systematically larger than its real part.
Even though not so well-resolved as those shown in Fig. 2, structures reflecting
the Cl-phase transition of the 2D vortex lattice were observed also in the vicinity
of B,,; and B,,, the fields corresponding to higher-order matching configurations.

Signals corresponding to the (x, x)-coil configuration are shown in Fig. 3.
While similar in shape and magnitude to those of the (y, y)-configuration at low
temperatures [curve (d)], these structures are quite different from those shown in
Fig. 2 at high temperatures [curve (a)]. A striking feature emerging from these
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Magnetic field dependence of the complex vortex response of a thickness-modulated Al-film measurec
at 3 MHz with the (y, y)-coil configuration. Marks on the vertical axis denote the zero-level of the
signals.

data is the appearance, as T progressively rises, of a new signal which washes ouf
almost completely the (weak) structure assigned to the low-temperature CI-
transition in the real component and generates additional structure in the imagi-
nary part of dV/oB. The strong anisotropic character of the high-temperature
signals shows up quite clearly as the coils are progressively rotated form the
(y, y)-towards the (x, x)-configuration. While at low temperatures only minoi

(a):1.92 K T T ,

(b): 1.87 K

(c): 1.83K

(d): 1.80 K
W F (a) | —
£ la)| £
S =
: :
@ | (b) | b)] @
= )| =
E \/\/\()‘\/\/\ ‘ E
N (d) '\/\/\ldf h

.r\_-—/‘/.\/-‘ﬁ'_“—4

05 10 15 705 10 1S

REDUCED MAGNETIC FIELD B/B,——

Figure 3

As Fig. 2, but for the (x, x)-coil configuration.
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Magnetic field dependence of the low-temperature complex vortex response at 3 MHz for three
different coil configurations. The film is the same as in Fig. 2.

changes in the shape of the structures are observed (Fig. 4), profound modifica-
tions in the form of both components of dV/6B occur at higher temperatures (Fig.
5). Although the origin of the additional feature observed when the measuring
coils are in the (x, x)-configuration might well be related to the Cl-phase
transition of the 2D vortex crystal, the fact that it only shows up at high
temperatures indicates that it cannot be associated with the type of low-
temperature CI-transition described in this paper.
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IIl. Vortex dynamics

To study the dynamics of the vortex lattice in its various phases, we shall
focus our attention on situations where g, is close to one of the reciprocal vortex
lattice vectors g,,,. Furthermore, it is assumed that the periodic pinning potential
is weak when compared to the lattice stiffness, i.e. A<<u. Under this condition the
triangular vortex lattice can be treated as an isotropic 2D elastic continuum with
Lamé coefficients A and w [15]. Then, the equation of motion for the deformation
ﬁeld w of the dlsmpatlve 2D vortex medium driven by the oscillating force

=(B/c)(Jy % 2) in the pCI‘lOdlC potential U(¢), where ¢ =w, +6x is the
dlsplacement of the vortices, in the x-direction (Fig. 1), with respect to the bottom
of the corresponding potential wells, can be written in the form [15]:

oW 5, . ”

nE_:“V wW+A+w)VV - w—-V, U+ F,, (1)
where n = B?*/c*R4 is the viscosity coefficient [16] expressed in terms of the sheet
flux-flow resistance Rp. Since we are interested in the linear dynamlc response of
the vortex lattice to the driving force F;, it is convenient to write w in the form
w=w, +§ and to expand equation (1) to first order in the deviation § from the
static (equilibrium) deformation field w.. As shown in Ref. 7, for an infinite 2D
vortex crystal w, consists in a homogeneous area-conserving deformation in a
C-phase onto which a 1D soliton lattice is superposed in an I-phase. In Section
III(C) we shall show how the finite size of the sample can be accounted for by
allowing for the nucleation of boundary solitons in a C-phase [17]. Linearizing
equation (1) in the small dynamic displacement § one obtains the following
equation for vortex motion:

as n
at +Ls=F, (2)

where | is a 2x2 matrix operator whose components are given by:
ﬁ-aﬁ = _“Vz O —(A+ l-‘-)vavs + Qo U"(d)e)élns (3)

with ¢, = w,, +8x. Equation (2) is a linear inhomogeneous partial differential
equation, whose solutions §(7,t) can be expressed in terms of the normalized

eigenvectors ®x and of the eigenvalues E(K) of the operator L:
Ldy = E(K)Dy. (4)

iwt

Taking an e'-time dependence for FL, the w-Fourier component, §_(7), of $(7, t)
can be written as:

4 g2 (bg | Fr,)
) = Zm +E(K)¢K() (5)

where the scalar product is defined by:

flor=25 [(7 e ©)

L being the (linear) size of the sample, which is assumed to have a square shape.
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At this stage the problem is reduced to that of finding the eigenvectors &g and
eigenvalues E(K) of the operator L in the different phases assumed by the vortex
lattice. For the sake of simplicity, in the mathematical calculations it is convenient
to choose, instead of a cosine potential, a piece-wise parabolic periodic potential
such that U(¢.) = (1/2)k¢? in the interval —(Ay/2) <o, <(A,/2).

A. The commensurate (C) phase (6 <8,)

In the ground state of an infinite 2D vortex crystal in a C-phase (6 <§,) each
vortex of the lattice lies at the bottom of a potential well, i.e. ¢, =0 everywhere
[7]. As a consequence, the curvature U"(¢,) of the periodic potential experienced
by the vortices, which appears in the last term of equation (3), is a constant which
takes the value k for our particular choice of U(¢,). Then, for an incompressible
(A — ) lattice of vortices the solutions of equation (4) are plane waves of the
form:

() = &(K)e® T, )
where é,(IZ' ) is a polarization vector for transverse lattice deformation modes

[é.(K)- K =0] and the wave vector K is confined within the first Brillouin zone.
The corresponding eigenvalues are given by:

= K?

E(K)=p,K2+KK—;, (8)
where K, is the component of K along the y-direction, perpendicular to g,
shown in Fig. 1. As expected, for vortex motion perpendicular to the grooves of
the periodic potential, i.e. for shear modes such that K - g, =0, there is a gap, of
value k, in the dispersion relation (8) at K = 0.

B. The incommensurate (I) phase (6>6,)

The 1D soliton superlattice, which characterizes the ground state of the 2D
vortex crystal in the I-phase (8>8_.), is described by the ‘phase’ field ¢,, a
stair-shaped function [7] varying only along a direction u which, for the incom-
pressible vortex lattice, is found to form an angle of 45° with the x-axis (Fig. 1).
Since ¢, only depends on u and is such that ¢,(u+nP)=¢.(u)+nA,, the last
term of equation (3), which contains the curvature U"(¢,), is a periodic function
of u with period P: U"[¢,.(u +nP)]= U"[¢.(u)]. Anticipating external forces F;
which are almost spatially homogeneous (see Section I'V), this suggests to look for
solutions of equation (4) varying only along the wu-direction, i.e. of the form
3).‘:(_1').((1,«). It is then easily seen that, in the u—v reference frame of Fig. 1,
equation (4) takes the form of a (1D) matrix Schrodinger equation for the ‘spinor’
field ®x(u) describing the motion of a particle in the 1D periodic potential
U"[¢.(u)]. As a consequence, ®k(u) is a Bloch function of the form:

by (1) =V (u)e™, 9)

where Wi (u) is such that 'CI'IK(u+nP)=‘_I”K(u) and the Bloch wave vector K is
parallel to the u-direction. To find an explicit form of the eigenfunctions ®g(u),
we rely on our particular choice for U(¢,). In this case the static soliton solution
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¢.(u), in the limit A — oc, is given by [18]:

sinh e (u —nP) ]
+
sinheP2) "

where x(z) is such that x(z) =1 for —(P/2) <z <(P/2) and vanishes otherwise and
e =k/2u. The period P is related to the mismatch parameter & and, conse-
quently, to the magnetic field B by [18]:

) (£P12)

—=goth {ePl2) +—=———; 11

5, ot (ePl+ i Py (11)
where 8, = eA,/4v2. With ¢, (u) given by equation (10) one can casily show that
U"[@.(u)] yields a Kronig-Penney potential of the form:

¢e(u>=%2x<u—nm[ (10)

2K
U, (u)]= K——tanh (eP/2) Y. 8(u— nP). (12)
Since U"[¢.(u)] = k between the (negative) ‘spikes’ of the periodic potential (12),
we look, in these regions, for solutions of the form:

O (u) = dyge™ s+ bye *x (13)

which, after substitution in equation (4), lead to the following expression for
E(K):

E(K)Z%(K +2ukg). (14)

Relying on Bloch’s theorem, which requires that @ (u + P) = ¢'*F @, (u), one can
match at a ‘spike’ solutions corresponding to successive regions by imposing
continuity as in quantum mechanics [19]. For an incompressible lattice this
procedure leads to the following condition for kg:

sin (kg P)
kP

The dispersion relation E(K) resulting from equations (14) and (15) is shown in
Fig. 6, where the ‘acoustical’ branch located betwen —#/P and +7/P corresponds
to the so-called phason mode [20] of the soliton lattice.

It will be shown in Section IV that the relevant Bloch wave vectors K of our
experiments are the non-vanishing reciprocal vectors G of the 1D soliton super-
lattice [G =n(27/P)]. In this particular case and for the incompressible vortex

lattice ®(u) takes the simple form:

cos KP = cos (kg P)— ¢P tanh (eP/2) (15)

- 5 P
®(u) = Aé,(K) cos kc(u—i), (16)
where é (IE' ) is a polarization vector for transverse excitation modes of the 1D
soliton latt:ce ie. &(K)- K =0 with K parallel to the _u-axis (see Fig. 1), and k¢
is one (still unspemﬁed) solution of equation (15) for K=G (see Section IV for a

discussion of this point). The amplitude A is determined by the condition
(Dg ‘ Dy) = Skk':

sin (kGP)] "'.

A2:2[1+
kP

(17)
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Dispersion relation for the soliton lattice of an incommensurate vortex phase. Only even standing
waves, corresponding to points like A, contribute to the vortex response measured in our experiments.

C. Size effects

For a sample of finite size one should allow for the nucleation of soliton-like
topological excitations at the edges (boundary solitons) when the bulk of the
vortex lattice is in a C-phase [17]. The situation is schematically illustrated by Fig.
7, where, for the sake of simplicity, we have assumed that the orientation of our
square sample is such that its edges form an angle of +45° with the x-axis. Then,
boundary solitons will form at two opposite edges of the sample. As shown by Fig.
7(a), for P(8) <L the vortex lattice is in the I-phase. It is assumed that in this case
edge effects have negligible influence on the vortex dynamics, so that the
calculations for the infinite incommensurate crystal of Section III(B) still apply as
long as P(8)<L. For & <§,, where §, is such that P(8,) = L, soliton nucleation is
possible only at two opposite boundaries of the sample, the bulk of the vortex
lattice being in a C-phase. For & = §, [Fig. 7(b)], i.e. P(8,) = L, one single soliton,
having precisely the same features as those studied in the previous subsection,
exactly fits into the sample. Thus, its amplitude at the edges, as deduced from
equation (10), is ¢.(L/2) = —¢.(—L/2) = Ay/2. For P(8)>L, i.e. 8§ <§,, the size L
is too small for the system to be able to accommodate a ‘complete’ soliton, i.e. a
soliton for which the ‘phase’ jump ¢,.(L/2)—¢.(—L/2) amounts to A,. As a
consequence, the soliton amplitude at the edges decreases as & is progressively
reduced below &, and finally vanishes for §=0 [Fig. 7(c)]. An obvious
phenomenological way to take into account this effect is to write the soliton
amplitude at the boundaries as ¢,(L/2)=—d¢.(—L/2)=(A,/2)(6/8,)", where the
(positive) exponent y turns out to be equal to 1 if one applies the result of Ref. 17
to our piece-wise parabolic potential. To study the dynamics of superconducting
vortices in a C-phase with boundary solitons [P(8)> L], it is convenient to impose
again periodic boundary conditions to equation (4) by requiring that ®x(u+L)=
e ®g(u). The problem is then formally identical to that solved in Section III(B),
the (fixed) periodicity, however, being now L rather than P(8). For our particular
choice of U(¢,) the above expression for the soliton amplitude at the boundaries
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Figure 7
Solitons in a sample of finite size: (a) Incommensurate (striped) phase; (b) Commensurate phase
showing boundary solitons with full amplitude at the edges; (c) Commensurate phase with boundary
solitons of reduced edge amplitude.

suggests a Kronig-Penney potential of the form (for 6 <4,):

U (u)]= K —2?" (8/8,)” tanh (¢L/2) Y, 8(u—nL). (18)

From equation (12), which is valid for P(8)<L (8§ =§,), and equation (18), which
applies for P(8)=L (6=<§,), it is seen that the I-phase and the C-phase with
boundary solitons are correctly matched at & = §,, where P(8,) = L. It is also clear
that, with U"[¢,(u)] given by equation (18), equations (14)—(17) of the previous
subsection still apply when P(8) > L with the prescription, however, of replacing F
by L everywhere and with an additional factor (8/8,)Y in the last tcrm of cquation
(15).

What is the appropriate size L in real films? To answer this nontrivial
question, we notice that the granular structure of the modulated Al-films used in
our experiments represents a dense system of randomly distributed weak pinning
centers acting on the vortices. Under these circumstances long-range positional
order no longer exists in the vortex medium. An almost periodic vortex lattice
only occurs within domains whose size is determined by the Larkin-Ovchinnikov
correlation length R. [21], which is typically of the order of 10-50 lattice
constants [22]. Therefore, we expect the appropriate L for our films to be
approximately of the order of R. and, consequently, much smaller than the actual
sample size.

IV. The rf vortex response

Relying on the vortex dynamics studied in the previous Section, we shall now
derive a theoretical expression for the rf-signal V generated in the receive coil R
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by the sheet current density J(F, t)=fM(F, t)+fU(F, t) flowing in a thickness-
modulated film in response to the rf-excitation provided by the drive coils D; and
D, (see Section II and Fig. 1).

We consider a very thin superconducting film, such that d « A, where A is the
temperature dependent penetration depth. Under this condition, the supercon-
ducting layer is truly two-dimensional and can be thought of as being confined to
a plane which, for convenience, is assumed to be the z =0-plane. The ‘usual’
current density (7, z, t) is then related to the ‘sheet’ current density J(7, t) simply
by ] = S(Z)J To calculate the rf-response V, we consider the vector potential
variation 8A (7, z, t) = A(F, z, t)— A,(F, z, t) due to J(r t), A and A, being, respec-
tively, the (total) vector potential generated by J and j, (the current density
associated wx;h the rf-current I, circulating in D, and D) and the vector potential
created by j, alone. Then, if the driving frequency, /2w, is not too high,
A(F, z, t) satisfies, in all space, Maxwell’s equation:

- 4 - o
VxVxA :7" [8(2)T +7.], (19)

while, within the 2D superconducting film, J obeys London’s equation’ [23]:
- C -

JzzwAﬁi—AL (20)

where A =2A?%/d is the effective penetration depth for 2D superconductors The
2D “fluxoid’ field ®(7, t) describes vortex excitations at 7 = F;(t) and satisfies the
equation [23]:

VX®=¢OZSG—ﬁy (21)

By means of the Fourier-transform method first applied by Pearl [23] to a similar
problem, equations (19) and (20) can be solved for the §-Fourier component,
8A(q, z, 1), of 8A(F, z, t) giving:

8A(d, 2,1 =[G 0~ A, 0, 0] 5 c

—qlz|
1+gqA°

where A,(G, 0, t) is related to ]a(q, 4., t), the 3D Fourier transform of [,(F, z, t),
by [23]

- 27 o .
A.@3,0,1) ~ 5 ja(d, g. = —ig, 1). (23)

(22)

The Fourier component of the Meissner sheet current density is easily obtained
from equations (19) and (20) by setting =0 [23]:

— ja(d, q. = —ig, 1)
JM(qa I)=_~ 1+ A .

As it clearly results from equation (21), which contams the vortex positions {r;(t)},
the vortex dynamics enters the expresion (22) for SA(q, z, t) through ®(g, t) which
is easily deduced from equation (21) if one notices that, as required by current
continuity, V - =0:

- ax 3 N
(g, 1) = ido : Dy i, (25)
1 i

(24)
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Writing 7(t) in the form 7(t) = F,, + §(¥,, t), equation (25) can now be linearized in
the small oscillating dlsplacement §(,, t) of the vortex j about its static equilib-
rium position 7,. Then, assuming again an e'-time dependence for all 1 fields and
combining equations (22)-(25), the ( w)-Fourier component, SE (g, z)=
—(iw/c) 8A.. (4, z), of the electric field 8E(r z,t) generated by J(r t) can be
written in the form:

eﬂ]lll
5E. (3, z)=—
8B4, 2)= T %

1+gA

| Z R @) oLl L@ ] 20
where L, =2mA/c? is the sheet kinetic inductance. The first term on the right-
hand side of equation (26) is the contribution to 8E (g, z) due to the osc1llatmg
motion of the vertices. Thus, R,.;(q’, G) is the ¢ vortex response function’ in which
we are primarily interested here. Using equation (5) for §,(F,) in the linearized
equation for ®,(q), it is readily shown that:

. ..o Ro i, iowr(K) .
Roos(@ @)= (@x Doz Lo % Lo mp(d - BudFo)]

Xzeﬁ'f DE(F)]s, 27)

where 7(K) = nE (K) is the relaxation time for the mode of wave vector K and N
the total number of vortices in the superconducting film. The last term in equation
(26) is the purely inductive contribution to SE (g, z) associated with the Meissner
response of the superconducting film to the tf-excitation. For weak magnetic fields
this term is independent of B and, consequently, it does not contribute to the
aV/aB -signal measured in our experiments. Notice that, using equation (24),

(g, 2) can alternatively be expressed in terms of }m., (g, g. = —iq) rather than of
Ine (G).

In the following we shall discuss the rf-response of the 2D vortex crystal in

the different phases it can assume on the periodic substrate.

A. The commensurate (C) phase

With the vortex crystal in a C-phase, the eigenvectors &)K(F}e) appearing in
equation (27) are given by equation (7) and, moreover, the {f.} form a set of
lattice vectors. Then, from equation (27) it immediately follows:
iwr(K)

R 3)=R z e
e (@5 ) = Re(d Do L7

x[q - ét(K)][zXe.(K)]eA(K'—é) AK-q), (28)

where the Peierls symbol A(p) is such that A(p)=1 if p=g,,. and vanishes
otherwise. From equation (28) it is readily seen that only U-processes contribute
to the sum over K, the scalar product in equatlon (28) vamshmg for K = . Their
contribution to the rf-voltage V, however, is vanishingly small, since, as it follows
by considering the exponential factor e_"“ﬂ (where hg »a) resulting from the
integration of equation (26) over the turns of the receive coil R, the relevant
g-vectors of our experiments are such that ghg <1 and are therefore confined to
the first Brillouin zone (qa « 1). Thus, we can conclude that dV/dB =0 for an
infinite ideal vortex crystal in a C-phase.
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B. The incommensurate (I) phase — Size effects

In an I-phase the eigenvectors ®y are given by equation (9). Moreover, F,
can be written in the form 7, = ”,0+w,e, where 7, is a lattice vector of the
undistorted triangular vortex lattlce and w,, is the periodic [period P(8)] trans-
verse (W, - K= 0) deformation field associated with the static 1D soliton superlat—
tice. If one assumes that w,, varies slowly with the position of the vortex j, the
sums over j and ! in equation (27) can be replaced by integrals over a smooth
density of lattice points. Then, a straightforward calculation leads to the following
expression for the vortex response function:

—_— jwr(K . - .
R (@)= Ref@ 9. T 1o (- (RN % 4R,
x 2 T(GIVUG) kg6 dka—c: (29)

where ‘-I"K(G) is the G-Fourier component of the ‘wave function’ ‘-I:'K(u), of period
P, appearing in equation (9). In our granular Al-films the correlation length R,

sets an upper limit to P (P<L = R_) which is therefore expected to be much less
than hg (P<« hg). Since, as shown in the previous subsection, only long-
wavelength Fourier components, such that ghg <1, are important in our experi-
ments, it follows that the relevant g-vectors are confined within the first Brillouin
zone of the 1D soliton superlattice (qP « 1). Then, by considering the sum over K
in equation (29), it is readlly seen that only U-processes in the reciprocal soliton
lattice, such that K=§—G and K=4 — G, contrlbute to R,.s(gG’, ). Further-
more, since qP « 1 and, consequently, q« G and q'«< G’ for the U-processes of
interest here, we can set K= G in equation (29), an approximation which, i
turn, implies g=q’'. Substituting the resulting diagonal vortex response funcuon
into equation (26) and mtegratmg SE (¥, z) over the turns of the receive coil R,
the rf-voltage V can be written in the form:

V,=C(T)Z'(w, B, T)I,,. (30)

In this expression the ‘impedance’ Z'(w, B, T) contains the vortex dynamics and is
given by:

in(G)

1+iwr(G)’ G1)

Z'(w, B, T) = R, . (D (w))?
G

where the sum is over all G excluding the G = 0-mode and the average of ®g(u),
which is given by equation (16) for a piece-wise parabolic potential U(¢,), is
taken over one period P of the soliton lattice. It is easily verified that only those
solutions, kg, of equation (15) which correspond to an even standing wave, i.e. to
points like A in Fig. 6, lead to a non-vanishing average of ®¢(u).

The temperature dependent factor C(T) describes the geometry of the drive
and receive coils as well as their orientation with respect to g,. If one assumes a
unidirectional Meissner sheet supercurrent density of the form JMw(q)
DXD(q)Iaw [see Section II, Fig. 1 and equation (24)], C(T) can be written as:

—gh,

e - = "
T+ qA(T) Xp (@) Xr(GT(G), (32)

C(T)= jdzq
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where Xp(q4) and Xg(4) are ‘circuit functions’ depending on the geometrical
properties of the drive and receive coils respectively. The factor I'(g) is given by
T@G)=(G-&)é - (ExD)][§-(2xR)] and therefore describes the angular depen-
dence of the vortex response [é, is perpendicular to the direction u of the 1D
soliton lattice (Fig. 1)]. It should be noticed that current continuity requires
d - Jno.(G) =0, a condition implying that § - D = 0 for the nearly unidirectional J
of our experiments.

Before proceeding to a qualitative analysis of the experimental data of
Section II in terms of the theoretical model studied in Sections III and IV, we
recall that the results of this subsection can be applied to a sample of finite size L
provided one replaces P by L when the vortex lattice in in a C-phase with
boundary solitons (Fig. 7). As shown in Section I1I(C), in granular films L is of the
order of R_, the Larkin-Ovchinnikov correlation length [21].

C. Comparisons with experiment and discussion

Let us first discuss the magnetic field and temperature dependence of the
structures observed in dV/oB about B,,. In this connection we notice that
gA(T)« 1 for the temperatures and q-values (ghg <1) of interest here and,
consequently, C(T) [equation (32)] becomes independent of temperature. {C(T)
depends on T only in a narrow temperature range close to T, where A(T)
diverges and, as a consequence, C(T) tends to zero as [1—(T/T.)]}. Then, as
shown by equation (30), the dependence of the rf-signals on B and T can be
simply deduced from numerical calculations of the vortex impedance Z’ [equation
(31)]. Three parameters enter such calculations: the sample size’ L, the ratio
Alu = (mel2qy)? [24] and the relaxation time 7, = n/qiA associated with over-
damped vortex motion in the periodic pinning potential. Thermal fluctuations of
the vortices are roughly taken into account by replacing A with Ag(T), the
‘renormalized’ strength of the pinning potential calculated in Ref. 7 using a
self-consistent harmonic approximation. Theoretical field derivatives of the nor-
malized impedance z'=Z'/R, as deduced from equation (31) using equation
(16) for ®(u), equation (15) for k¢, equation (11) for P[&(B)] and equation (14)
for 7(G)= n/E‘(G) are shown in Fig. 8 for a typical domain size (L = R. = 30A,)
and for values of Agx/w and wT,g corresponding to three different temperatures.
Comparison with the data in Fig. 2 shows good qualitative agreement for the field
dependence as well as for the relative magnitude of the real and imaginary parts
of the d V/aB-signal. As observed experimentally, the model correctly predicts, for
rising temperatures, a gradual decrease of the structures around B, followed by a
rapid degradation when T approaches the ‘locking-unlocking’ temperature T,
[7], above which the vortex lattice no longer feels the periodic pinning structure
[AR(T ) =0]. At very low temperatures (T —0), Ag/n and wt,r become
independent of T and, as a consequence, the structures in dV/dB reach their
maximum amplitude. This is in striking contrast with the complete absence of
structures in the rf-data taken at temperatures below ~1.7 K. This behaviour
might be due to the growing (relative) importance of random pinning effects with
decreasing temperatures. Further work is needed, however, in order to assess the
validity of this conjecture.

To discuss the low-temperature angular dependence of the rf-signals (Fig. 4),
we must consider the I'(§)-factor in equation (32). In this connection, we first
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Figure 8
Theoretical field derivatives of the normalized vortex impedance z'=Z'/R4 calculated from
equation (31) for three different temperatures. b is the reduced magnetic field B/B,,,.

notice that all the experimental data presented in this paper were obtained with a
drive-receive coil configuration such that D//R (Fig. 1). As discussed in Section
ITI(C), in granular Al-films the vortex lattice is expected to break up into a large
number of uncorrelated domains. For the sake of illustration, we first consider the
rather unlikely situation in which the soliton lattice is supposed to have the same
orientation, say at +45° with respect to ¢, (the u-direction in Fig. 1), in all
domains. In this case I'(q) has the same value for both the (x, x)- and the
(y, y)-configurations: I',, =T',, = 1/2 For the (x +y, x +y)-configuration we dis-
tinguish two cases: (i) D (and R) parallel to the soliton lattice, for which
Iy iyxsy =1 and (ii) D (and R) perpendicular to the soliton lattice, for which
[, yx:y=0. This strongly anisotropic behaviour of the low-temperature dynamic
vortex response was not observed in our experiments. On the other hand, if one
assumes that the vortex crystal breaks up into uncorrelated domains in which the
orientation of the solitons randomly changes from +45° to —45° with respect to
do, a simple averaging procedure, which assumes an equal number of domains for
the two possible orientations, leads to (I'(g)=T,, =T, =T,y .+y=1/2. This
reasonably agrees with the nearly isotropic rf-response observed at low tempera-
tures (Fig. 4), a result providing convincing evidence for a multidomain structure
with solitons randomly oriented at +£45° with respect to the thickness modulation.

At high temperatures, where a new strongly anisotropic signal shows up in
the rf-data (Figs. 3 and 5), our model fails in describing the dynamic vortex
response. This might be due to the formation of liquid-like domains in a
temperature range which is above the 2D melting temperature [9-11]. Calcula-
tions of the dynamic response in such a régime will be done in the near future.
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