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INTRODUCTION TO THE MEASURABLE QUANTITIES OF NMR

J.J. van der Klink

Institut de Physique Expérimentale, Ecole Polytechnique Fédérale de
Lausanne, PHB-Ecublens, CH-1015 Lausanne, Switzerland.

A summary introduction is given to most of the terms in the general
nuclear spin Hamiltonian and to how their measurable effects on NMR spectrum
and relaxation contain information on the microscopic properties, both static

and dynamic, of the nuclear surroundings.

1. Introduction

_ This paper attempts to summarize how the wealth of phenomena that can
be studied by nuclear magnetic resonance techniques arises from the differences
in symmetry of only a few terms in a nuclear spin Hamiltonian. It does not deal
with experimental considerations. To give here a full derivation of all rele-
vant equations is of course both impossible and unnecessary : several excellent
books on the subjet exist. Instead, the key results are presented and their
relationships discussed in a rather general and formal framework. The actual
applications of these theories to problems in solid state physics and mate-
rials science will be shown in other contributions to this series : in this
paper very few specific results will be dealt with. Its main purpose is to
provide a quick reference for concepts used in the following papers. Readers
who want to obtain a deeper understanding should consult one of the monographs

(cited in the references) that have been used in preparing this text.
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2. The Nuclear Operators and the Nuclear Spin Hamiltonian [1,2]

Most elements of the periodic table have at least one isotope that
in its ground state has a nonzero total nuclear angular momentum 1 (usually
named 'the" spin of the nucleus, although it is composed of spin and angular
momentum operators of the constituent nucleons). Since parity is well-defined,
the multipole expansion of the nuclear charge distribution contains only odd
electric multipoles and only even magnetic multipoles. According to the Wigner-
Eckart theorem, the only multipoles that can have nonzero matrix elements are
of order £ £ 2 I. Therefore, in addition to the £ = 0 polnt charge, nuclei of
spin one-half (e.g. 1H, 130, 31P, 195Pt) can only have a magnetic dipole
moment ﬁ; those of spin » 1 can have an electric quadrupole moment ;3; for
I > 3/2 the magnetic octupole is possible, and so on. It turns out that the
only moments of importance in NMR are those with £ = 1 and £ = 2 : the higher
ones can always be neglected (and the £ = 0 part does not give different coup-
lings for different spin substates). To establish the relation between f, ﬁ
and 53 we need the spherical tensors I, with £ =1 and = 2 and where m runs

£m

from - £ to + L. As an example we have for I1m 3

1
=7 = ¥ + 1
Ilil * 3 2 (Ix =t Iy)

(1)

s o P
The Wigner—-Eckart theorem now says that p is proportional to I. . By conven-

1m
tion, the proportionality constant is denoted Yf and Yy is called the gyro-

magnetic ratio. Similarly, ;3 is proportional to I, , and the conventional nota-

2m
tion for the proportionality constant is eQ/I (21-1) where now eQ 1is called
"the" quadrupole moment of the nucleus.

Basically, a magnetic resonance experiment observes <ij> (or more
precisely : its component perpendicular to the Zeeman field), but since T, ﬁ
and éa are tied together, <i:> is influenced not only by purely magnetic
couplings with a field B of the form §>'§, but also by couplings T3 to
another angular momentum J and by couplings to an electric field gradient v
of form ;3:’?. It is therefore useful to write all interactions as "spin"
interactions, using the representations of the nﬁclear operators given above.

Neglecting for the moment the "external" part of the nuclear spin Hamiltonian,
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due to the externally applied static and rf magnetic fields, the following

terms can be important in an NMR experiment

1) The shielding (''chemical shift" or "Knight shift'") Hamiltonian }{S . The
physical origins for chemical and Knight shifts are slightly different, but

both modify the magnetic field at the site of the nucleus and can be written

> = >
X, =hyIL-S-B (2)

-
where S 1is a tensor of rank two, characteristic for the nuclear site.

2) The quadrupolar Hamiltonian }(Q. Just as a magnetic dipole 1s aligned by a
magnetic field, an electrical quadrupole is aligned by an electric field
gradient. But while a magnetic field B can be represented as a vector, the
electric field gradient V is a second-rank tensor : its Cartesian elements

ny are the second partial derivatives of the electric potential :

-0 - F. P71
h)—(Q “sizi-p 'Vl (3)

3) The spin-rotation Hamiltonian.}(R . This describes the coupling of the

- + - . —>
nuclear spins I in a molecule with the angular momentum J of the molecule :

> =
I-C

AXp=h -3 (4)

The mechanism is seldom important in NMR of solids, and will be neglected

in the following.

4) The dipolar Hamiltonian)'(D . Nuclear spins are well-localized and well sepa-
rated, and therefore their magnetic dipole coupling can be described clas-
sically (unlike the case of electrons). Contrary to the first three mecha-
nisms, that are described by single-spin Hamiltonians, the dipolar inter-

action couples every spin 1 in a sample with all other spins k:

BNy = T2y y Rl T T TN (5)
k

. >
where the cartesian representation of D has elements

3 =5 1 7
ap~2® lETg-3yCT GaB)

+ . .
and r 1s the vector from nucleus 1 to nucleus k.

oll
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5) The indirect spin-spin coupling Hamiltonian )-(J . In addition to the direct
dipolar coupling, there exists coupling between nuclei mediated by the elec-
trons. The physics is slightly different for insulators and metals (where
it is also called Rudermann-Kittel coupling) but its general form is simi-

lar for both cases
i +1 =3 k
’ﬁ)—(J=hZIl.Jlk'_f (6)
k

The general structure of all these Hamiltonians is

=

= CR:T )
where the C is some proportionality constant (like Yh for )-(S), K a tensor
reflecting microscopic properties of the surroundings of the nucleus under
study (like ? for )-(Q), and ? a dyadic constructed from two vectors, one
of which is always the nuclear spin vector and the other is one of the fol-
lowing : a magnetic field, for )-(S; the same spin, for }(Q; the molecular
angular momentum, for )-(R; a differegt spin, for )-(D and )-{J 2

All the properties of a solid, liquid or gaseous system that can be
studied by NMR are contained in the static and dynamic properties of the ten-
sors ? : their time-averaged values show up in shifts and splittings of the
resonance lines, and their time-variation in the nuclear spin relaxation times.
Typical examples are : the study of the conformation of proteins in solution
by probing )-(D and )-(J [:3] ; of structural phase transitions in ionic crystals
by )'(Q [_4] 3 of molecular geometry by )-(S [1] ; of properties of the electronic
structure in metals by X g and )'(J [5].

To discuss the general properties of the tensors ? it is convenient
to use their irreducible representation RR,m . From a general second-order
Cartesian tensor (with nine elements) one can form a zero-rank tensor (% = 0,
m = 0; an invariant, containing one element), a first-rank rensor (£ =1, m = 0,
*1; the antisymmetric part, containing three elements) plus a second-rank
tensor (£ = 2, m =0, *1, *2; the traceless symmetric part, containing five
elements). It can be shown that the effects of the antisymmetric part (if it
is not already zero by the nature of ?) can be neglected in magnetic resonance,
so that we are left with six independent components. These are conveniently

described by three values (denoted 0, §, n) in the principal axes system
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(PAS) of E, plus the three Euler angles (a, B, Y) that describe the orienta-
tion of the principal axes system with respect to some reference system (e.g.
the crystal axes). The definition of 0, §, n 1is chosen such that 0 measures
the isotropic part of the interaction (invariant under rotations), § measures
the biggest principal value (axial deviation from isotropy), and N the devia-
tion from cylindrical symmetry around the "biggest principal axis''. According
to the nature of the different internal Hamiltonians, one or two of these
parameters may be zero : the dipole-dipole coupling has no isotropic part
(its average over a sphere vanishes) and is symmetric around the dipole-dipole
vector; therefore its 0 and n are both zero. From Laplace's law it follows
that the isotropic part of the quadrupole coupling vanishes (0 = 0). In cubic
point symmetry its § and n vanish also; in tetragonal symmetry &§ is non-
zero (and called "the" field gradient by convention), and in lower symmetry
both § and n (called the asymmetry parameter) are nonzero. For reference,
the constants in the conventional representation of the components of ? in
the Hamiltonians are given in Table I, and the corresponding irreducible re-—
presentations of the tensors ? (cf. Eq. (7)) 1in Table II.

The NMR experiment (the observation of <ij>) is done in the labora-
tory axes system (LAB) rather than in the principal axes system. The compo-
nents of irreducible tensors in different axes systems are related by Wigner

. . L
rotation matrices Dmm. (o, B, Y), where a By are the Eulerangles to rotate one

Table I. Constants in the conventional representation of internal Hamiltonians.
(See Egqs. (7) and (9)).

Hamiltonian 6 o] 8 n
1) 2)
S
vh K, o cSS Ng
Q eQ/61 (21I-1) 0 eq n
ik, 2 -3
D 2y vy h 0 o 0
J h J 6J ny

1) Knight shift, in metals
2) chemical shift, in molecules
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Table II. Irreducible spin operators T (see Eq. (7)).

Hamiltonian Too T20 To4q To42
i 2 1 i
3 To %o /;Io %o 1% g
i\ 2 1 i\ 2 1.2 1 i
Q ah® | =[ah’-ab’] = hlrteini] | aly?
/6 VZ 0 -
D . . . - . .
ol ) I 1(1)‘ i [:I:llok +1 1:‘1] 19 1+k1
3 /& Tt == S
axis system into the other :
. %
Ry, (LAB) =m'i-9, Ry (PAS) D, (@, B,Y) (8)

3. Spectral Structure [1]

We will consider only the case where all "internal" Hamiltonians are
much smaller than the Zeeman Hamiltonian )(z, so that the spectra can be cal-
culated from first order perturbation theory, starting from the eigenfunctions
of ){z. We only retain those parts of the Tlm that have nonvanishing diagonal
elements < I,mz ITEml I,mz:>. (The approximation is often excellent in NMR,
but rarely so in EPR, where exact diagonalization has to be used in many
cases). In the case of }( and }( we need to distinguish the coupling between
"like'" spins Tt and IJ (that have the same Hamiltonians) and "unlike" spins
I and $. This restriction on the number of Thm considered is known as ''res-
triction to secular terms" or 'truncation of internal Hamiltonians'. The only
elements that survive are T,. and T20, as given in Table II.

00
Using the irreducible representations, the Hamiltonian (7) reduces to

)-'(=C<:rT00+C6(—-)35 [(3cos 8—1)-nsm29c052¢JT (9)

where 6 and ¢ are the polar angles of the magnetic field in the principal
axes system of the interaction considered. Note that )X, and therefore the

energy values, depends on five variables (of the six generally available)
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only : in the laboratory frame there is invariance under rotations around the
magnetic field and the Euler angle o disappears. Note also that the 6, ¢ -

angular dependence of the spectrum (when the Zeeman field is rotated with res-
pect to the crystal axes) is the same for all internal Hamiltonians. This does
not mean, of course, that the spectrum is the same for all Hint' In the basis

) mz> , with the frequency shifts of the NMR lines (w.r.t. YBO) given by

hy =< Lo X [Lm >-<Im-1|X [T;m-1> (10)

we see that )-(S gives one single line; )-~(Q gives 2I lines; and )—(D and )—(‘J
give (2I+1) or (2S+1) lines. Furthermore, the spectra are symmetric around

the frequency determined by CoT

00"
This implies that for half-integer spin under influence of )-(Q the
.y 1 . . . .
central transition (+E’ ——;—) is not shifted, at least in first order. In a
number of cases however, )-(Q is not very small compared to )-(z, and a second-

order treatment is necessary. Then the central transition is shifted as well,

with an angular variation different from that in Eq. (9); for n=0 it is

By & sntd [Geoss B-1) (11)

If the sample is in the form of a powder, rather than a single crys-
tal, each constituent crystallite has its own 0 and ¢, and the distribution
of crystallite axes is a random distribution on a sphere. The spectrum becomes
an average over O and ¢, weighed by the distribution. The mathematics can be
worked out exactly, but is rather long. As an example consider the case of
axial symmetry (n=0). Then we need only consider the variation of (3 cos2 6-1).
The extrema of this function are 2 (for 6=0) and -1 (for 6 = m/2), and the

probability to find a certain 6 is maximum for 6 =m/2 and minimum for 6= 0.

4. Nuclear Spin Relaxation [6,7]

In simple cases, nuclear spin relaxation is described by the famous

Bloch equations :
d< M(t)>

z —
dt Ty

<M (E)> =< M (®)>
2 z
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a< s <M (t)>

where T1 is called the longitudinal or spin-lattice relaxation, T, the trans-—
versal or spin-spin relaxation, the angular brackets denote expectation values,
and M the nuclear magnetization. In NMR of solids there are only few cases
where these equations can be derived from fundamental considerations.

To obtain spin-lattice relaxation we have to consider the coupling
between the pure spin-system ( }{z-r){rf) and the purely non-spin variables

(}(1attice 3
plings : in the form of Eq. (6) the tensors R depend on lattice variables

). All Hamiltonians ){intpresentedbefore are examples of such cou-

only and the tensors E? on spin variables only. The components of ){int that
are active in relaxation are those that are time-dependent and have zero time
average (the static parts give line shifts and spectral structure).

As a simplification, let the internal Hamiltonian, Eq. (6), be given
by a product of classical "lattice" functions R2m and quantum mechanical spin
operators sz (the classical approximation for the lattice is often suffi-
cient : the two typical exceptions being the electron-nucleus interaction in
metals, and the spin-phonon interaction in ionic solids). In that case, second-
order perturbation theory leads to the following equation for the relaxation

of the irreducible components Im‘ (see Eq. (1)) of the nuclear spin

a5 (13)
X JO < R2—m(t) Rzm(t-T)> exp llnwo'r dt

Here the < Rz_m(t) R, (t=-T1T) > 1is the autocorrelation function of the '"lattice

2m
motion'", caused e.g. by diffusion of the atom bearing the nucleus under consi-
deration. It is customary (but not always justified) to assume that all auto-
correlations are simple exponential decays, with characteristic time T, (the

correlation time). The spectral density ng(w) is the Fourier transform of

the autocorrelation function
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C
3 @) = <R, (0) R, (0)> —— (14)
Cc

In most cases where this kind of spectral density is found, it is
due to thermal motion, e.g. translational or rotational diffusion, where T,
is the average time between thermally activated jumps. Then T. can be well
described by an Arrhenius equation : TC = TO exp(Ea/kT), where Ea is called
the activation energy.

. . . 2 ..
If the motion is very rapid, (mw TC) << 1, (a condition known as

0
"extreme narrowing', because it diminishes the line width), the relaxation
equations become independent of the Larmor frequency, and (for most mechanisms)
the Bloch equations are obeyed.

Another condition under which simple spin-lattice relaxation curves
occur is the existence of a '"spin-temperature' during the relaxation (its
existence in equilibrium is assured by the coupling with the lattice). This is
a very useful general concept in NMR of solids, although it is hard to justify
on a priori grounds : it has rather the status of a postulate. It states that
after a disturbance such as a 7/2 pulse, the off-diagonal elements of the
density matrix vanish very rapidly (loosely speaking : T2 is very short) while
the relative values of the diagonal elements can be described by a time-depen-—
dent temperature TS , higher than that of the lattice TL. This forces a cer-
tain structure on the part of the density matrix that describes the lattice
pps at all times, and it is found that (TS--TL)-1 relaxes exponentially : its
time constant is Tl.

The spin-lattice relaxation rates essentially probe the spectral
densities of the motion at the Larmor frequency, as illustrated by Eqs. (13)

and (14). For most nuclei, and for typical values of the field B this fre-

0’
quency is between 10 and 100 MHz. Very low (< 1 MHz) frequency motion has

little effect on 'T;l, except in very low Zeeman fields, that lead to low sen-—

sitivities and sometimes complex second-order spectra, and therefore are
impractical to use. To measure low-frequency motion it is preferable to use an

rf pulse sequence that aligns the magnetization along an rf field B1 in the

rotating frame (where B, is a static field) and watch its time evolution des-

1
cribed by Tlp’ the spin-lattice relaxation time in the rotating frame, that in
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ana;ogy to 'rl is sensitive to the rotating frame Larmor frequency w'Bl. Since
B1 is typically 10 G, these frequencies are in the kHz range. This method of
measuring low-frequency motion is rather generally applicable. If the internal
Hamiltonian that is being modulated leads to a structured spectrum (in absence
of motion), then the washing out of the spectral structure when the motion
becomes faster then the spectral splittings is another way of probing motion
at lower than Larmor frequencies. This latter method is often used to study

chemical exchange [2].

5. Metals [5,8]

Most characteristic magnetic resonance properties of metals are due
to the hyperfine coupling between conduction electron and nuclear magnetic
moments. The hyperfine coupling may originate in several ways : coupling to
the electron's orbital momentum, similar to Eq. (4), dipole-dipole interaction
as in Eq. (5) or the non-classical Fermi contact interaction :

h T3 6(r.-r.) 15
Y S (rI T (15)

which is similar to the C(ITO0 part of Eq. (6) in the case of "unlike" spins
I and S. But the effect of the Hamiltonian (15) on the nuclear magnetic reso-
nance of I is easier to see by considering STTYS'YI h/3 as the constant C
in Eq. (7), g <5(;i-;é) as a quantum mechanical '"lattice operator', analo-
gous to f{, and T as the operator in nuclear spin space, corresponding to T.
The expectation value of the "lattice operator" S0 6(?&-—?8)(that involves a
trace over electron spin and space variables for a N-electron system) can be
related to the density of states at the Fermi level, and the probability to
find the electron at the site of the nucleus. The density of states in turn
can be represented by the Pauli susceptibility, and the final result for the

Knight shift K is

Av _ _8m 2
v K= %, [ U ] (16)

-+
where Bloch wave functions Uk(r) exp Ciﬁ '¥) have been used. Eq. (16) says

that this contribution to the Knight shift K is isotropic, nonzero only for
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s—electrons, temperature independent, and always positive (in a given field BO
the metal resonance frequency 1is higher). It is the prevailing term in simple
metals, like the alkalis. In more complicated cases, like the transition
metals, the other terms mentioned above play a role, but a more important ef-
fect is "core polarization'" : an electron belonging to the innermost s-shells
(like 1s or 2s) causes a very large hyperfine field, and if the probabilities
of spin-up and spin-down are slightly different, a considerable net effect can
result. The slight difference is due to the Pauli exclusion principle : the
s-shells are very extended in space, and the inner s-electrons have an "ex-
change'" interaction with the outermost, polarized, d-electrons. In NMR of
transition metals the exclusion principle makes that the Knight shift due to
core polarization is negative : the metal resonance is at lower frequency in
constant field. The effect is important e.g. for Pt.

The fluctuating part of the Fermi contact interaction causes a
characteristic spin-lattice relaxation, according to Eq. (13). The "lattice

correlation function'" < Rl—m(t) le(t-T) > now has to be evaluated by quan-

L
tum mechanics. It describes a spin-flip of the electron, accompanied by a
scattering from a wave vector k to a wave vector k': the difference in
Zeeman energy (nuclear plus electronic) is carried away by the difference in
kinetic energy of states k and k' . The correlation function is resonant
(exp 1wT) rather than dissipative (exp - t/Tc), but otherwise the standard

procedure of T -calculations gives, for the Hamiltonian (15) and a free elec-

1
tron gas :

K2 T, 1/5 = 1 (17)

with S = Yez ’ﬁ/&TrkBYnz, K is the Knight shift, and T the temperature.

The relation (17) is known as Korringa relation, and its left-hand side as
Korringa ratio. The latter turns out to be different from 1 for electfonic
systems more complicated than the free electron gas. The T.T = constant is a

1

fairly generally valid result however, and the order of magnitude of T1 at

low temperatures is much smaller in metals than in diamagnetic ionic solids.

These two results can be considered typical for the metallic state.
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6. Ionic Solids [9]

For most nuclei in ionic solids, the quadrupole Hamiltonian, Eq. (2),
describes the important properties of the nuclear magnetic resonance. The sta-
tic part of the field gradient tensor, whose elements are the second partial
derivatives of the electric potential at the site of a nucleus, can often be
calculated to an excellent approximation by a classical point-charge model.
The dynamic part (that may lead to relaxation) is often due to the vibrations
of the crystal lattice that modulate the electric field gradient at the site
of the nucleus. This coupling between phonons and spins enables a relaxation
process whereby a phonon is scattered, and takes the nuclear Zeeman energy
with it : the process is often called Raman relaxation. There is a similarity
with the relaxation in metals, but since electrons are fermions and phonons
are bosons, their occupation number statistics are different, and so are the
temperature dependences of the spin-lattice relaxation processes. In the case
of Raman relaxation, a high-temperature approximation to a Debye phonon spec-
trum predicts a spin-lattice relaxation rate proportional to the square of the

temperature, but the proportionality constant is hard to evaluate.

7. Molecular Solids and Polymers_{lO]

The most important static effects are chemical shielding and spin-
spin coupling, both direct dipolar and indirect. The typical dynamic effect is
molecular rotation. A very simple 13C spectrum of a molecular solid is the
powder spectrum of solid benzene, showing axial symmetry (the value of n in
Eq. (7) seems to be zero). Since the point symmetry of the carbon site in ben-
zene 1s known to be lower, one concludes that this is a dynamic effect : the
molecules rotate around their hexad axes at a speed larger than the splitting,
and the expected fully asymmetric powder pattern is washed out : we observe
the component of the shielding perpendicular to the molecule's plane, and the
average of the two components in the plane.

An interesting experimental method to collapse such a broad line
into a single narrow line at a position determined by the trace of the tensor
(the isotropic shift @) is to apply a rapid rotation W, in real space (a

mechanical rotation) around a well-defined axis.
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Consider an axes system fixed in the rotating powder sample (RP)

in this axes system, the Rgmiﬂ the Hamiltonian are given by the equivalent

2 y
of Eq. (8) where the arguments of the Dm, _p are different for each crystal-
3

lite, but constant in time. Next apply a transformation from the RP axes sys-

tem to the LAB system :

L
R (LAB) = I R, , (RP) Dg, (rotation) =
m ey fm m'm
m= (18)
4 2 ')
= 7 R, , (PAS) D ,, , (fixed) D, (rotation)
o' m'=—1 2m m''m m'm

Restriction to secular terms as in Eq. (9) in the LAB system leaves only the
m = 0 term. Then the m' dependence of Di'm (rotation) introduces the time
dependence due to rotation at a speed wr as factors exp (i m' wr t). If wr is
"sufficiently" high, we observe only time averages : the only term that sur-
vives is m' = 0, so the spectrum is determined by

Q g
I Ry, (PAS) b¥  (Eixad) (19)

2
REO(LAB) = DOO(O’B’O) n"0
where B 1is the angle between the axis of rotation and the magnetic field.

e 2 . . .
From the explicit form of D one finds that the "magic angle'" for which

RZO (LAB) vanishes for all éﬁgstallites in the powder is B = arccos (1/V3) %
54°. This technique has been applied e.g. to the study of 13C in solid glassy
polymers in ref. 11. These authors find that a short Tlp for carbons in the
main chain of the polymer indicates motions fast enough to lead to plastic
flow, thereby dissipating impact energy as heat, without stress concentration,
crack formation or brittle failure. As an example of this correlation between
microscopic (Tlp) and macroscopic (impact strength) properties, they discuss
the effect of annealing on quenched films of poly (ethylene terephtalate).

Annealing increases the T for the ethylene carbons, and decreases the ten-—

lp
sile strength.
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